The effect of drainage reorganization on paleoaltimetry studies: An example from the Paleogene Laramide foreland

Steven J. Davis a,⁎, Bettina A. Wiegand b, Alan R. Carroll c, C. Page Chamberlain a

a Environmental Earth System Science, Stanford University, Stanford, CA 94305, USA
b Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA
c Department of Geology and Geophysics, University of Wisconsin, Madison, WI 53706, USA

A R T I C L E I N F O

Article history:
Received 20 May 2008
Received in revised form 29 July 2008
Accepted 4 August 2008
Available online 9 October 2008

Editor: P. DeMenocal

Keywords:
–
iso
tope ratios
lacustrine sediments
–
drainage patterns
paleoaltimetry
limnogeology
North American Cordillera

A B S T R A C T

Using multiple stable isotope systems, we examine the complex effects of drainage reorganization in the Laramide Foreland in the context of stable isotope paleoaltimetry. Strontium, oxygen and carbon isotopic data from lacustrine carbonates formed in the southwestern Uinta Basin, Utah between the Late Cretaceous and late Paleocene (56–49 Ma) are interpreted as the result of water overflown from the Greater Green River Basin in Wyoming and entering Lake Uinta from the east via the Piceance Creek Basin of northwestern Colorado. This large new source of water caused a rapid expansion of Lake Uinta and was accompanied by a significant and rapid increase in the O isotope record of carbonate samples by ~6‰. The periodic overspilling of Lake Gosiute probably became continuous at ~49 Ma, when the lake captured low-δ18O water from the Chaliss and Absaroka Volcanic Fields to the north. However, evaporation in the Greater Green River and Piceance Creek Basins meant that the waters entering Lake Uinta were still enriched in 18O. By ~46 Ma, inflows from the Greater Green River Basin ceased, resulting in a lowstand of Lake Uinta and the deposition of bedded evaporites in the Saline Facies of the Green River Formation. We thus show that basin development and lake hydrology in the Laramide foreland were characterized by large-scale changes in Cordilleran drainage patterns, capable of confounding paleoaltimetry studies premised on too few isotopic systems, samples or localities. In the case of the North American Cordillera of the Paleogene, we further demonstrate the likelihood that: (1) topographic evolution of distal source areas strongly influenced the isotopic records of intraforeland basins and (2) a pattern of drainage integration between the hinterland and foreland may correlate in space and time with the southward sweep of hinterland magmatism.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

During the past decade, numerous stable isotopic studies have reconstructed the paleoaltimetry of mountain belts worldwide (Chamberlain and Poage, 2000; Garzione et al., 2000; Rowley et al., 2001; Poage and Chamberlain, 2001; Kohn et al., 2002; Takeuchi and Larson, 2005; Graham et al., 2005; Kent-Corson et al., 2006). These studies use the O isotope composition of authigenic minerals as a proxy for past altitudes, and often assign isotopic shifts of these minerals over time to the growth of local topography. There are, however, other factors such as evaporation, temperature, and dia-genesis that can influence the O iso
topic composition of authigenic minerals. These are generally taken into account in paleoaltimetry

⁎ Corresponding author.
E-mail addresses: sjdavis@stanford.edu (S.J. Davis), lwiegand@stanford.edu (B.A. Wiegand), acarroll@geology.wisc.edu (A.R. Carroll), chamb@stanford.edu (C.P. Chamberlain).

0012-821X/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.epsl.2008.08.009

studies. Not often considered in these studies is the regional drainage reorganization that occurs during mountain building events. Large-scale drainage reorganization and stream piracy can strongly influence the O isotope composition of water in basins. Such changes may confound paleoaltimetry estimates because: 1) drainage reorganization can occur on time-scales of 105 yr (Hilley and Strecker, 2005), whereas tectonism generally occurs on time-scales of 107 yr (although removal of the lower lithosphere can be faster Garzione et al., 2006); and 2) the expanded drainage basin can tap waters with different O isotope values either as a result of draining areas with different atmospheric source regions or waters that have undergone evaporation.

As a case study, we examine the O, C and Sr isotopic composition and Sr/Ca ratios of authigenic carbonates formed in Late Cretaceous to late Middle Eocene lakes in the Laramide foreland. Laramide segmentation of the foreland impounded large lakes (~20,000 km2) whose sedimentological history suggests that their hydrology coevolved with accommodation space over millions of years (Pietras et al., 2003; Surdam and Stanley, 1980; Carroll et al., 2006; Smith et al., 2008). Studies using O
isotopes (Norris et al., 1996; Dettman and Lohmann, 2000; Davis et al., in press) and Sr isotopes (Rhodes et al., 2002; Gierlowski-Kordesch et al., 2008) suggest that these lakes preserve a record of reorganizing drainage patterns attendant with rise of mountains. However, whether such reorganization occurs locally (Norris et al., 1996; Dettman and Lohmann, 2000) or on a more regional scale (Davis et al., in press) is unknown.

Our combined isotopic study shows that drainage reorganization has occurred in response to developing topography, both locally and as much as 1000 km away. Specifically, we show that large O isotopic shifts (6–7‰) are primarily the result of changing hydrologic regime of Lake Uinta. By combining data from O and C isotopes and Sr/Ca ratios with Sr isotope ratios, we are able to evaluate the role of drainage reorganization and suggest that lake hydrology was responding to both local and distal tectonic forcing.

2. Geological setting

Rivers draining eastward from the Sevier hinterland across the central North American Cordillera in Cretaceous and Paleocene time were large, persistent and relatively insensitive to the evolving frontal morphology of the fold-thrust belt (DeCelles, 1994; Horton and DeCelles, 2001). However, beginning in Late Campanian and Maastrichtian time (~80 Ma), Laramide deformation progressively impeded this eastward drainage, and block uplifts partitioned intraforeland basins (Dickinson et al., 1988). By Eocene time, sedimentary provenance and paleoflow directions document the evolution of drainages that transported substantial water and sediment fill to Laramide basins from areas within the foreland, both north and south along the strike of the fold-thrust belt (e.g., Anderson and Picard, 1972; Stanley and Collinson, 1979; Dickinson et al., 1986). In time, Laramide tectonism waned, and the accommodation created by intraforeland basins was completely infilled between the late Middle Eocene and Early Oligocene. The sedimentary units sampled in this study record each phase in the development of drainages feeding the Uinta Basin of northeast Utah (Fig. 1). The sedimentology of units examined in this study shows the evolution of intraforeland basins from fluvial systems draining the superjacent fold-thrust belt during the Cretaceous and Late Paleocene into a long-lived lake system whose depocenters and hydrology shifted over time during the Eocene. The four formations that we studied using isotopic methods are discussed below.

2.1. North Horn Formation

From Maastrichtian to Late Paleocene time, a major deltaic complex deposited redbeds in the southwestern Uinta Basin (Ryder et al., 1976; Franczyk et al., 1991). Alluvial sand, silt and clay of this system, assigned to the North Horn Formation, were deposited at the margin of the nascent Lake Uinta by east-flowing rivers draining the fold-thrust belt, and smaller streams meandering north–northwest from the growing San Rafael Swell (Ryder et al., 1976; Fouch et al., 1983; Lawton, 1986; Franczyk et al., 1991).

2.2. Flagstaff and Colton Formations

Just south of the Uinta Basin, the topography of the San Rafael Swell began impounding eastward drainage of the Flagstaff Basin in the Late Paleocene (Fig. 1). Authigenic carbonates of the Flagstaff Formation mark the onset of widespread lacustrine deposition in the Flagstaff Basin between the fold-thrust belt and the San Rafael Swell (Stanley and Collinson, 1979). At the end of the Paleocene, this Lake Flagstaff had expanded into the central Uinta Basin and occupied ~150 km length of the foreland along the strike of the fold-thrust belt (See Fig. 1: Ryder et al., 1976; Stanley and Collinson, 1979).

Ongoing Laramide deformation eventually resulted in dissection of the deposits of Lake Flagstaff. During Early Eocene time, the lake transgressed west ahead of the northwest prograding fluvial mudstone and arkosic sandstone of the Colton Formation, interrupting lacustrine deposition in most of the Flagstaff and southwestern Uinta Basins (Peterson, 1976; Stanley and Collinson, 1979; Norris et al., 1991). Where the lake persisted in the Uinta and westernmost Flagstaff Basins (the latter is sometimes referred to as the Axhandle Basin or Gunnison Plateau) (Stanley and Collinson, 1979; Volkert, 1980; Fouch et al., 1983; Talling et al., 1995), the freshwater limestone of the Flagstaff Formation grade upwards into carbonate of the Eocene Green River Formation (Fouch, 1976; Volkert, 1980). For this reason, the Flagstaff Formation in the southwest Uinta Basin (where we sampled it) is locally defined as the Flagstaff Member of the Green River Formation (See Fig. 1; Fouch, 1976).

2.3. Green River Formation

Though isolated from the Flagstaff depocenter to the south, open lacustrine deposition resumed in the Uinta Basin and continued throughout the Eocene (Bryant et al., 1989). In the Early Eocene, Lake Uinta was approximately hydrologically balanced; lake levels fluctuated so that the lake oscillated between periods of internal drainage and periods when the overfilled lake spilled south into the Flagstaff Basin (Davis et al., in press). During this period of fluctuating lake levels, cyclically interbedded limestone, marl, oil shale (kerogen-rich marl) and sandstone of the Main Body of the Green River Formation were deposited (Bradley, 1931; Picard and High, 1968). At ~48.6 Ma, a pronounced lake highstand is delineated by oil shale and tuff of the Mahogany Zone Smith et al., 2008). During the Mahogany highstand, Lake Uinta overtopped the Douglas Creek Arch (DCA) at its eastern end to merge with the lake in the Piceance Creek Basin, attaining an area in excess of 20,000 km² (Fig. 1; Picard and High, 1968).

After the Mahogany highstand, Lake Uinta became internally drained for an extended period of time. Beginning ~46 Ma (Smith et al., 2008; Davis et al., in press) the evaporitic Saline Facies of the Green River Formation was deposited (Dy whole et al., 1985) in the closed, hypersaline lake. At ~44 Ma, the lake gradually freshened, as recorded in sediments of the Sandstone and Limestone Facies of the Green River Formation, and lacustrine deposition ended at ~43 Ma (Bryant et al., 1989; Smith et al., 2008; Davis et al., in press).

3. Approach and methods

3.1. Isotopic and trace element studies

O, C and Sr isotopes of lacustrine carbonate are particularly useful for unraveling how climate and tectonics influence lake evolution because each system provides unique and complementary information on the paleohydrology of lakes. For example, O isotope composition of lake water (δ18Osw) represents a weighted average of the freshwater input from extrabasinal drainages, intrabasinal precipitation, and groundwater seepage, stream and groundwater outflow from the basin, and evaporation from the lake (Crisis, 1999; Winter, 2004). Whereas, C isotopes are useful in recognizing hydrologic closure of paleolakes and diagenetic alteration of carbonate samples. Strontium isotopes, in contrast, can be used to assess changes in the provenance of water flowing into the lake.

We used the following approach to determine the paleohydrology of the evolving Lake Uinta system. First, we constructed O isotopic profiles of the Cretaceous to Late Paleocene sediments exposed in the Uinta Basin. Second, we used C isotopes and Sr/Ca ratios of carbonate to evaluate the role of evaporation and diagenesis on the O isotope record. Evaporative effects can be assessed by the degree of covariance of δ13C–δ18O values and Sr/Ca ratios in carbonate samples. If evaporation is relatively high δ13C and δ18O values will covary because hydrologically closed lakes have long residence times allowing preferential outgassing of 12C-rich CO2 accompanied by evaporative enrichment of 18O (Talbot and Kelts, 1990). Sr/Ca ratios will also be high in evaporative lakes as the partitioning of Sr between host water
and authigenic carbonate is proportional to the ratio of Sr$^{2+}$ to Ca$^{2+}$ in the water (Müller et al., 1972). In hydrologically closed lakes, Sr$^{2+}$ is not flushed from the system, and as CaCO$_3$ precipitates, Sr$^{2+}$ is progressively concentrated and incorporated into authigenic carbonates (Eugster and Kelts, 1983). Carbon isotopes can also be used to assess the role of diagenesis on the O isotope composition of carbonates. Diagenesis often results in relatively low O isotope values (Morrill and Koch, 2002) as a result of equilibration of carbonate with meteoric waters at high temperatures. Since the δ^{13}C values of early diagenetic carbonates are determined by bacterially mediated redox reactions, while δ^{18}O values of such diagenetic phases continue to record the isotopic composition of sediment pore waters (Talbot and Kelts, 1990), diagenesis often results in non-covariance of C and O isotopes in lacustrine sediments (Talbot and Kelts, 1990; Talbot, 1990); although others (Garonze et al., 2004) have suggested this might not be the case.

Third, we used Sr isotopes of authigenic carbonate to determine whether the source of the water supplied to these lakes has changed with time. The isotopic signature of Sr in lacustrine carbonates has recently been recognized as a valuable method for reconstructing lake paleohydrology (Pietras et al., 2003; Gierslowski-Kordes et al., 2008). Because mass-dependent fractionation of 87Sr/86Sr ratios is insignificant and corrected for during analysis, authigenic minerals record the Sr isotope composition of lake water at the time of their precipitation. In turn, the 87Sr/86Sr ratio of waters is dictated by contact with rocks in the drainage area, and especially carbonate rocks (Palmer and Edmond, 1992; Jacobsen and Blum, 2000). Heterogeneities in the Sr isotope ratios of lithologies present in the drainage basin are homogenized in lake water such that when carbonate precipitates, its Sr isotope composition reflects the weighted average of isotopically distinct inflows to the lake. Although groundwater seepage into foreland lake basins can be significant (Winter, 2004), subsurface rocks contacted by groundwater in foreland basin systems are generally the same as those exposed in surficial watersheds.

3.2. Methods

We collected authigenic samples of micritic carbonate along a stratigraphic section of Paleogene fluvial-lacustrine facies spanning ~68 km within the southwest Uinta Basin (Fig. 1). Our samples include an existing dataset of 103 samples from the Uinta Basin (Davis et al., in press). We extended this existing collection with 101 new samples of limestone, marl, and calcite-cemented sandstone that are stratigraphically below our earlier collected samples. The details of the sampled section and key references are included in the Supplementary Materials (Table SM1).

We measured Sr, C and O isotope values in the mass spectrometry laboratories at Stanford University. For Sr isotope analysis, Sr was extracted from bulk carbonate samples using 1 M acetic acid (CH$_3$COOH) to ensure that potentially existing silicate minerals were not dissolved. The clear solution was centrifuged, transferred into clean Teflon vials, and evaporated. The remaining sample residue was treated with concentrated HNO$_3$ prior to re-dissolution with 2.5 N HCl. Aliquots of each sample were loaded onto cation exchange columns using Biorad AG50x8–400 mesh) resin, and eluted with 2.5 N HCl. All reagents were distilled. Purified Sr fractions were measured on a Finnigan MAT262 Thermal Ionization Mass Spectrometer using Ta single filaments and 0.25 N H$_3$PO$_4$. Ratios of 88Sr/86Sr, 87Sr/86Sr, and 86Sr/88Sr were scanned at least 80

Fig. 1. Digital elevation map of modern topography of the central North American Cordillera (UTM Zone 13 N) with Paleogene structures superimposed (location and extent of structures after Dickinson et al., 1986, 1988). Basins are lightly stippled and uplifts are shaded gray. Darker shading indicates exposed Precambrian rock where 87Sr/86Sr ratios can be in excess of 1.0, while lighter shading indicates exposures of Paleozoic and Mesozoic rocks with 87Sr/86Sr ratios < 0.710 (isotopic composition from sources cited in text). Bold line shows the Sevier fold-and-thrust belt, teeth on the upper plate. Major structures are labeled as follows: BHB, Bighorn Basin; BHU, Bighorn Uplift; BLHUt, Black Hills Uplift; BTU, Bearooth Uplift; CB, Claron Basin; CCI, Circle Cliffs Uplift; DB, Denver Basin; DCA, Douglas Creek Arch; EB, Elko Basin; FB, Flagstaff Basin; FBU, Front Range Uplift; GB, Gallisteo Basin; GGRB, Greater Green River Basin; GU, Granite Mountain Uplift; HM, Hogback Monocline; JVA, Johns Valley and Upper Valley Anticlines; KU, Kaibab Uplift; LU, Laramie Uplift; MI, Monument Upwarp; OCU, Owl Creek Uplift; PB, Piceance Creek Basin; PRB, Powder River Basin; RB, Raton Basin; RSU, Rock Springs Uplift; SCB, Sage Creek Basin; SCU, Sangre de Cristo Uplift; SJB, San Juan Basin; SMJ, Sierra Madre Uplift; SLL, Sawatch-San Luis Uplift; SRS, San Rafael Swell; UB, Uinta Basin; UUN, Uncompahgre Uplift; UU, Uinta Uplift; WRC, White River Uplift; WWR, Wind River Basin; WWR, Wind River Uplift. Lettered circles indicate sampled sections within (a) the Waihaka sub-basin of the Greater Green River Basin (Carroll et al., 2008) and (b) the Flagstaff Basin (Gierslowski-Kordes et al., 2008). Sampled section indicated by a circle and dashed line; the inset shows detailed location of sampled units [Google Earth projection, unit abbreviations listed in Fig. 2].

Fig. 2. O and Sr isotope and Sr/Ca ratios from the Uinta Basin plotted by stratigraphic position. Approximate age of samples is shown at right, along with radiometric age constraints numbered according to Table SM2. The dashed line MZ indicates the highstand of the Mahogany Zone at 48.6 Ma. Closed symbols represent lacustrine units of the Green River Formation: Tgf, Flagstaff Member; Tgmb, Main Body; Tgs, Saline Facies; Tgsl, Sandstone and Limestone Facies. Open symbols represent fluvial units: KTs, North Horn Formation; Tc, Colton Formation. 87Sr/86Sr ratios are elevated in the stratigraphic interval highlighted by horizontal shading. Vertical shading in the Sr isotope panel indicates the range of values observed in previous studies: (1) Flagstaff Formation in central Utah measured by Gierslowski-Kordes et al. (2008) and (2) Laney Member of Green River Formation in Greater Green River Basin, Wyoming measured by Rhodes et al. (2002).
times per sample. 87Sr/86Sr ratios were corrected for instrumental fractionation using the natural 88Sr/86Sr ratio of 8.375209. Routine standard measurements yield a 87Sr/86Sr ratio of 0.71033±0.00001 (2σ; $n=64$) for the NBS-987 Sr standard. The analytical precision is 0.003% or less. Blanks were less than 0.5 ng Sr. Samples from similar stratigraphic intervals yielded similar Sr isotope ratios irrespective of mineralogy, texture, O isotope composition and Sr/Ca ratio.

We determined the O and C isotope analyses of carbonate using the phosphoric acid digestion method of McCrea (1950) coupled on-line with a gas ratio mass spectrometer. Using this method, between 300 and 500 μg of sample material was drilled from each sample, sealed in reaction vials, flushed with helium and reacted with pure H$_3$PO$_4$ at 72 °C. Evolved CO$_2$ in the vial headspace was then sampled using a Finnigan GasBench II, connected to a Finnigan MAT DeltaPlus XL mass spectrometer. Replicate analyses of NBS-19 (limestone) and laboratory standards yielded a precision ±0.2‰ or better for both δ^{18}O and δ^{13}C.

For Sr/Ca ratios of carbonate we used an inductively coupled plasma-atomic emission spectroscopy (ICP-AES) at Stanford University. Samples were first digested in 67% HNO$_3$, diluted with Mega-Pure water and filtered. Total dissolved Ca$^{2+}$ and Sr$^{2+}$ were measured at wavelengths 317.9 and 407 nm, respectively (cf. de Villiers et al., 2002). Replicate analyses of prepared blanks and standard solutions of varying known concentrations indicated detection limits for Ca$^{2+}$ and Sr$^{2+}$ were measured at 0.1 μg L$^{-1}$ for Ca$^{2+}$ and 1 μg L$^{-1}$ for Sr$^{2+}$ (i.e. better than 0.1 mmol/mol for Sr/Ca ratios).

4. Results

Four results come out of our analyses of O, C and Sr isotopes and Sr/Ca ratios of authigenic carbonate from Lake Uinta. First, between Late Cretaceous and Early Eocene time (~70–53 Ma), δ^{18}O$_{calcite}$ values of fluvial and lacustrine samples vary from 15‰ to 21‰, displaying no clear trend (Fig. 2). However, near the boundary between the fluvial deposits of the Colton Formation and the lacustrine Green River Formation (Main Body, at ~53 Ma), mean δ^{18}O$_{calcite}$ values increase by ~6‰ (Fig. 2). Second, roughly coeval with the increase in δ^{18}O$_{calcite}$ values, 87Sr/86Sr ratios also increase from a mean of 0.70986±0.00022 to a more radiogenic mean of 0.7183±0.00018 (Fig. 2). Thirdly, the higher 87Sr/86Sr ratios persist as δ^{18}O$_{calcite}$ values and Sr/Ca ratios trend higher within the Main Body of the Green River Formation, until ~46 Ma, when 87Sr/86Sr ratios abruptly decrease and δ^{18}O$_{calcite}$ values and Sr/Ca ratios continue to a maximum within the Saline Facies of the Green River Formation (Fig. 2).

4.1. Late Cretaceous–Early Eocene

Between the Late Cretaceous and Early Eocene (~70–53 Ma), δ^{18}O$_{calcite}$ values of fluvial and lacustrine samples vary between 15‰ and 21‰ (Fig. 2) around a mean of 18.9‰ ($n=93$, $1\sigma=1.9$), with no obvious trend. δ^{13}C$_{calcite}$ and δ^{18}O$_{calcite}$ values in samples from the North Horn Formation do not covary (~70 to ~60 Ma, $r^2=0.07$, $n=40$; Fig. 3), nor do values from the Flagstaff Member of the Green River Formation (~60 to ~57 Ma, $r^2=0.11$, $n=25$; Fig. 3) or those from the

![Fig. 3. Covariance of δ^{13}C and δ^{18}O in fluvial and lacustrine carbonates (symbology identical to Fig. 2) of units sampled in the southwest Uinta Basin. Units are abbreviated as follows: TKn, North Horn Formation; Tgf, Flagstaff Member of the Green River Formation; Tc, Colton Formation; Tgmb, Main Body of the Green River Formation; Tgs, Saline Facies of the Green River Formation; Tgsl, Sandstone and Limestone Facies of the Green River Formation. Covariance in stratigraphically continuous subsets of Tgs and Tgsl units are described in the text. Both δ^{13}C and δ^{18}O are plotted relative to the PeeDee Belemnite (V-PDB) standard. δ^{18}O$_{calcite}$ values discussed in the text are relative to Standard Mean Ocean Water (V-SMOW).](Image)
Colton Formation (~57 to ~52 Ma, $r^2 = 0.02$, $n = 28$; Fig. 3). Examination of stratigraphically continuous subsets from these units do not significantly improve isotopic covariance.

During the same time interval, Sr/Ca ratios are consistently low (mean 0.75 mmol/mol, $n = 79$, $1\sigma = 0.47$), except for a few short-lived excursions in each unit that do not exceed 2 mmol/mol (except for a single anomalous but otherwise unremarkable sample from the Colton Formation with a measured composition of 3.76) (Fig. 2). No relationship between Sr/Ca ratios and $\delta^{18}O_{\text{calcite}}$ values is observed in samples from the North Horn or Colton Formations or the Flagstaff Member of the Green River Formation (r^2 values of 0.09, <0.01 and <0.01, respectively; Fig. 4).

The 87Sr/86Sr ratios of lacustrine carbonate from the Flagstaff Member of the Green River Formation have a mean of 0.70986±0.00022 ($n = 3$).

4.2. Early Eocene–early Middle Eocene

Samples from the interval of time between the Early Eocene and early Middle Eocene (~53–46 Ma) are characterized by elevated 87Sr/86Sr ratios relative to any of our samples deposited before or after (see shaded area, Fig. 2). The transition to higher 87Sr/86Sr ratios occurs near the base of the Main Body of the Green River Formation, and samples from that unit comprise a statistically distinct population from samples deposited before and after (mean = 0.71183±0.00018; ANOVA single factor and nonparametric Kruskall–Wallis tests conducted at 95% confidence show samples are not derived from the same population: $F = 22.13$, $F_{\text{crit}} = 3.07$, $H = 16.595$ and $\chi^2_{\text{crit}} = 7.81$).

Coeval with the increase in Sr isotope ratios, the range of $\delta^{18}O_{\text{calcite}}$ values increases by ~6‰ between the Colton Formation (mean = 18.1‰, $1\sigma = 3.5$, $n = 16$) and the lower Main Body of the Green River Formation (mean = 24.1‰, $1\sigma = 3.5$, $n = 16$). Upsection, while Sr isotope ratios remain high, $\delta^{18}O_{\text{calcite}}$ values of Main Body samples show reduced variability, with the lowest measured values gradually increasing by ~7‰ (Davis et al., in press). Also during this time, Sr/Ca ratios increase from ~1 mmol/mol to a maximum in excess of 2 mmol/mol (Davis et al., in press).

Between ~53 and 46 Ma, $\delta^{13}C_{\text{calcite}}$ values covery with $\delta^{18}O_{\text{calcite}}$ values in samples of the Main Body of the Green River Formation ($r^2 = 0.50$, $n = 50$) (Fig. 3, DeCelles, 1994).

4.3. Late Middle Eocene

At ~46 Ma, roughly coeval with the onset of deposition of the Saline Facies of the Green River Formation, 87Sr/86Sr ratios decrease as suddenly as they increased, returning to values that are statistically indistinguishable from samples deposited prior to the Early Eocene (Fig. 2). The mean of ratios measured in samples of the Saline and Sandstone and Limestone Facies is 0.71002±0.00016 ($n = 13$). 87Sr/86Sr ratios remain low throughout the life of Lake Uinta.

The change in 87Sr/86Sr ratios is not correlated with a sudden change in $\delta^{18}O_{\text{calcite}}$ values or Sr/Ca ratios, which instead continue to a maximum of ~30‰ and 5 mmol/mol, respectively, within the Saline Facies of the Green River Formation (Fig. 2; DeCelles, 1994). In the late Middle Eocene, $\delta^{18}O_{\text{calcite}}$ values and Sr/Ca ratios steadily decrease by 8‰ and ~3 mmol/mol, respectively (Fig. 2; DeCelles, 1994).
Between ~46 and 44 Ma, δ¹³Ccalcite and δ¹⁸Ocalcite values in the Saline Facies, when examined as a single population, do not exhibit isotopic covariance ($r^2 = 0.08, n = 35$), perhaps owing to small variation in either isotope systems. However, subsets of stratigraphically continuous Saline Facies samples do reveal a positive correlation of δ¹³Ccalcite and δ¹⁸Ocalcite over spans of ~600 kyr ($r^2 = 0.57, n = 14, 46.0$ to 45.4 Ma) and ~200 kyr ($r^2 = 0.63, n = 14, 44.9$ to 44.7 Ma) (Fig. 3). Similarly, isotopic covariance exists in only a subset of the oldest rocks from the Sandstone and Limestone Facies, representing approximately 400 kyr ($r^2 = 0.90, n = 11, 44.2$ to 43.8 Ma) (Fig. 3, DeCelles, 1994).

5. Interpretation

5.1. Overview

We interpret the increase of 87Sr/86Sr ratios as recording a period of large-scale drainage integration in the Cordillera between ~53 and 46 Ma, when substantial inflows to Lake Uinta were derived from Lake Gosiute to the north (Fig. 5, 48.6 Ma Panel). Our data coupled with those from other studies (Kent-Corson et al., 2006; Carroll et al., 2008) suggest that by ~49 Ma the drainage basin of Lake Uinta incorporated rivers draining the Challis Volcanic Field nearly 1000 km away in Idaho, with water flowing through Lake Gosiute into Lake Uinta. Lower 87Sr/86Sr ratios observed prior to 53 Ma and after 46 Ma represent times when little or none of the water entering Lake Uinta was sourced from the foreland north of the Uinta Uplift. Instead, catchments feeding Lake Uinta during these times drained areas in the hinterland to the west, as well as distal regions in the foreland to the southeast, as well as adjacent Laramide block uplifts. Evidence for this interpretation is given below.

5.2. Evidence for drainage reorganization

Prior to ~53 Ma, the Uinta Basin was host to fluvial systems and a freshwater lake with major inflows entering from the southwest and the southeast (e.g., Dickinson et al., 1986; Lawton, 1986; Dickinson et al., 1988; Franczyk et al., 1991; Morris et al., 1991; Remy, 1992). This interpretation is further supported by the O, C, and Sr isotope data presented here (Fig. 2). Lack of covariance of C and O isotopes (Fig. 3), relatively low δ¹⁸Ocalcite values, and low Sr/Ca ratios prior to ~53 Ma all evidence a hydrologically open basin. Moreover, a recent study of coeval lacustrine carbonates in the Flagstaff Basin (~75 km southwest) found 87Sr/86Sr ratios statistically indistinguishable from our samples of the Flagstaff Member (mean of 0.709955 ± 0.000262; $n = 38$, $p > 0.05$), and concluded that the primary catchments feeding Lake Flagstaff at all times drained areas in the fold-thrust to the west (Gierlowski-Kordesch et al., 2008). The 87Sr/86Sr ratio of these rocks reflects (1) the dominant flux of dissolved Sr from Paleozoic and Mesozoic carbonates exposed in the fold-thrust belt (Blum et al., 1998; Jacobsen and Blum, 2000; Gierlowski-Kordesch et al., 2008) and (2) the fact that few Precambrian basement rocks, which might have imparted a more radiogenic signature, were ever exposed south of the Uinta Basin except for the Front Range, which lay more than 300 km to the southeast (Foster et al., 2006).

We interpret the increase in 87Sr/86Sr ratios in carbonate samples from Lake Uinta at ~53 Ma as the result of a large-scale reorganization...
of the lake’s drainage system with new and substantial inflows from Lake Gosuite and the catchments of the Greater Green River Basin that eventually extended into the Challis Volcanic Field at ~49 Ma (Kent-Corson et al., 2006; Carroll et al., 2008). Three lines of evidence support this interpretation. First, coeval lacustrine carbonates deposited in Lake Gosuite are themselves quite radiogenic. The 87Sr/86Sr ratios of samples from the Laney Member of the Green River Formation (~50 Ma) in the Greater Green River Basin (~285 km from our sampled section over the Uinta Uplift) give a mean of 0.71245 ± 0.00014 (n = 22, p < 0.05) (Rhodes et al., 2002). The more radiogenic Sr isotope composition of these samples reflects the radiogenic composition of Sr in adjacent, craton-cored Laramide structures (e.g., cores of the Wind River, Granite, Owl Creek, Laramie and Sierra Madre Uplifts were exposed in the Eocene Carroll et al., 2006), where whole rock 87Sr/86Sr ratios can be in excess of 1.0 (Divis, 1977; Peterman and Hildreth, 1978; Zielinski et al., 1981; Mueller et al., 1985; Frost et al., 1998; Patel et al., 1999). Although the Uinta Uplift bounding the Uinta Basin to the north is also basement-cored, the east-trending axis of the range is beyond the southwestern margin of the Wyoming craton, so that basement rocks at the core of the Uinta Uplift are a mixture of sediments deposited during the Neoproterozoic accretion of terranes (Ball and Farmer, 1998; Condle et al., 2001; Nelson et al., 2002; Foster et al., 2006). The 87Sr/86Sr ratios of these sediments range from 0.774 to 0.793 (Crittenden and Peterman, 1975)—more radiogenic than the rocks of the fold-thrust belt and Tertiary volcanics, but not to the level of the craton-cored uplifts of Wyoming. If catchments draining the Uinta Uplift were responsible for the increase in 87Sr/86Sr ratios at ~53 Ma, we would expect 87Sr/86Sr ratios to also be high during the later stages of Lake Uinta’s lifespan, when braided streams flowing south from the Uinta Uplift deposited fluvial units along the northern margin of the lake (Anderson and Picard, 1972; Davis et al., in press). To the contrary, 87Sr/86Sr ratios in lacustrine carbonates formed during that time (Sandstone and Limestone Facies of the Green River Formation) remain low and may even decline slightly over time.

Second, the increase in 87Sr/86Sr ratios at ~53 Ma coincides with an increase in δ18Ocalcite Values by ~6‰ between the Colton Formation and the Main Body Green River Formation. Prior to ~49 Ma, lacustrine carbonates of the lower LaClede Bed (Laney Member) of the Green River Formation of the Greater Green River Basin have a mean δ18Ocalcite value of 26.5‰ (Carroll et al., 2008). Following the shift in Sr isotope composition at ~53 Ma, the mean δ18Ocalcite value of coeval carbonates in the lower Main Body of the Uinta Basin’s Green River Formation is similar: 24.9‰ (1σ = 3.5, n = 47). The contemporaneous expansion of Lake Uinta and increase in δ18Ocalcite values of the Uinta Basin to values that correspond with those of carbonates forming in Lake Gosuite reflects the isotopic influence of water from Lake Gosuite, where the water had previously been enriched by evaporation. After ~49 Ma, when — despite low δ18O waters sourced in the Challis and Absaroka Volcanic Fields flooding into Lake Gosuite at 48.9 Ma (Kent-Corson et al., 2006; Carroll et al., 2008) — mean δ18Ocalcite Values of carbonate forming ~1000 km downstream at the Mahogany highstand of Lake Uinta increase ~2% further and variability decreases (mean = 26.6‰, 1σ = 1.1, n = 14)."
topography, drainages feeding Laramide basins were rearranged causing stable isotopic shifts that roughly coincide with isotopic shifts observed to the west within the Sevier hinterland (Davis et al., in press).

One of the most pronounced rearrangements has been observed in Lake Gosuite at 48.9 Ma, where 87Sr/86Sr ratios decreased from 0.71234 ± 0.00042 to 0.71163 ± 0.00026 (p < 0.05) while δ^{18}O$_{\text{calcite}}$ values decreased by roughly 6‰ (Carroll et al., 2008). Based on this evidence and similar isotopic shifts observed in the Sage Creek Basin in the Sevier hinterland ~500 km northwest of Lake Gosuite (Kent-Corson et al., 2006), that study suggested that Lake Gosuite’s hydrology was affected by stream capture of catchments draining the rising volcanic topography of the Challis Volcanic Field (~51 – 47 Ma (Fisher et al., 1992; Carroll et al., 2008)). Moreover, these isotopic shifts occurred quickly, in less than 200,000 yr (between 48.9 and 48.7 Ma) (Carroll et al., 2008).

Although our age constraints are not as tight, the Sr and O isotopic data from the Uinta Basin are consistent with this interpretation, and we now show that the integration of Cordilleran drainages occurred at a larger-scale in two stages: A hydrologic linkage between Lakes Gosuite and Uinta first existed beginning at ~53 Ma. With the rearrangement of catchments feeding Lake Gosuite at 48.9 Ma and until ~46 Ma, the Cordilleran drainage network extended from the Sage Creek Basin in Montana through Lake Gosuite and into Lake Uinta, nearly 1000 km.

Exactly what caused Lake Gosuite to first overflow into Lake Uinta at ~53 Ma and then cease at ~46 Ma is unknown. However, lake hydrology is a function of potential accommodation space and sedimentary facies at ~53 Ma and then cease at ~46 Ma is unknown. However, lake hydrology is a function of potential accommodation space and sedimentary facies at ~53 Ma and then cease at ~46 Ma is unknown. However, lake hydrology is a function of potential accommodation space and sedimentary facies at ~53 Ma and then cease at ~46 Ma is unknown. However, lake hydrology is a function of potential accommodation space and sedimentary facies at ~53 Ma and then cease at ~46 Ma is unknown. However, lake hydrology is a function of potential accommodation space and sedimentary facies at ~53 Ma and then cease at ~46 Ma is unknown. However, lake hydrology is a function of potential accommodation space and sedimentary facies.
seems to have been the dominant pattern for much of the Paleogene (Fouch et al., 1983; Gierlowski-Kordesch et al., 2008; Henry, 2008), tectonically mediated drainage rearrangements within the foreland in some cases profoundly influenced the developing Laramide basins and their O isotope records. Unrecognized, such drainage rearrangements might easily confound studies of isotopic paleoaltimetry.

Acknowledgements

We acknowledge the support of National Science Foundation grant EAR-0609649 to C. P. Chamberlain and a Stanford University Earth Sciences McGee grant to S. J. Davis. We thank Stephen Graham and Pete DeCelles for productive discussion and Malinda Kent-Corson and Hari Mix for help in the lab.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at do:10.1016/j.epsl.2008.08.009.

References

