Chondrules reveal large-scale outward transport of inner Solar System materials in the protoplanetary disk

Curtis D. Williams,a,b,c, Matthew E. Sanborn,a,c, Céline Defouilloy,b,d, Qing-Zhu Yin,a,c, Noriko T. Kitab,c, and Katsuyuki Yamashitad

aDepartment of Earth and Planetary Sciences, University of California, Davis, CA 95616; bWiscSIMS, Department of Geoscience, University of Wisconsin–Madison, Madison, WI 53706; cDepartment of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024; and dGraduate School of Natural Science and Technology, Okayama University, Kita-ku, 700-8530 Okayama, Japan

Edited by H. J. Melosh, Purdue University, West Lafayette, IN, and approved August 9, 2020 (received for review March 19, 2020)

Dynamic models of the protoplanetary disk indicate there should be large-scale material transport in and out of the inner Solar System, but direct evidence for such transport is scarce. Here we show that the δ^{50}Ti and δ^{54}Cr–Δ^{17}O systematics of large individual chondrules, which typically formed 2 to 3 Myr after the formation of the first solids in the Solar System, indicate certain meteorites (CV and CK chondrites) that formed in the outer Solar System accreted an assortment of both inner and outer Solar System materials, as well as material previously unidentified through the analysis of bulk meteorites. Mixing with primordial refractory components reveals a “missing reservoir” that bridges the gap between inner and outer Solar System materials. We also observe chondrules with positive δ^{50}Ti and δ^{54}Cr plot with a constant offset below the primitive chondrule mineral line (PCM), indicating that they are on the slope ~ 1.0 in the oxygen three-isotope diagram. In contrast, chondrules with negative δ^{50}Ti and δ^{54}Cr increasingly deviate above from PCM line with increasing δ^{18}O, suggesting that they are on a mixing trend with an ordinary chondrite-like isotope reservoir. Furthermore, the Δ^{17}O–Mg# systematics of these chondrules indicate they formed in environments characterized by distinct abundances of dust and H$_2$O ice. We posit that large-scale outward transport of nominally inner Solar System materials most likely occurred along the midplane associated with a viscously evolving disk and that CV and CK chondrules formed in local regions of enhanced gas pressure and dust density created by the formation of Jupiter.

Significance

We present a coordinated petrologic, mineral chemistry, and multi-isotopic investigation of individual chondrules to further elucidate the origins and formation histories of planetary materials. We show chondrules from certain meteorites that accreted in the outer Solar System contain an assortment of both inner and outer Solar System material, as well as previously unidentified material. The outward transport of inner Solar System material places important constraints on dynamical models, as outward transport in the disk was thought possible only if significant barriers (e.g., Jupiter) to radial transport of materials do not exist. We show this “barrier” is either not completely impermeable to transport of millimeter-sized materials or additional mechanisms are required to transport materials to the outer Solar System.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: cdwill@ucdavis.edu or qinyin@ucdavis.edu

2Present address: CAMCMCA, 92622 Gennevilliers Cedex, France.

3Present address: Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Tsukuba-City, 305-8506 Ibaraki, Japan.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005235117/-/DCSupplemental.

First published September 8, 2020.
be explained by the admixture of CAI-like precursor materials with highest nucleosynthetic 50Ti and 54Cr anomaly, which are abundant in CV chondrites (11).

Resolving these two competing interpretations would significantly improve our understanding of the origin of the isotopic dichotomy observed for bulk meteorites and provide constraints on the disk transport mechanism(s) responsible for the potential mixing of material with different formation histories. However, in earlier studies, Ti and Cr isotopes were not obtained from the same chondrules, which is required to uniquely identify their precursor materials and associated formation histories. Also absent in earlier studies is documentation of the properties (petrographic and geochemical) of individual chondrules that provide a valuable aid in interpreting Ti and Cr isotope data. Thus, we designed a coordinated chemical and Ti-Cr-O isotopic investigation of individual chondrules extracted from Allende (CV) and Karoonda (CK) chondrites (3). While the 50Ti and 54Cr of chondrules tracks the average composition of solids, the analyses of O isotopes and mineral chemistry of major Mg silicates (olivine and pyroxene) is useful to distinguish chondrules that are similar to those in ordinary chondrites (13–16) as well as precursor materials that may have formed in regions of the disk with variable redox conditions or with distinct proportions of anhydrous dust versus H$_2$O ice (17). A significant number of high-precision Ti and Cr isotope analyses of bulk meteorites were also obtained for both carbonaceous and noncarbonaceous meteorites to help define the bulk meteorite 50Ti-54Cr systematics of known planetary materials.

Results

Bulk Meteorite 50Ti and 54Cr Isotopes. We obtained analyses of Ti and Cr isotopic compositions (reported as ε^{50}Ti and ε^{54}Cr, which are parts per 10,000 deviations from a terrestrial standard) for 30 bulk meteorites, all of which have mass-independent O isotope analyses reported as Δ^{17}O [a vertical deviation from the terrestrial fractionation line in parts per 1,000 (18)] previously reported (Dataset S1 and Fig. 1). The data clearly define two distinct isotopic groups: 1) noncarbonaceous meteorites, including enstatite chondrites (ECs), ordinary chondrites (OCs), and most differentiated meteorites known as achondrites (e.g., Moon, Mars, Vesta, angrites, ureilites, acapulcoites, lodranites, and winonaites) and 2) carbonaceous meteorites [including carbonaceous chondrites and several ungrouped achondrites (19)]. These two groups display orthogonal trends and are isolated from each other by a large area in ε^{50}Ti-ε^{54}Cr-Δ^{17}O isotope space that is devoid of any bulk meteorite compositions (shown

![Diagram](image-url)

Fig. 1. The ε^{50}Ti-ε^{54}Cr-Δ^{17}O isotopic compositions of bulk carbonaceous and noncarbonaceous meteorites. (A,B) Data for ε^{50}Ti and ε^{54}Cr from this study are shown in Dataset S1. Literature data for ε^{50}Ti and ε^{54}Cr are from refs. 19–25. (C, D) Literature Δ^{17}O data are from refs. 26–42. Error bars are either the internal 2 SE or external 2 SD, whichever is larger. Note that noncarbonaceous meteorites are characterized by a strong positive correlation in the ε^{50}Ti-ε^{54}Cr-Δ^{17}O isotope space, while carbonaceous meteorites are characterized by a strong negative correlation in ε^{50}Ti-ε^{54}Cr (A, B) and ε^{50}Ti-Δ^{17}O (C) isotope spaces but a positive correlation in ε^{54}Cr-Δ^{17}O (D) isotope space. Also shown (A) is the average ε^{50}Ti-ε^{54}Cr isotopic composition of "normal" CAIs. Error bars represent the overall range of normal CAI values. Dashed blue and green lines (A, B) represent a two-component mixing line between the average value of "normal" CAIs and extension of the noncarbonaceous line. Dashed black and gray lines represent a two-component mixing line between the average value of AOAs and extension of the carbonaceous line. The red line represents a linear regression through noncarbonaceous meteorites, ostensibly inner Solar System materials (gray circles and red squares), calculated using boltplot version 4.15. Note that the linear regression through noncarbonaceous meteorites intersects carbonaceous chondrite field near CM chondrites ε^{50}Ti-ε^{54}Cr isotope space (A, B). The "missing reservoir" denotes the region between noncarbonaceous and carbonaceous meteorite groups that lacks any reported bulk meteorite data. (B) Zoomed-in view of A. Legend abbreviations: carb., carbonaceous; noncarb., noncarbonaceous; EC, enstatite chondrite; OC, ordinary chondrite; Ure, ureilite; Aca/Lod (acapulcoite/lodranite).
as “missing reservoir” in Fig. 1). This paucity of samples remains even after including analyses from our expanded dataset. Previous work (2) calculated a linear regression through the non-carbonaceous meteorites using the data available at the time, which intersected the field defined by carbonaceous meteorites at approximately the composition of CI chondrites, an end-member of the carbonaceous meteorite field. However, when a linear regression is calculated through our expanded set of e^{54}Cr and e^{54}Cr of noncarbonaceous meteorites, the extrapolation of the regression intersects the middle of the bulk carbonaceous meteorite composition region, close to the CM chondrites and their immediate neighbors (Fig. 1B). This is markedly different from the previous study that proposed an intersection at one of the endmember locations of the carbonaceous region, near CI chondrites (2).

Mineral Chemistry and Textures of Selected Chondrules. The ferromagnesian chondrules studied here include porphyritic olivine (PO), porphyritic olivine-pyroxene (POP), and barred olivine (BO). Additionally, one chondrule from Allende is an Al-rich chondrule. The Mg# (defined as $\frac{[\text{MgO}]}{[\text{MgO} + \text{FeO}]}$) content in Allende chondrules spans from 83 to 90 (Dataset S2). The olivine Cr_2O_3 content in the Allende chondrules in this study is mostly greater than 0.1%, which is different from the typically <0.1% Cr_2O_3 reported for Allende chondrules. Following the method of ref. 43, the average olivine Cr_2O_3 contents for seven Allende chondrules with forsterite (Mg_2SiO_4, content $\text{Fo} < 97$ is calculated to be 0.20 ± 0.34 wt % (2 SD) (Dataset S6), which is similar to unequilibrated ordinary chondrites (UOCs) with subtype 3.1. It is likely that the large chondrules selected in this study (diameters of 2 to 3 mm; SI Appendix, Figs. S1 and S3) were less affected by thermal metamorphism than typical Allende chondrules. Three BO chondrules have Mg# 83 to 90, which are rare in CV chondrites (14, 16, 44), though they are similar to several FeO-rich BO chondrules studied for O isotopes by ref. 45. The Al-rich chondrule (Allende 4327-CH8) contains abundant Ca-rich plagioclase and zoned Ca-pyroxene. Chondrules in Karoonda are all olivine-rich and show homogeneous olivine compositions (Datasets S2 and S6). Their primary Mg# was subsequently modified during parent body metamorphism due to fast Fe–Mg exchange in olivine, though original porphyritic or barred olivine textures were preserved (SI Appendix, Figs. S2 and S4).

Multi-isotope Systematics of Individual Chondrules. The e^{54}Ti and e^{54}Cr analyses of individual chondrules in CV and CK chondrites show a large range from −2.3 to +3.6 and from −0.7 to +1.2, respectively (Datasets S2 and S3). These observed ranges are consistent with previous studies (2, 9–12) and span the entire range of isotopic compositions exhibited by bulk meteorite measurements. The Al-rich chondrule, Allende 4327-CH8, has an e^{54}Ti value of +8.4 ± 0.3, similar to the e^{54}Ti observed in CAIs (2, 46). The e^{54}Cr values of chondrules from CR, L, and EH chondrites show a narrow range within each meteorite and are consistent with those of bulk meteorites (Dataset S3), in contrast to the results from CV and CK chondrites.

Most chondrules (excluding Allende 4327-CH8) are internally homogenous with Δ^{17}O varying from −5‰ to 0‰ (Dataset S2). On a three-isotope diagram (δ^{18}O versus δ^{17}O in the Vienna Standard Mean Ocean Water scale where δ represents deviation from a standard in parts per 1,000; Fig. 2A), individual chondrules plot close to the primitive chondrule mineral (PCM) line (47) and are generally consistent with chondrules in CV chondrites (14, 16, 44, 45, 48, 49). Several FeO-rich BO chondrules plot very close to the terrestrial fractionation line, which is in good agreement with similar BO chondrules studied in refs. 16, 44, 45. Their O isotope ratios are similar to FeO-rich chondrules in Kaba by ref. 14 and Y-82094 (an ungrouped carbonaceous
chondrite) by ref. 13, which are considered to have ordinary chondrite chondrule-like O isotope ratios (50). The Al-rich chondrule Allende 4327-CH8 is the only chondrule in this study that showed significant internal heterogeneity in O isotopes, with $\delta^{17,18}O$ values approaching -40% (Fig. 2 A, Inset), the lowest values of which are close to those observed for CAIs and amoeboid olivine aggregates (AOAs) (51). Fig. 2 shows that, in detail, many chondrules in this study as well as CV chondrules in the literature plot slightly below the PCM line, while others including FeO-rich BO chondrules plot above the PCM line and trend toward ordinary chondrite chondrule data (50). This small difference becomes a more notable division when chondrules are sorted by their $\varepsilon^{50}Ti$ or $\varepsilon^{54}Cr$ (Fig. 2 B and C); chondrules above the PCM line all have negative $\varepsilon^{54}Cr$, and those below the PCM line have positive $\varepsilon^{54}Cr$ (Fig. 2 B and C). It should be noted, however, that this division about the PCM line cannot be universally applied to the bulk meteorite data as ureilites, for example, which have negative ^{50}Ti and ^{54}Cr isotopic compositions, plot well below the PCM line.

By combining Ti-Cr-O isotope systems of Allende and Karoonda chondrules (Figs. 3 and 4), these chondrules are grouped into three general “clusters” that display distinct isotope signatures: 1) similar to bulk carbonaceous meteorites, 2) within noncarbonaceous meteorite field, and 3) near the missing reservoir with slightly positive $\varepsilon^{50}Ti \sim 1$ to 2, $\varepsilon^{54}Cr \sim 0$, and $\Delta^{17}O \sim -5\%$. Such distinct groups cannot be identified from a single isotope system. Although the total ranges of $\varepsilon^{50}Ti$ and $\varepsilon^{54}Cr$ are slightly smaller for chondrules in Karoonda than those in Allende, both chondrule datasets vary similarly in multi-isotope systematics, suggesting that both Ti and Cr in the bulk chondrules and olivine O isotopes retained their primary isotope signatures even with the mild metamorphic conditions experienced by CK4 chondrites. The Al-rich chondrule (Allende 4327-CH8) shows an intermediate Ti and Cr isotopic composition, which may be caused by the mixing of CAI-like precursors in the chondrule (2), consistent with its Al-rich mineralogy and low $\delta^{18}O$ and $\delta^{18}O$ values approaching those of CAIs (Figs. 3 A and 4 C and D).

Discussion

Mixing Model and the Missing Reservoir. The distinct grouping of noncarbonaceous and carbonaceous meteorites in $\varepsilon^{50}Ti$-$\varepsilon^{54}Cr$ space was proposed to result from the addition of refractory inner Solar System dust such as CAIs to CAI-free outer Solar System matrix, as represented by CI chondrites (2). This two-component mixing (2) is predicated on a regression line intersecting the carbonaceous meteorite trend at the bulk, CAI-free CI chondrite composition (2). However, with our newly acquired bulk meteorite data (Dataset S1), Fig. 1 reveals that an updated linear extrapolation of only the noncarbonaceous meteorites intersects the middle of the region defined by the bulk carbonaceous meteorites, close to CM chondrites and their immediate neighbor, but not CI chondrites, which was a requirement of previous models (2).

Importantly, theoretical mixing trajectories of noncarbonaceous endmembers with CAI-like dust (2) do not allow the resulting isotopic compositions for bulk carbonaceous meteorites to plot below the linear extrapolation of the noncarbonaceous meteorites (Figs. 1 and 3). Therefore, adding CAI-like components to the linear noncarbonaceous trend (2, 11) cannot account for the entire carbonaceous chondrite trend (which includes most CR chondrites, CI and CB chondrites, and Tagish Lake). Rather, carbonaceous members that plot below the noncarbonaceous extension line (Figs. 1 and 3) require mixing either with AOA-like materials that are characterized by positive $\varepsilon^{50}Ti$ and $\varepsilon^{54}Cr$ values (e.g., forsterite-bearing CAIs like SJ101; ref. 53) with relatively low Ti/Cr ratios or a hypothetical presolar component characterized by a relatively low $\varepsilon^{50}Ti$ and high $\varepsilon^{54}Cr$ compositions for bulk carbonaceous meteorites (Fig. 1) and individual chondrules from CV (Allende; yellow diamonds) and CK (Karoonda; orange diamonds) chondrites. Bulk meteorite symbols are the same as in Fig. 1. Error bars are either the internal 2 SE or external 2 SD, whichever is larger. Each of the multicolored dashed lines with tick marks represents a two-component mixing line between either the average value of “normal” CAIs (the five concave down curves) or AOAs with relatively low Ti/Cr ratios (the green semilinear curve) and members of the extended noncarbonaceous meteorite group (Fig. 1). Note that these mixing lines project to an endmember characterized by an inner Solar System noncarbonaceous composition that extends to and bridges the carbonaceous chondrite field, filling the “missing reservoir” shown in Fig. 1. (B) Zoomed-in view of A. Also shown are kernel density plots of individual chondrules including our data here as well as literature data (2, 9–12) constructed using the MATLAB ksdensity function with bandwidths of 0.2 and 0.1 for $\varepsilon^{50}Ti$ and $\varepsilon^{54}Cr$ isotopic compositions, respectively. Note the limited range in $\varepsilon^{50}Ti$-$\varepsilon^{54}Cr$ isotopic compositions of individual chondrules from CK, CB, enstatite, and ordinary chondrites (outside Fig. 2 B axes) relative to chondrules from CV and CK chondrites (inside Fig. 2 B axes). Data obtained from this study are shown in Datasets S1–S3.
Fig. 4. The ^{50}Ti-^{44}Cr-^{17}O isotopic compositions of bulk meteorites and individual chondrules. The ^{50}Ti-^{17}O (A and C) and ^{44}Cr-^{17}O (B and C) isotopic systematics of bulk meteorites (see Fig. 1) and individual chondrules from CV (Allende) and CK (Karoonda) chondrites. Color symbols are the same as in Fig. 1. Error bars are either the internal 2 SE or external 2 SD, whichever is larger. Several individual chondrules are characterized by isotopic compositions that plot within the missing reservoir or outside the regions defined by noncarbonaceous and carbonaceous meteorites. (C and D) Zoomed-out views of $\Delta^{17}\text{O}$ mixing lines.

Error bars are either the internal 2 SE or external 2 SD, whichever is larger. Several individual chondrules are characterized by isotopic compositions that plot within the missing reservoir or outside the regions defined by noncarbonaceous and carbonaceous meteorites. (C and D) Zoomed-out views of $\Delta^{17}\text{O}$ mixing lines. (Inset) A component of the carbonaceous meteorite trend may also reflect the addition of Cr-rich spinel grains that are characterized by large excesses in ^{50}Ti (e.g., ref. 54) to materials that lie on the extension of the noncarbonaceous line. In this scenario, bulk meteorite values would shift horizontally (because spinel contains a negligible amount of Ti) to this region of carbonaceous materials.

The wide range in the isotopic composition of individual chondrules from Allende and Karoonda demonstrates that these chondrules formed from a variety of materials including noncarbonaceous meteorite-like dust, carbonaceous meteorite-like dust, CAI- or AOAs-like dust, and dust from a reservoir with intermediate ^{50}Ti and ^{44}Cr values that is not apparent from the analysis of only bulk meteorites (Figs. 1, 3, and 4). A single Al-rich chondrule (4327-CHA) is a prime example of a mixture between (75%) CAIs and (25%) noncarbonaceous materials, characterized by excesses in both ^{50}Ti and ^{44}Cr isotopic compositions of 8.42 and 0.11, respectively (Fig. 3A). Significant addition of a CAI precursor component to this chondrule is also evident from abundant 16O-rich relict olivine grains in this Al-rich chondrule that show variable $\Delta^{17}\text{O}$ values from $-10\%\text{co}$ down to $-21\%\text{co}$, similar to those of CAIs (Figs. 2A, Inset and 4C and D and Dataset S4). Mixing between CAIs and less refractory materials is also consistent with observations of relict CAIs inside chondrules (55–57) and the extremely low $\Delta^{17}\text{O}$ values of some chondrule spinel grains (13, 58, 59) as well as the texture and chemical composition of relict grains with surrounding chondrule glass (60, 61).

Several chondrules from both CV and CK chondrites that have intermediate ^{50}Ti and ^{44}Cr values and lie slightly above the linear extrapolation of the noncarbonaceous field (e.g., Fig. 3A) may reflect two-component mixing between either CAIs or AOAs-like precursors and the extended noncarbonaceous reservoir (Fig. 3A). AOAs are inferred to have formed from the same isotopic reservoirs as CAIs (e.g., ref. 51) but are less refractory than CAIs, meaning lesser amount of Ti but more Cr than CAIs (62). The mixing trajectory with AOAs should result in a mixing line with a lower or even an opposite curvature compared to that of CAIs depending in the exact nature of the Ti/Cr ratios (Figs. 1A and B, 3A and 4C and D). Although the ^{50}Ti and ^{44}Cr values of AOAs have not been measured, it is reasonable to assume AOAs have ^{50}Ti and ^{44}Cr composition similar to that of CAIs (including forsterite-bearing CAIs; 53) given that AOAs and CAIs are observed to have similar $\Delta^{17}\text{O}$ values (51). AOAs are abundant in CV chondrites and are often considered to be precursors of chondrules that contain 16O-rich relict olivine (e.g., ref. 63). Based upon the observations that the majority of chondrules in the CV chondrites plot on mixing lines between materials of non-carbonaceous composition and the more refractory CAI and AOAs-like compositions (Figs. 3 and 4),
it can be inferred that the vast majority of CV chondrite chondrules are representative of mixtures of at least two distinct precursor reservoirs.

Thermal Processing and Unmixing? Our results indicate the non-carbonaceous trend is unlikely related to thermal processing (often referred to as “unmixing”) of isotopically distinct dust (2, 9). For thermal processing to result in the linear trend observed for the non-carbonaceous meteorites, the elemental Ti/Cr ratios of the dust being processed would have to remain unfractonated. However, Ti and Cr are characterized by very different volatilities and carrier phases, and therefore thermal processing of dust is unlikely to result in the linear trend in Δ^{17}O and Δ^{54}Cr space. Bulk carbonaceous and noncarbonaceous materials also display a continuum in their Δ^{17}O values, that is, their Δ^{17}O values overlap each other and lack any indication of clustering into distinct Δ^{17}O groups (Fig. 1 C and D). This demonstrates that, while the variability observed in the Δ^{54}Cr signature of isotopically distinct dust (2, 9) has been proposed that radial transport of materials from the inner to outer Solar System may occur in viscously evolving disks, where flow along the disk midplane (also known as meridional flow) transports inner Solar System dust to larger orbital distances (64–67), as far out as the Kuiper Belt, before slowly drifting back toward the Sun. The outward transport of inner Solar System dust in viscously evolving disks is only possible if significant barriers to radial transport of materials (e.g., gaps and pressure bumps) do not exist; for example, giant planets such as Jupiter have yet to grow to sufficient size to limit diffusive transport between the inner and outer Solar System along the disk midplane. Once Jupiter formed, inner Solar System dust previously transported to the outer Solar System could have become trapped while remaining inner Solar System materials would have been prevented from any further transport beyond Jupiter (64, 68, 69).

Chondrule Formation Environment. Allende chondrules show a range of diversity in both Mg# and Δ^{17}O (Fig. 5 and Datasets S2 and S4) similar to those of CV and other carbonaceous chondrites, such as Y-82094 and Kaba (13, 14). By adapting a mass balance model for chondrule O isotope under the existence of 16O-poor H$_2$O ice in carbonaceous chondrite-forming regions (14, 17), the formation environment of each chondrule can be estimated. One Allende chondrule (Allende 4293-CHA) is characterized by a Mg# ~ 99.5 and Δ^{17}O ~ −5.3‰ (Fig. 5), which corresponds to an environment with relatively low dust enrichment and an abundance of 16O-poor H$_2$O ice associated with its precursor materials (≤100 times Solar and ≤0.6 times CI, respectively; ref. 14). Chondrules with high Mg# (>98) and Δ^{17}O ~ −5‰ are the most common type of chondrules in CV chondrites (14, 16) (also in SI Appendix, Fig. S5). The same chondrule (Allende 4293-CHA) has isotopic values of 50Ti = 1.8 and 54Cr = −0.2, which fall between the noncarbonaceous and carbonaceous groups (Fig. 3), where no bulk meteorite data were previously observed. Chondrules with positive 50Ti and 54Cr values, similar to bulk carbonaceous meteorites, have lower Mg# ~ 97 and Δ^{17}O ~ −3‰ (Fig. 5), consistent with a formation environment characterized by higher abundances of H$_2$O ice (~0.8 times CI) with relatively higher dust enrichments (100 to 200 times Solar).

Other Allende chondrules with higher Δ^{17}O (~2 to 0‰) are those with negative 50Ti and 54Cr values. They plot above the model curve for the CI chondritic H$_2$O ice abundance (4 times CI) and at low to relatively high dust enrichments (~20 times Solar for Allende 4327-CHA and approaching ~500 times Solar for BO chondrules). However, their O isotopic compositions are fractionated above the PCM line (Fig. 2 B and C) toward the region occupied by ordinary chondrites (50), which may represent mixing with ordinary chondrite-like dust, but not with 16O-poor H$_2$O ice as in the model assumption. If these chondrules were formed in the environments similar to those of ordinary chondrite chondrule formation, the mass balance model in Fig. 5 may not be relevant to estimate the ice enhancement factor and would have higher dust-enhancement factors than the estimates (Methods).

Radial Transport in the Protoplanetary Disk. Our data suggest that CV and CK chondrites, which are interpreted to have accreted in the outer Solar System (5), collected materials that originated from a variety of Solar System reservoirs, as evidenced by the Ti and Cr isotopic composition of their constituent chondrules. It has been proposed that radial transport of materials from the inner to outer Solar System may occur in viscously evolving disks, where flow along the disk midplane (also known as meridional flow) transports inner Solar System dust to larger orbital distances (64–67), as far out as the Kuiper Belt, before slowly drifting back toward the Sun. The outward transport of inner Solar System dust in viscously evolving disks is only possible if significant barriers to radial transport of materials (e.g., gaps and pressure bumps) do not exist; for example, giant planets such as Jupiter have yet to grow to sufficient size to limit diffusive transport between the inner and outer Solar System along the disk midplane. Once Jupiter formed, inner Solar System dust previously transported to the outer Solar System could have become trapped while remaining inner Solar System materials would have been prevented from any further transport beyond Jupiter (64, 68, 69).
Jupiter Maintains the Great Isotopic Dichotomy. In this scenario, if the inner Solar System had become devoid of CAIs [having been accreted onto the Sun or transported beyond Jupiter (64)], then meteorites like ordinary and enstatite chondrites forming inside Jupiter’s orbit would primarily accrete material defining a very narrow range in their ϵ^{54}Ti-ϵ^{54}Cr-Δ^{17}O-Mg# compositions (e.g., ordinary and enstatite chondrite chondrules). The dust in this region would be characterized by deficits in ϵ^{54}Ti and ϵ^{54}Cr that is accompanied by a relatively high but still limited range in Δ^{17}O (similar to chondrules from ordinary chondrites). Alternatively, the relatively high Δ^{17}O values could have resulted from interactions with H$_2$O ice transported inward prior to the formation of Jupiter.

In contrast, carbonaceous chondrites meteorites that formed just outside of Jupiter’s orbit (e.g., CV and CK parent bodies) could have accreted inner Solar System dust, CAI- and/or AOA-like dust, and less refractory outer Solar System material (64, 70). If this is correct, chondrules that formed from dust in this region would then display a very broad range in their ϵ^{54}Ti-ϵ^{54}Cr-Δ^{17}O isotopic compositions, for example as seen in the Allende and Karoonda chondrules, where the resulting composition depends on the relative proportion of inner versus outer Solar System materials incorporated into each individual chondrule. A pressure maximum just outside the orbit of Jupiter could also have trapped locally variable amounts of 16O-poor H$_2$O ice, resulting in chondrule formation under variable redox conditions. Incorporation of this H$_2$O ice during chondrule formation would not only increase the bulk Δ^{17}O value of a chondrule but also lower its bulk Mg#, due to oxidation of Fe to FeO (Fig. 5).

Permeable Barrier and Crossing the Gap. Al-Mg ages of ordinary chondrite-like chondrules in Acfer 094 (a most primitive carbonaceous chondrite) suggest these chondrules formed in inner disk regions 1.8 Myr after CAIs and more than 0.4 to 0.8 Myr prior to the rest of the chondrules in the same meteorite (15). The discovery of noncarbonaceous-like chondrules and their mixing with CAIs and/or AOAs in CV chondrites in this study, together with chondrules from Acfer 094, collectively suggest transport from the inner to the outer Solar System was a far more frequent and prominent process. Outward transport is not limited to just CAIs and AOAs at the earliest stages of disk evolution. This delayed timing (>1.8 Myr after CAIs) of outward transport of ordinary chondrite-like, inner Solar System material is interesting as it has been proposed that Jupiter formed in less than 1 Myr (8); if ordinary chondrite-like chondrules were transported from the inner to the outer Solar System after this time then it means either the formation of Jupiter did not create a barrier completely impermeable to outward flow along the midplane at this time (at least for materials of this size with diameters of ~2 to 3 mm) or some material was transported above this barrier by disk winds. An alternative to gap permeability is that our understanding of chondrule chronology is in question due to potential heterogeneity of 26Al distribution in the early Solar System allowing age uncertainties up to two half-lives of 26Al (cf. figure 6 in ref. 19).

The dust farther out in the Solar System than CV and CK parent bodies displays a relatively narrow range in ϵ^{54}Ti-ϵ^{54}Cr, perhaps similar to that observed for CR chondrite chondrules (Fig. 3B; ref. 9 and this study). Chondrules from CR chondrites (17) also show systematically lower Mg# and higher Δ^{17}O values than those in CV chondrites (14, 16), most likely due to enhancement of 16O-poor H$_2$O ice in the outer Solar System. What distinguishes CR chondrites from other carbonaceous chondrites is that their parent body formed late, greater than 4 Myr after CAIs, as indicated from many chondrules with no resolvable Δ^{28}Mg excess (70). Chondrule parent bodies in the inner disk were likely formed by ~2.5 Ma (64), when transport of noncarbonaceous chondrules to the outer disk would have stopped. Therefore, it is likely that CR chondrite accreted largely carbonaceous chondrules of local origin after ~4 Ma in the outer Solar System, and almost no noncarbonaceous chondrules accreted into the CR chondrite parent body.

Our results, which link Ti, Cr, and O isotope systematics with the mineral chemistry of chondrules, reveal that, in the context of current dynamical models, large-scale outward transport of inner Solar System materials occurred in the protoplanetary disk, resulting in complex mixing of multiple components in the accretion region of some chondrite parent bodies.

Methods

Selections of Chondrules for Isotope Analyses. Ten chondrules from Allende (CV3) and nine chondrules from Karoonda (CK4) were selected for coordinated isotopic (Cr, Ti, and O), petrologic, and mineral chemistry analyses (Dataset S2, S4, S5, and S6), together with 31 bulk rock carbonaceous and noncarbonaceous chondrites and achiondrite meteorites (Dataset S1). An additional 28 chondrules from Allende (CV3), EET 92048 (CR2), Xinglongouan (LS), and Qingzhen (EHS) were analyzed for Cr isotopes (Dataset S3), which include three Allende chondrules that were also analyzed for Ti isotopes (Dataset S2). The mean diameters of chondrules in CV and CK chondrites are typically ~900 μm and indistinguishable between CV and CK (71). For the purpose of obtaining enough Cr and Ti for isotopic analyses, large Allende chondrules with diameters of 1.5 mm to 3 mm were used. ICP-MS analysis of Karoonda chondrules used in this work are also relatively larger than mean diameters, from 1 mm to 1.5 mm. While both Allende and Karoonda meteorites experienced mild thermal metamorphism in their parent bodies with petrologic types of 3.6 and 4, respectively, both Cr and Ti isotopes in these relatively large chondrules should be preserved within each chondrule against diffusional exchange in their parent bodies. All of these chondrules were scanned individually at high resolution using computed tomography at the Advanced Photon Source, Argonne National Laboratory. The selected chondrules were broken in two; one half was mounted in an epoxy thick section and the other half (3 to 27 mg) was used for Cr and Ti isotope analyses.

Major Element Analyses. Electron microprobe analysis (EPMA) maps were acquired at the American Museum of Natural History (AMNH) using epoxy sections for 19 chondrules in Allende and Karoonda (Datasets S2 and S5). Additional data were curated as part of the AMNH meteorite collection (http://digitallibrary.amnh.org/handle/2246/6952). X-ray mapping, and analyses of silicates and metal grains were performed for 19 chondrules in Allende and Karoonda using the five-spectrometer CAMECA SX100 electron probe microanalyzer at AMNH. Maps 512 × 512 pixels in size were acquired for Na, Mg, Al, Si, S, Ca, Fe, and Ni, as well as the back-scattered electron signal, in stage mode with 1-μm beam, 3- to 5-μm step, and typically 20-ms signals per pixel. Compositional maps per pixel, Mg-Ca-Al for red-green-blue, are examined and used to identify phases and their two-dimensional mode in each chondrule, including olivine, high-Ca and low-Ca pyroxene, feldspar, spinel, mesostasis, metal, and sulfide.

Ti and Cr Isotope Analyses. Material for bulk isotopic analyses were prepared from interior, fusion-crust free chips of each sample. Interior chips ranging in mass from 10 to 100 mg were gently crushed and homogenized in an agate mortar and pestle. An aliquot (ranging from 10 to 30 mg for bulk meteorites and 3 to 27 mg for chondrules) of the homogenized powders were placed in polytetrafluoroethylene (PTFE) Parr capsules along with a 3:1 mixture of ultraclean HF:HNO$_3$. The PTFE capsule was placed into a stainless-steel jacket and heated in an oven at 190 °C for 96 h. This high-temperature pressure dissolution procedure ensures digestion of all phases, including refractory phases such as chromite and spinel. After digestion, the sample solution was dried down and treated with 1 M HCl and an excess of HNO$_3$ to break down any fluorides formed during the dissolution process. The sample was then brought back up in 1 mL of M HCl for the Cr separation chemistry using the procedure previously described by ref. 72. This chemical separation procedure utilizes a sequential three-column procedure (one anion resin column followed by two cation resin columns). After Cr was removed from the sample matrix, the remaining material were then processed through a sequence of columns to isolate Ti following the procedure described by ref. 73. The Ti yields after processing through the entire column procedure were >98%. All chemical separation was completed in a clean laboratory facility at the University of California, Davis (UC Davis).
Chromium isotopic ratios were determined using a Thermo Triton Plus thermal ionization mass spectrometer at UC Davis. Purified Cr was loaded onto outgassed tungsten filament with a load of 1 to 3 μg per filament, depending on the amount of Cr available from the sample. The Cr was loaded across four filaments for a total load of 4 to 12 μg of Cr. The four sample filaments were bracketed by four filaments (two before and two after) loaded with the NIST SRM 979 Cr standard with the same loading amount as the sample. Each filament run consists of 1200 ratios with 8-s integration times. Signal intensity of (54)Cr was set to 10, 8, or 6 V (±10%) for 52-, 54- and 56-Cr Cr loads, respectively. A baseline was measured every 25 ratios along with a rotation of the amplifiers. A gain calibration was completed at the start of every filament. Instrumental mass fractionation was corrected for using an exponential law and a 50Cr/52Cr ratio of 0.051859 (74). The 50Cr/52Cr ratios are expressed in parts per 10,000 deviation (‰) from the measured NIST SRM 979 standard as δ50Cr.

Titanium isotopic ratios were measured using a Thermo Neptune Plus multicollector inductively coupled plasma mass spectrometer (MC-ICPMS) at UC Davis. Samples were introduced into the MC-ICPMS using a Nu Instruments DSN-100 desolating nebulizer. The interface was equipped with a standard H-type skimmer cone and a Jet-sample style cone. Typical intensity for 53Ti was 25 V using a 10-12-mesh resistor for a 1-ppm solution run in high-resolution mode. The isotopic ratios were measured in a multidiagnostic routine with 44Ca+, 46Ti+, 47Ti+, 48Ti+, 49Ti+, and 50Ti+ in step 1 and 49Ti+, 51V+, and 53Cr+ in step 2. Ratios were internally normalized to a 49Ti/47Ti ratio of 1.035520.002 (75). The 50Ti/47Ti ratios are expressed in parts per 10,000 deviation (‰) from the Ti four-standard deviation (TD) of 0.000398 reported in ref. 15.

SIMS O Isotope Analyses. The O isotopic composition of olivine and pyroxene phenocrysts in chondrules from minimally thermally and aequously altered meteorites is indistinguishable from that of the glassy mesostasis (e.g., ref. 47). However, glass and plagioclase in chondrules from most unequilibrated chondrites are different from those of olivine and pyroxene phenocrysts due to low-temperature O isotope exchange with 16O-poor fluid (16, 44, 50). Due to extremely slow O isotope diffusion rates of olivine and pyroxene, they preserve the O isotopic signature at the time of chondrule formation even in very low-K CaO–MgO–FeO–SiO2 (<1%) chondrules (76). Thus, we have analyzed the O isotopic ratios of olivine or pyroxene phenocrysts by using secondary ion mass spectrometer (SIMS) in chondrules from Allende (CV3) and Karoonda (CK4) to represent their primary O isotopic signatures.

Nineteen chondrules from Allende and Karoonda were remounted into eight 25-mm round epoxy sections with San Carlos olivine standard (SC-OI, 51) grains for the SIMS O isotope analyses at the University of Wisconsin–Madison. This was done to ensure the best-quality O three-isotope analyses. As many as three chondrules were mounted together in a single epoxy mount. Scanning electron microscope images were obtained for remounted samples using the Hitachi S-3400N at the University of Wisconsin–Madison prior to SIMS analyses. Eight olivine and/or pyroxene grains per chondrule were selected for SIMS analyses. For each grain, semi-quantitative energy-dispersive X-ray spectroscopy analyses were acquired (15 keV, 30-s detection time) and applied for matrix corrections during SIMS analyses (discussed below). In the case of BO and PO chondrules, all grains selected were olivine, while a representative selection of both pyroxene and olivine was determined for POP chondrules.

Oxygen three-isotope analyses were performed using the IMS 1280 at the WiscSIMS laboratory under multicollector Faraday cup detection (13–17, 44, 47, 50). The Cr+ primary beam was set to 12–12μm diameter and 3-nA intensity, which resulted in secondary 16O intensities of ~3.5 × 109 counts per second. The contribution of tailing 16O+ ions on the 17O signal was negligible (<0.1%). Each single spot analysis took 7 min, with a typical external precision of ~0.3‰, ~0.4‰, and ~0.4‰ (2 SD) for 16O, 17O, and 18O, respectively. The mass resolving power (MRP) at 10% peak height was set at 5000 for 17O and 2500 for 18O. Instrumental biases of olivine and pyroxene relative to the SC-OI standard were calibrated using multiple standards (FDS9, FDO9, En89, En79, and diopside) with known O isotopic ratios that cover the range of compositions of the unknowns (50). The results are presented in Datasets S2, S4, and S5.

ACKNOWLEDGMENTS. We thank Nehru Cherukupalli (AMNH) for separating chondrules and Brian Hess for SIMS sample preparation. Additional chondrules were provided by the late Ian D. Hutcheon and the University of Alberta. The study was funded by NASA Emerging Worlds Grant NNX16AD34G awarded to Q.-Z. Yin, NXN14AF29G to N.T.K. and NXN16AD37G to D.S.E. WiscSIMS is partly supported by NSF (EAR-1535590).