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Abstract

In this study, we present experimental results from the planktic foraminifer Orbulina universa, cultured in the laboratory.
We demonstrate that the d13C of shell calcite precipitated in 13C-labeled seawater for 24 h can be resolved and accurately mea-
sured using Secondary Ion Mass Spectrometry (SIMS). Specimens maintained at 20 �C were transferred from ambient sea-
water (d13CDIC = +1.3&) into seawater with d13CDIC = +51.5& and enriched [Ba2+] for 24 h. Specimens were then
transferred into ambient seawater with elevated [87Sr] for 6–9 h of calcification, followed by a transfer back into unlabeled
ambient seawater until gametogenesis. This technique produced O. universa shells with calcite layers of distinct geochemical
signatures. We quantify the spatial positions of trace element labels in the shells using laser ablation ICP-MS depth profiling.
Using fragments from the same shells, we quantify intrashell d13Ccalcite using SIMS with a 6 or 8 lm spot (2 SD range ±0.5&

to 1.7&). Measured d13Ccalcite values in O. universa shell layers precipitated in ambient seawater are within 2& of predicted
d13Ccalcite values. In 13C-labeled bands of calcite, 6 lm SIMS spot measurements are within 2& of predicted d13Ccalcite values,
whereas 8 lm SIMS spots yield intermediate, mixed values. The spatial agreement between trace element and carbon isotope
data suggests that 13C and cation tracers are synchronously incorporated into shell calcite. These results demonstrate the abil-
ity of SIMS d13C measurements to resolve �10 lm features in foraminifer shell calcite using a 6 lm spot, and highlight the
potential of this technique for addressing questions about ecology, biomineralization, and paleoceanography.
� 2014 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Physiological processes such as respiration and symbi-
ont photosynthesis are known to cause variations in the
carbon isotopic composition of foraminiferal calcite
(Spero et al., 1991). However, the primary parameter con-
trolling the 13C/12C ratio in planktic foraminifers is the
d13C value of dissolved inorganic carbon (d13CDIC) in sea-
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water (Spero, 1992). As such, foraminifer d13C data have
been used to reconstruct global carbon cycle dynamics
(Zachos et al., 2001, 2005) and ocean circulation (Boyle
and Keigwin, 1985; Slowey and Curry, 1995; Billups
et al., 2002; Spero and Lea, 2002; Spero et al., 2003) across
a range of timescales from Pleistocene glacial-interglacial
cycles (Slowey and Curry, 1995) through the Cretaceous
(Zachos et al., 2001). All of these studies combined multiple
foraminifer shells during a single geochemical measure-
ment, thereby averaging the environmental and/or diage-
netic information contained in individual shells. However,
each individual foraminifer in a population records sea-
sonal and depth-specific information in its shell chemistry
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(Killingley et al., 1981; Schiffelbein and Hills, 1984), and
therefore the bulk analysis approach averages inter-speci-
men variability and masks the breadth of environmental
information potentially available from the fossil record.

Analyses of the intrashell geochemistry in foraminifer
shells offer an opportunity to explore short duration events
in the life history of a foraminifer. Research on oxygen iso-
tope heterogeneity within foraminifer shell walls using Sec-
ondary Ion Mass Spectrometry (SIMS) has been conducted
on cultured benthic (Rollion-Bard et al., 2008) and planktic
(Vetter et al., 2013a) species, as well as fossil planktic fora-
minifers (Kozdon et al., 2009, 2011, 2013). Together, these
studies have demonstrated that intrashell geochemistry
records environmental information with temporal resolu-
tion at a finer scale than the lifecycle of foraminifers. SIMS
analyses combined with laser ablation inductively coupled
plasma mass spectrometry (LA-ICP-MS) depth profiling
on cultured specimens of the planktic foraminifer Orbulina

universa show that oxygen isotope and trace element
labeled calcite can be quantified with daily resolution
(Vetter et al., 2013a), thereby highlighting the potential
for in situ multiproxy analyses on foraminifer shells to
reconstruct novel paleoenvironmental information from
the fossil record.

Although oxygen isotope spot analyses using SIMS have
been performed on biogenic carbonates (Rollion-Bard
et al., 2003, 2007, 2008; Kozdon et al., 2009, 2011; Allison
and Finch, 2010; Hanson et al., 2010; Olson et al., 2012;
Matta et al., 2013), the use of SIMS to analyze carbonate
d13C in foraminifers has not been widely applied. In addition
to reconstructing d13CDIC in seawater, the carbon isotope
composition of foraminifer shells has been used to infer eco-
logical patterns and symbiont activity related to differences in
depth habitat within the water column (Williams et al., 1981;
Spero et al., 2003), as well as the identification of post-
depositional diagenetic carbonate overgrowths that occurred
on the seafloor (Lohmann, 1995; Shieh et al., 2002; Millo
et al., 2005). Intrashell carbon isotope measurements on fossil
foraminifers have the potential to provide insight into these
biological, ecological, and diagenetic processes.

The biological and environmental parameters control-
ling shell d13C in the extant planktic foraminifer O. universa

are well-characterized from laboratory studies, so this spe-
cies is an ideal organism for investigating intrashell carbon
isotope heterogeneity in controlled laboratory experiments
(Spero, 1988; Spero and Williams, 1988; Lea and Spero,
1994; Spero et al., 1997; Bemis et al., 2000; Hönisch
et al., 2011). O. universa produces a single spherical cham-
ber near the end of its life cycle that thickens continuously
over the course of 3–7 days (Spero, 1988). Experimental
data show that at 20 �C, the d13C of shell calcite (d13Cc)
is �1.2& more positive relative to d13CDIC when the fora-
minifer is grown on a 12 h:12 h light:dark cycle under Pmax

light levels during the light phase (Bemis et al., 2000). In
contrast, d13Cc is similar to d13CDIC when O. universa is
grown continuously in the dark (Spero, 1988). These data
allow us to predict the d13Cc value of a shell grown in the
laboratory in seawater with known d13CDIC.

In this study, we present the results of laboratory exper-
iments that demonstrate the application of SIMS for intra-
shell d13Cc analyses in O. universa. Specimens were
maintained in seawater chemically modified through the
addition of a 13C-enriched carbon source, as well as ele-
vated [Ba2+] or [87Sr2+] to label calcite with a secondary
trace element spike. This technique produced multiple
time-resolved bands of calcite with predictable stable iso-
tope and trace element geochemistry (Fig. 1), as described
by Vetter et al. (2013a). Specimens were analyzed using
SIMS (d13Cc) and LA-ICP-MS (Ba/Ca and 87Sr/Ca). Our
results suggest that it is possible to use spot d13Cc analyses
on fossil shells to explore ecological aspects of foraminifer
lifecycles in �10 lm wide features in calcite, which corre-
sponds to 2–3 day resolution (Spero, pers. comm).

2. METHODS

2.1. Culturing experiments

Individual O. universa specimens were cultured using
previously established procedures (Bemis et al., 1998;
Russell et al., 2004; Vetter et al., 2013a) at the Wrigley Mar-
ine Science Center, Santa Catalina Island, California, USA.
Juvenile, trochospiral O. universa were hand-collected by
scuba divers in the San Pedro Basin in the Southern Califor-
nia Bight (33�230N, 118�260W) at a depth of 2–5 m. Individ-
ual O. universa were grown in the laboratory at a constant
temperature of 20 �C on a 12 h:12 h day:night light cycle
under “high-light” (HL) conditions (>386 lmol pho-
tons m�2 s�1, PAR; Bemis et al., 2000). Each foraminifer
was fed one 1-day-old Artemia nauplius every other day.
Juvenile, trochospiral specimens were maintained in ambi-
ent seawater filtered through 0.8 lm nitrate cellulose filters
until they precipitated their final spherical shells. As a con-
trol for the experiment, one set of individual O. universa

was cultured in ambient seawater until gametogenesis
(Table 1). These shells were predicted to have intrashell geo-
chemistry that reflects a stable chemical environment.

A second group of foraminifers was used for a series of
geochemical labeling experiments in seawater with modified
trace element and stable isotope chemistry (Vetter et al.,
2013a). Experimental seawater was labeled with elevated
Ba via the addition of concentrated BaCl2 spike solution
([Ba] = 720 lmol kg�1). The calculated final [Ba/Ca]sw =
39 lmol mol�1 (�4� ambient), although some of the excess
Ba may have been scavenged by precipitation of barite. This
Ba-labeled seawater was also modified by the addition of
99.1% Na2

13CO3 to produce seawater with a d13CDIC

(�+50&). Following the addition of the 13C label, HCl
was then added to the experimental seawater to return the
alkalinity to ambient levels (�2250 lmol kg�1). After prep-
aration of the 13C label, double-labeled seawater was main-
tained with no head space in 20 ml scintillation vials sealed
with Parafilm�and plastic polyseal caps, to minimize isotopic
exchange with atmospheric CO2. The duration of exposure
to atmosphere during foraminifer transfers was also mini-
mized. A second batch of labeled seawater was prepared
with 87Sr �2.5� ambient [87Sr] in seawater, via the addition
of concentrated 87SrCO3 in solution (calculated final
[87Sr] = 14.0 lmol kg�1) to use as a trace-element-only
label.
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Fig. 1. Idealized LA-ICP-MS depth profile showing shell chemistry changes in a foraminifer shell wall as Ba (red) and 87Sr (blue)
concentrations in seawater are shifted between ambient and Ba or 87Sr-labeled seawater. Some labeled or ambient regions of the shell are
sufficiently thick to fully resolve the trace element signal, whereas mixing occurs in zones that are thinner than the sample spot diameter or
resolution of the laser ablation technique (analytical mixing zone; AMZ); the latter scenario yields intermediate values. The instantaneous
transfer from Ba-labeled seawater into 87Sr-labeled seawater is represented by two contemporaneous, overlapping AMZs, as Ba/Ca ratios
decrease and 87Sr/Ca ratios increase. The geochemical transition between the two trace element labels in shell calcite is defined where Ba/Ca
begins to decrease and where 87Sr/Ca ratios fully resolve labeled geochemistry.
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All geochemical labeling experiments were conducted
during the sphere-thickening phase of chamber growth
and at a constant temperature of 20 �C. Although O. uni-

versa secretes 66% of its shell during daylight hours, some
evidence suggests that calcification rates peak at �13:00
(6 h after the start of the day cycle; Spero and Parker,
1985; Lea et al., 1995). To investigate the incorporation
of a 13C-enriched tracer during calcification, we performed
two complementary labeling experiments with different tim-
ing with respect to the day/night cycle. Individual adult O.

universa were transferred via pipette into seawater that was
enriched in both Ba and 13C at the start of a 12 h light per-
iod (07:00) and maintained at 20 �C (Fig. 2). These individ-
uals were maintained in labeled solution through a full 12 h
light and 12 h dark period (“synchronous” labeling experi-
ment), and then transferred into 87Sr-labeled seawater at
the start of the subsequent 12 h light period (07:00 the fol-
lowing day; Table 1). Individuals were then transferred
back into ambient seawater after 6 h of calcification in
Table 1
Summary of cultured O. universa specimens, showing experimental regim
duration of calcification in each labeled seawater.

Specimen number Ambient or labeled Day/night cycle

SV-50 Ambient –
SV-37 Label Synchronous
SV-41 Label Synchronous
SV-45 Label 6 h offset
SV-51* Label 6 h offset

* Specimen was analyzed via SIMS using both 6 and 8 lm spot sizes.
87Sr-labeled seawater, and maintained in ambient seawater
until gametogenesis.

The two consecutive trace element labels mark the loca-
tion within shell calcite of the transition between 13C-
labeled seawater (Ba-labeled) and ambient seawater (87Sr-
labeled). The spatial resolution with which this dual transi-
tion in trace element labels can be measured is thus higher
than the spatial resolution achievable via in situ d13C anal-
yses. In a parallel experiment, we followed the same proce-
dure but offset the transfers from the initiation of a light/
dark cycle by 6 h (“offset” labeling experiment; Fig. 2).
Individual foraminifers were transferred into Ba- and 13C-
labeled calcite midway through a light cycle (13:00), and
then maintained in this spiked solution for the next 24 h.
Midway through the next light cycle (13:00 the following
day), individuals were transferred into 87Sr-labeled seawa-
ter, calcified for 9 h (6 h in the light, 3 h in the dark), after
which the specimens were transferred back into ambient
seawater and maintained until gametogenesis (Table 1).
e, synchroneity of 13C-labeled incubation with day/night cycle, and

Time duration in Ba- and
13C-labeled seawater (h)

Time duration in
87Sr-labeled seawater (h)

– –
24 6
24 6
24 9
24 9
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Fig. 2. Schematic diagram of two sets of labeling experiments: [Top] For O. universa specimens with 13C label synchronous with day/night
cycle, individuals calcified in Ba- and 13C-labeled seawater for 24 h (07:00 to 07:00), then were transferred to 87Sr-labeled seawater for 6 h of
calcification. [Bottom] For O. universa specimens with 13C label offset from day/night cycle, individuals calcified in Ba- and 13C-labeled
seawater for 24 h (13:00 to 13:00), then transferred to 87Sr-labeled seawater for 9 h. See Section 2.1 for detailed culture methods. These two
sets of geochemical labeling experiments are referred to as “synchronous” and “offset”, respectively.

530 L. Vetter et al. / Geochimica et Cosmochimica Acta 139 (2014) 527–539
To minimize contamination between labeled solutions, indi-
vidual O. universa were pipetted through two intermediate
transfer solutions that contained the same seawater (labeled
or ambient) as the destination jar, and then into the
destination solution for the calcification interval. After
incubation in 87Sr-labeled seawater, each specimen
was maintained in filtered seawater at 20 �C until
gametogenesis.

Following gametogenesis, the empty shells were rinsed
in deionized water and archived individually for later anal-
ysis. Prior to trace element and d13C analyses, individual O.

universa shells were manually cracked into several frag-
ments using a disposable scalpel, and isolated and cleaned
for 10 min in a 1:1 solution of 30% H2O2 and 0.1 N NaOH
at 65 �C to remove residual organic matter. Shell fragments
were then rinsed in deionized water, sonicated for 10–15 s in
reagent grade methanol to remove any remaining adherent
material, and rinsed two additional times in deionized
water.

Water samples were collected prior to the initiation of
an experiment for analysis of d13CDIC. Samples were poi-
soned with 1–2 drops (�0.5 ml) of a saturated HgCl2 solu-
tion and stored in vials without headspace. Vials were
sealed with cap and cone seals, and a double layer of Para-
film�, until analysis. Culture water d13CDIC was determined
by injecting 5 ml of seawater into 105% orthophosphoric
Table 2
LA-ICP-MS system operating conditions.

ICP-MS: Agilent 7700x

RF power
Argon gas flow
Coolant gas flow
Auxiliary gas flow
Dwell time per mass
Monitored masses (m/z)

Laser ablation system: Photon Machines 193 nm ArF Excimer

Energy density (fluence)
He gas flow
Laser repetition rate
Laser spot size
ThO+/Th+
acid under vacuum. Acid-stripped CO2 was cryogenically
purified and collected in 6 mm Pyrex tubes. The d13C values
of extracted CO2 were measured on a Fisons Optima gas
source isotope ratio mass spectrometer (IRMS), with ana-
lytical precision of ±0.03& relative to VPDB.

2.2. Laser ablation ICP-MS analyses

For this study, we analyzed one specimen cultured con-
tinuously in ambient seawater, two specimens from the
“light-synchronized” experiment, and two specimens from
the “offset” experiment. One fragment of each shell was
analyzed for trace element ratios using laser ablation induc-
tively coupled plasma mass spectrometry (LA-ICP-MS).
Trace element concentrations were measured using a
193 nm Photon Machines ArF Excimer laser with dual-vol-
ume cell, coupled to an Agilent 7700x quadrupole ICP-MS,
in the Stable Isotope Laboratory, Department of Earth and
Planetary Sciences, at the University of California, Davis.
The fragments were mounted on double-sided adhesive car-
bon tape, oriented with the shell interior facing upwards,
and ablated in depth profile at 5 Hz using a laser fluence
of 1.46 J cm�2 and a 30 lm diameter spot. The Helex dual
volume sample chamber exhibits 99% washout within 2 s
(t1/2 = 0.75 s), so samples can be ablated in depth profile
rapidly. The operating conditions of the LA-ICP-MS
1500 W
1.05 L min�1

15 L min�1

1 L min�1

20–100 ms
24Mg, 25Mg, 27Al, 43Ca, 44Ca, 55Mn, 87Sr, 88Sr, 138Ba

1.5–3.1 J cm�2

1.05 L min�1

5 Hz
30 lm
<0.5%
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system during data collection are summarized in Table 2.
Previous studies have demonstrated that an ablation pit
with a high aspect ratio (depth/diameter > 2) can cause ele-
mental fractionation that will affect measured isotopic
ratios (Eggins et al., 1998; Mank and Mason, 1999;
Woodhead et al., 2004). However, with an average O. uni-

versa shell thickness of 20–25 lm and ablation spot of
30 lm, the aspect ratio in our specimens is <1, and elemen-
tal fractionation with increasing pit depth is not a factor.

Two or three replicate depth profiles were ablated on
each shell fragment. Samples were analyzed for 24Mg,
25Mg, 27Al, 43Ca, 44Ca, 55Mn, 87Sr, 88Sr, and 138Ba, with
a mean dwell time of 0.030 s on each mass. Raw data for
depth profiles were smoothed using two separate despiking
routines to remove anomalously high outliers: first an expo-
nential decay smoothing, then removing values that are >6
SD greater than the two adjacent points. From the
smoothed signal, we then subtracted background counts,
measured with the laser turned off, and internally standard-
ized to 43Ca and 44Ca. An initial pulse of high count rates in
all the elements we measured comprises an instrumental
effect from transport of the sample from laser to plasma,
and was thus removed from the depth profile (Vetter
et al., 2013b). This signal is separate from the biogenic sig-
nal of high Ba/Ca and 87Sr/Ca that remains in each depth
profile, which represents calcite with a trace element label
that was precipitated inside of the primary organic mem-
brane (Sadekov et al., 2010).

Using this approach, the typical external (spot-to-spot)
precision on unlabeled specimens is 0.004 lmol mol�1 for
Ba/Ca and 0.2 lmol mol�1 for 87Sr/Ca (2 SD). The inten-
sity of the 27Al signal was monitored to identify phases of
the depth profile where portions of the carbon tape influ-
ence time-resolved analyses and may compromise com-
puted elemental ratios. An identical ablation protocol was
performed on a NIST 610 glass standard to bracket each
group of 10–15 samples, at a higher fluence (3.1 J cm�2;
Table 2) so that trace elemental count rates from the NIST
610 glass were approximately the same as foraminiferal cal-
cite ablated at lower fluence. Elemental ratios for shell
material were quantified by correcting measured intensities
on shell material to measured elemental intensities on the
NIST 610 glass in the same sample bracket, and internally
standardized to 43Ca and 44Ca (Eggins et al., 2003, 2004;
Bolton et al., 2011; Jonkers et al., 2012; Marr et al., 2013).

2.3. In situ d13C analyses using SIMS

The LA-ICP-MS depth profiles of intrashell Ba and 87Sr
on one fragment of each individual delineate the position
within the shell when the foraminifer was transferred into
13C-labeled seawater, and from 13C-labeled seawater into
the secondary labeled seawater solution (Fig. 2). A second
fragment of each shell was mounted together with 2–3
grains of UWC-3, the WiscSIMS calcite standard
(d13C = �0.91 ± 0.04& VPDB, d18O = +12.49 ± 0.03&

VSMOW; Kozdon et al., 2009) in Buehler EpoxiCure resin
in a 25 mm epoxy round. These epoxy rounds were ground
to 20–40 lm depth to expose oblique cross-sections of shell
walls, which increases the surface area and spatial
resolution able to be achieved through consecutive spot
analyses. Samples were then polished, and finally cleaned
with ethanol and deionized water while minimizing expo-
sure time to prevent etching. Subsequently, sample mounts
were gold-coated. Scanning electron microscope (SEM)
images of the polished, gold-coated samples were used to
gauge calcite porosity in mounted shell material and to
screen samples for textural anomalies that might compro-
mise in situ d13C measurements.

Cultured foraminifer shells were analyzed for d13C on a
CAMECA ims-1280 secondary ion mass spectrometer
(SIMS) using a 133Cs+ primary ion beam at the WiscSIMS
Laboratory, Department of Geoscience, University of Wis-
consin-Madison. For the majority of the analyses, a pri-
mary beam of 600 pA was used with an 8 lm spot size. A
second set of measurements was performed on one sample
(SV-51, fragment C) with a 250 pA primary beam and 6 lm
spot size, to increase the spatial resolution of measure-
ments. The secondary 12C and 13C ions were simultaneously
collected on a Faraday cup and electron multiplier, respec-
tively. Secondary count rates on 12C were �5 � 106 cps for
the 600 pA beam and �1.5 � 106 cps for the 250 pA beam.
The resistance on the Faraday cup was 1011X, with back-
ground variation (“noise”) of ±1000 cps on 12C (±1 SD).
Each analysis comprises 20 s of presputtering, automatic
centering of the secondary ions in the field aperture
(�60 s), and 20 analytical cycles of 8 s each.

Analyses of sample material (10–12 spot analyses per
group) were bracketed by 8–12 repeat measurements on
the UWC-3 standard grain, using analytical conditions
identical to those used during sample analysis. The gain
of the electron multiplier was monitored before the third
analysis of each group of calcite standard measurements,
and the applied high voltage was adjusted to compensate
for the drift of the gain of the electron multiplier, if neces-
sary. The bracketing analyses of the UWC-3 standard grain
were used to determine instrumental mass fractionation
corrections for each set of measurements on foraminiferal
calcite. The external precision reported for sample measure-
ments is the spot-to-spot reproducibility of the 8–12 repeat
measurements on the UWC-3 standard grain that bracket
each set of sample analyses, and ranges from ±0.5& to
1.8& (2 SD; Table S1). Analytical pits that extended into
epoxy and/or organic material can be recognized by anom-
alously high secondary count rates (>100% of the measured
counts per second on the standard grain). For 5 of 116 mea-
surements, the SIMS analysis pit expanded into these
domains during the later analytical cycles (out of 20 total),
compromising data quality. For measurements in which
this occurred, the final �5 cycles that showed an increased
count rate were excluded from computations, and the d13C
value for the spot was recalculated based on cycles 1–15.
Data processed using this approach are indicated in
Table S1 with the symbol �. The complete dataset, includ-
ing measurements on standard grains, is available in the
Electronic Annex.

On each cultured foraminifer shell, we performed a suite
of spot measurements across the direction of shell wall thick-
ening. Individual measurements were placed in calcite
domains within the shell that were preselected by observation
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of SEM images to avoid cracks, epoxy, cross-sectional expo-
sures of pore spaces within the shell, and areas of the shell
with organic matter not removed by the post-mortem H2O2

cleaning process. After performing d13C SIMS analyses, a
second SEM image was collected of analysis pits, to assess
textural features that might have affected the accuracy of spot
analyses. Using these post-analysis SEM images, the distance
from the interior growth surface of the shell to each pit was
measured, and is reported in Table S1.

3. RESULTS

Specimen SV-50 was cultured continuously in ambient
seawater during calcification of the final spherical chamber,
with constant Ba/Ca, 87Sr/Ca, and d13CDIC (predicted ambi-
ent value = +2.5&; Table 1). The mean whole-shell Ba/Ca
ratio for this specimen, averaged from 3 depth profiles
ablated through the entire shell, is 0.5 lmol mol�1, with
external spot-to-spot reproducibility of 0.002 lmol mol�1

(2 SD; Fig. 3a). This ratio is similar to measured Ba/Ca in
O. universa cultured under similar conditions in ambient
seawater (Ba/Cashell = 0.6–0.7 lmol mol�1; Hönisch et al.,
2011); measured [Ba]sw = 36–38 nmol kg�1 in the North
Pacific (Bernat et al., 1972; Hönisch et al., 2011). The mean
whole-shell 87Sr/Ca is 319 lmol mol�1, with external spot-
to-spot reproducibility of 0.1 lmol mol�1 (2 SD). A similar
empirical calibration has not been performed for Sr/Ca in
O. universa, so we use measured intrashell 87Sr/Ca as a qual-
itative label to resolve the transition between calcite precip-
itated in 13C-labeled and ambient seawater.

Measured d13CDIC values for water samples are reported
in Table 3. The mean d13CDIC value for ambient water or
seawater with the 87Sr label is +1.3 ± 0.1& (±2 SE,
n = 5; Table 3). The initial preparation of 13C-labeled sea-
water had d13CDIC = +53.15& VPDB, whereas two water
samples collected at the conclusion of the culturing experi-
ments had d13CDIC values of +50.58& and +50.72&,
respectively. The decrease in d13CDIC between experiment
initiation and end is likely due to a small amount of CO2

equilibration with the atmosphere during feeding and trans-
fer sessions. This d13C decrease across our labeled experi-
ments adds an uncertainty of �2.5& to the expected shell
d13C values that are based on average culture data from
ambient O. universa d13C experiments (Bemis et al., 2000)
and the assumption that d13Cc shifts 1:1 with d13CDIC

(Spero, 1992). Interestingly, we do not observe a similar
decrease in d13CDIC in the ambient seawater experiments.
We attribute this difference to the fact that the isotopic frac-
tionation between the atmosphere (d13Catm � �8&;
CDIAC, 2014) and seawater at 20 �C is �8.5& (Zhang
et al., 1995). Hence, atmospheric CO2 has little effect on
seawater d13CDIC of 1.3&, but a very large effect when
d13CDIC = +50&.

Multiple intrashell SIMS analyses were conducted with
an 8 lm spot size on two separate fragments (B and C)
from specimen SV-50 (Fig. 3b). These analyses yield mean
d13Cc values of +3.6 ± 0.2& (±2 SE, n = 16, fragment B)
and +4.5 ± 0.6& (±2 SE, n = 8, fragment C). These values
are 1–2& higher than we would predict from whole shell
analyses of ambient specimens (d13C = 2.5&) based on
group mean results for O. universa grown under similar
light:dark conditions at 22 �C (Bemis et al., 2000). How-
ever, we note that individual shells display a range of values
and our data are close to one of the values, 3.5&, obtained
from an individual in those experiments.

Fig. 4 shows 8 lm spot size data from two O. universa

specimens (SV-37 and SV-41) from the “light-synchro-
nized” labeling experiment, that began at the start of a
12 h light period (@07:00) and calcified in labeled seawater
for 24 h. The initial rise and plateau of shell Ba/Ca delin-
eates the spatial position of calcite precipitated in Ba- and
13C-labeled seawater. The position where the shell records
decreasing Ba/Ca and rising 87Sr/Ca identifies the start of
calcite precipitating in the 87Sr-labeled seawater. The
analytical mixing zones delineated by rising and falling
Ba/Ca ratios indicate that these laser ablation conditions
require 4–10 s of ablation time to fully resolve a band of
ambient or labeled shell chemistry calcified over 24 h
(Fig. 4a and d). In specimen SV-37 (Fig. 4), all of the
d13Cc spot measurements within the 13C-labeled calcite
band yield values that are intermediate between those pre-
dicted for ambient and labeled calcite, ranging from
22.9& to 33.6& (VPDB; Table S1). In the ambient calcite
bands, 7 of 11 spots also yield intermediate values
(11.7–34.4&), whereas the remaining 4 spots yield mean
d13Cc values of +2.1 ± 3.1& (2 SE, n = 4; Table S1) that
are close to predicted values. In specimen SV-41 (Fig. 4),
all of the d13Cc spot measurements within 13C-labeled cal-
cite bands yield intermediate values (33.8–36.2&;
Table S1) whereas only 3 of 11 spot measurements in ambi-
ent bands yield intermediate d13Cc values (24.9–38.8&).
The remaining 8 spot analyses in ambient calcite have a
mean d13Cc = +4.6 ± 1.0& VPDB (2 SE, n = 8), which is
consistent with measured values on ambient calcite in the
control specimen (Fig. 3).

Intrashell Ba/Ca, 87Sr/Ca, and d13Cc for two “offset”-
labeled O. universa specimens, in which shell Ba and 13C
labeling was initiated 6 h into the light/dark cycle and con-
tinued for 24 h (13:00–13:00 h), are presented in Figs. 5 and
6. Nine hours of 87Sr-labeled calcite (ambient d13CDIC) fol-
lowed this treatment. For specimen SV-45, which was ana-
lyzed with an 8 lm spot size (Fig. 5), we again observe
intermediate values for all of the SIMS measurements
within the 13C-labeled calcite band, ranging from 20.6&

to 36.0& (Fig. 5b). In this specimen, we obtained measure-
ments on ambient calcite precipitated prior to the labeling
experiment (closer to the inner shell surface) because this
foraminifer had added sufficient calcite to permit SIMS
analyses on the earliest calcite laid down during sphere for-
mation (Figs. 5b and 6b). In this region of the shell, which
was precipitated in ambient seawater, 2 of 13 spot measure-
ments are within 1.7& (the most conservative precision
achieved for any single bracket in our analytical session)
of the predicted ambient value, and 11 pits record interme-
diate values that range from 7.9& to 32.3& (Table S1).

Fig. 6b shows d13Cc data for two separate fragments of
specimen SV-51: closed symbols are 8 lm spot analyses,
and open circles are analyses performed using a lower pri-
mary beam intensity and a 6 lm spot size. Within the
6 lm spot analyses in the band of Ba- and 13C-labeled
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seawater, 8 of 17 pits yield fully-resolved 13C-labeled values
that range between 50.2& and 54.6& (Table S1). These
data agree well with the predicted d13Cc values of
+51.8& to +54.4&, which are based on the O. universa

biological offset of 1.3& more positive from the initial
and final seawater d13CDIC water measurements (Table 3).
In contrast, none of the 8 lm spot analyses yield full labeled
d13Cc values (Table S1). Among the spot analyses in the
ambient calcite section of the shell, 7 of 22 spots yield
values within 1.7& of the predicted ambient value of
2.5&, and 15 values are intermediate (ranging from 5.0&

to 20.9&).
Table 3
Measured d13CDIC of water samples and predicted O. universa d13Cc.

Sample type Sample number Measured d13CDIC

(& VPDB)

Ambient 11-C6-A 1.37
Ambient �11-C5-Sr-1 1.45
Ambient 11-C9-A 1.06
Ambient �11-C5-Sr-2 1.32
Ambient 11-C3-A 1.16

13C-label �11-C1-B4I-1 53.15
13C-label �11-C11-B4F-2 50.58
13C-label �11-C12-B4F-1 50.72

* Predicted d13CDIC calculated using the high light (HL) relationship of
� Denotes samples of seawater with 87Sr label and ambient d13CDIC.
� Denotes samples of seawater with Ba and 13C labels.
4. DISCUSSION

4.1. Intrashell d13C measurements using SIMS

Previous SIMS studies on planktic foraminifers have
employed 2 to 6 lm beam diameters to measure intrashell
d18Oc (Kozdon et al., 2009; Vetter et al., 2013a). Vetter
et al. (2013a) demonstrated that a 3 lm Cs+ beam diameter
could resolve 18& shifts in O. universa shell d18O that were
laid down in laboratory experiments during 12 h periods of
calcification (2–3 lm wide calcite bands). In these studies,
specimens were mounted with shell cross-sections orthogo-
Mean
(& VPDB)

Precision
(±2 S.E.)

Predicted* shell d13Cc

(&VPDB)

1.27 0.14 2.48

– – 54.36
– – 51.79
– – 51.93

Bemis et al. (2000) for O. universa calcifying at 20 �C.
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nal to the Cs+ beam. Because d18Oc in foraminifer shells is
controlled by d18Oseawater and a temperature-dependent
equilibrium fractionation between calcite and water, and
d13C tracks d13CDIC, one should be able to resolve 13C
and 18O labels in a shell with similar resolution. Unfortu-
nately, carbon has a lower ionization efficiency (Wilson,
1995) and lower concentration in CaCO3 than oxygen, so
carbon isotope measurements in CaCO3 require a larger
spot size, associated with a stronger beam, to achieve com-
parable precision (<1&). The selected primary beam inten-
sity and analysis time for d13C analyses was optimized for
high analytical precision and accuracy. Besides counting
statistics, factors such as the drift of the gain of the electron
multiplier and changing sputtering characteristics with
increasing pit depths need to be considered (Valley and
Kita, 2009). Typically, the 8 lm beam provides the best
results for d13C; however, in this session, the analytical pre-
cision was comparable with the smaller (6 lm) beam.

The d13Cc measurements we present here were per-
formed on polished oblique cross-sections, so the spatial
resolution of exposed shell layers is maximized (Fig. 7a)
to try to capture 24 h of calcite (3–4 lm wide band) with
a wider diameter spot size of 6–8 lm � �1 lm deep. Intra-
shell d13C values measured with an 8 lm spot fall between
predicted values for calcification in ambient or labeled sea-
water. Using this spot diameter, the maximum d13C values
we obtain are +38.8 ± 1.6& (2 SD) in specimen SV-41
(Fig. 4), 34.4 ± 1.0& (2 SD) in specimen SV-37 (Fig. 4),
36.0 ± 0.7& (2 SD) in specimen SV-45 (Fig. 5), and
+48.4 ± 1.4& (2 SD) in specimen SV-51 (Fig. 6). These val-
ues all suggest a mixture of calcite between ambient
(+2.5&) and labeled (+55&) d13C values. In one of these
specimens (SV-51), we reduced the SIMS spot size to
6 lm and performed a second transect of measurements
(Fig. 6b, fragment C, open symbols), and obtained three
values that averaged 54.3& (100% labeled calcite), given
the precision of these measurements (+1.3& (2 SD)). The
LA-ICP-MS data for 87Sr/Ca and Ba/Ca were generated
by ablating a shell surface orthogonal to the laser beam,
so the widths of bands with trace element labels cannot
be directly compared to the shell thickness of the obliquely
polished cross-section measured via SEM. Instead, we con-
duct a simple mass balance calculation, assuming the
maximum value obtained with the 8 lm beam in specimen
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SV-51 was either centered on the labeled calcite band and
incorporated a fraction of ambient calcite on either side
of the band, or was offset to one edge of the band with
the ambient calcite beam overlap on the opposite side of
the labeled band (Fig. 7b). We calculate that the width of
the obliquely-cut band is between 6.3 and 6.6 lm, respec-
tively, thereby confirming that a 6 lm spot could capture
the full isotopic label in the chamber wall.

The range of measured ambient d13Cc values (excluding
spot measurements in the analytical mixing zone) is slightly
higher than the average predicted value of +2.5& VPDB
from past culture experiments with O. universa grown under
“high-light” conditions (Spero and Williams, 1988; Bemis
et al., 2000; Table 3, Table S1; Figs. 4–6). At 19 and
22 �C, Bemis et al. (2000) reported individual shell values
that ranged between 2.4& and 3.5&. This range was likely
due to differences between specimens in the impact of
symbiont photosynthesis on shell d13C, which is a result
of symbiont density and perhaps the number of days of
shell thickening before gametogenesis. Similar results have
been observed from single-shell analyses of fossil O. univer-

sa from western equatorial Atlantic cores, where values
>4& were measured in some individuals (Billups and
Spero, 1996). Thus, it is unlikely that the ambient d13Cc
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values we present here, which are higher than the Bemis
et al. (2000) averages, are a result of our labeling experi-
ment. Rather, we are probably observing normal inter-indi-
vidual variation in shell geochemistry.

Spot d13C analyses in targeted domains of fossil fora-
minifer shells have the potential to address a suite of pale-
oceanographic questions not previously accessible using
conventional IRMS techniques for carbon isotope analysis.
For instance, Lohmann (1995) used a modeling approach
and proposed that d13C variability among planktic fora-
minifer shells in a fossil assemblage could be due to a mix-
ture of ontogenetic calcite, biogenic crust, and/or abiogenic
calcite overgrowths that were added in different environ-
ments between the surface and bottom waters. Spot d13Cc

analyses using SIMS across different sections of fossil fora-
minifers could resolve these sources if the surface-to-deep
d13CDIC gradient was sufficiently large to exceed the analyt-
ical uncertainty of individual measurements. Similarly, the
SIMS technique may be able to resolve authigenic calcite
addition in foraminifers influenced by oxidation of methane
or other hydrocarbons in deep-sea sediment habitats (Hill
et al., 2003; Torres et al., 2010; Panieri et al., 2012). In oce-
anic regions with large d13CDIC gradients, such as the east-
ern equatorial Pacific thermocline (d13CDIC gradient =
�2&; Koutavas and Lynch-Stieglitz, 2003; Spero et al.,
2003), SIMS analyses could provide a source of informa-
tion for reconstructing the migration of individual speci-
mens through the thermocline (Fairbanks et al., 1980,
1982). In species that do not migrate vertically, individual
shell chemistry could record short-term spatial changes in
d13CDIC, such as estuarine carbon isotope and salinity gra-
dients (Kemp et al., 2010; Osterman and Smith, 2012). If
such analyses were combined with SIMS d18Oc spot mea-
surements (Kozdon et al., 2009, 2011, 2013; Vetter et al.,
2013a), in theory one could reconstruct both temperature
and nutrient/carbon isotope gradients from groups of indi-
vidual fossil shells. Ultimately, SIMS d13C applications may
be most valuable in exploring carbon isotope gradients dur-
ing large planetary carbon cycle perturbations, such as the
Paleocene-Eocene Thermal Maximum (PETM). Here,
SIMS may offer a means to extract d13C data from unal-
tered regions of fossil shells, similar to the approach utilized
by Kozdon et al. (2011) using SIMS-based d18O
measurements.

4.2. Linking d13C with intrashell trace element data

Previous LA-ICP-MS trace element depth profiles on
cultured O. universa demonstrate that instantaneous
changes in seawater cation chemistry are resolvable within
1–2 lm with LA-ICP-MS depth profiling (Vetter et al.,
2013a), and within <1 lm using nanoSIMS (Gagnon, pers.
comm.). The Ba/Ca and 87Sr/Ca depth profiles from cul-
tured O. universa we present here exhibit spatial transitions
over 4–10 s (Ba/Ca) and 2–8 s (87Sr/Ca) of ablation time
(Figs. 4a, d, 5a, 6a). These trace element depth profiles thus
allow us to identify the position within shell calcite of the
transfer into 13C-labeled seawater, marked by the start of
the rise in a trace element ratio (Ba/Ca). We cannot quantify
the exact depth (lm) ablated in the shell because we have not
calibrated our LA-ICP-MS system to convert ablation
energy and number of laser pulses into ablated depth for a
given laser energy. However, in pits with aspect ratio <2,
the ablation rate is linear (Eggins et al., 1998; Woodhead
et al., 2004). Since both LA-ICP-MS depth profiles and obli-
que shell cross-sections are linear, and both sets of measure-
ments begin and end at the shell walls, we can evaluate trace
element and SIMS data together (Figs. 4–6).

Previous experiments with live O. universa indicate that
an intracellular inorganic carbon pool in this species is
insignificant, if present at all (Bijma et al., 1999). Our
LA-ICP-MS depth profiles measure intrashell Ba/Ca and
87Sr/Ca that record nearly instantaneous changes in water
chemistry. From these data, we hypothesize that d13C labels
are likely recorded in shell calcite at the same time as ele-
mental tracers, with little temporal lag due to a carbon
pool. This supports previous results suggesting that simul-
taneous Ba and 18O tracers are precipitated in shell calcite
such that the analytical mixing zone of both SIMS and
LA-ICP-MS is unable to resolve offsets between the two
tracers (Vetter et al., 2013a). Intrashell trace element geo-
chemistry on fossil foraminifers has been resolved within
2 lm using EPMA (Pena et al., 2005; Hathorne et al.,
2009) or LA-ICP-MS (Pena et al., 2008; Sadekov et al.,
2010; Bolton et al., 2011), which corresponds to calcifica-
tion times of hours to days. Spatial patterns of trace ele-
ment heterogeneity obtained from LA-ICP-MS depth
profiles could therefore be used as a screening tool to target
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potential intrashell domains of interest for spot isotopic
analyses (d13C, d18O) using SIMS, which requires more
intensive sample preparation and cost. Together, paired
analyses of intrashell geochemical heterogeneity enable
researchers to address questions about biological and eco-
logical controls on shell geochemistry (Rollion-Bard and
Erez, 2010; Bolton et al., 2011) and open the possibility
of resolving a daily-scale record of changes in ocean chem-
istry from fossil foraminifer shells, within the limitations of
the precision achievable in our study.

5. SUMMARY

In this study, we demonstrate that 6–7 lm thick bands
with distinct d13C values in the shell walls of the planktic for-
aminifer O. universa can be resolved using in situ d13C anal-
yses with SIMS. Mounting specimens in oblique polished
cross-sections can increase the effective spatial resolution
of these measurements. Analyses with a 6 lm diame-
ter � 1 lm deep spot placed entirely within bands of ambi-
ent or 13C-labeled calcite yield d13C values consistent with
predicted values based on measured d13CDIC and empirical,
temperature-dependent calibrations. SIMS analyses using
an 8 lm spot yield intermediate d13C values, and are unable
to fully resolve isotopically-labeled bands, demonstrating
the analytical mixing that occurs when a single spot mea-
surement overlaps regions of shell calcite with different
d13C values. This analytical mixing occurs across multiple
bands of shell calcite with different geochemical composi-
tions during both SIMS and LA-ICP-MS analyses. Cation
(Ba and 87Sr) and stable isotope (13C and 18O) tracers, mea-
sured linearly in the direction of shell growth, appear to be
cross-correlated within the spatial resolution of the two ana-
lytical techniques. Experimental results here support the
application of intrashell d13C measurements in foraminiferal
calcite to paleoceanographic questions, if the d13CDIC gradi-
ent is sufficient with respect to analytical precision.
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