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ABSTRACT Rare ultrahigh-temperature–(near)ultrahigh-pressure (UHT–near-UHP) crustal xenoliths erupted at
11 Ma in the Pamir Mountains, southeastern Tajikistan, preserve a compositional and thermal record at
mantle depths of crustal material subducted beneath the largest collisional orogen on Earth. A
combination of oxygen-isotope thermometry, major-element thermobarometry and pseudosection
analysis reveals that, prior to eruption, the xenoliths partially equilibrated at conditions ranging from
815 �C at 19 kbar to 1100 �C at 27 kbar for eclogites and granulites, and 884 �C at 20 kbar to 1012 �C
at 33 kbar for garnet–phlogopite websterites. To reach these conditions, the eclogites and granulites
must have undergone mica-dehydration melting. The extraction depths exceed the present-day Pamir
Moho at �65 km depth and suggest an average thermal gradient of �12–13 �C km)1. The relatively
cold geotherm implies the introduction of these rocks to mantle depths by subduction or gravitational
foundering (transient crustal drip). The xenoliths provide a window into a part of the orogenic history in
which crustal material reached UHT–(U)HP conditions, partially melted, and then decompressed,
without being overprinted by the later post-thermal relaxation history.
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INTRODUCTION

The thermal structure of collisional orogenic belts de-
pends on a variety of factors including the rate of
subduction, accretion and denudation, the radiogenic
heat production, thermal conductivity and the rheol-
ogy of the underlying lithospheric mantle (e.g. Royden,
1993; Peacock, 1995; Huerta et al., 1998; Pope &
Willett, 1998). As most of these factors evolve over the
course of orogenesis, the thermal structure changes as
the lithosphere thickens, undergoes thermal relaxation
and collapses. Therefore, understanding the thermal
structure is important for predicting the overall rheo-
logical behaviour of collisional orogenic belts (e.g. is
partial melting possible? England & Thompson, 1984;
Patiño Douce & McCarthy, 1998; Hacker et al., 2000;
Erkan & Blackwell, 2008). However, access to rocks
from different parts of thickened crust within colli-
sional orogenic belts and to different stages of the
thermal evolution (e.g. shortening, thermal relaxation,
and collapse) is generally limited.

A suite of Miocene xenoliths erupted in the Pamir
Mountains of Tajikistan consists of eclogites and

granulites with bulk compositions that suggest that the
xenoliths have crustal protoliths (Fig. 1; Dmitriev, 1976;
Ducea et al., 2003; Hacker et al., 2005). Some of the
eclogite xenoliths equilibrated at 25–28 kbar and 1000–
1100 �C (Hacker et al., 2005), just below the coesite-
stability field. A group of plagioclase-bearing granulite
xenoliths, not studied by Hacker et al. (2005), probably
equilibrated at lower pressure. All xenoliths were
erupted at the same time (11.5 ± 0.2 Ma, 40Ar–39Ar;
Hacker et al., 2005) and thus provide insight into the
evolving thermal structure of the largest collisional belt
in the world, the Pamir Mountains–Tibet system.

To understand the transient thermal structure of
orogenic systems, the P–T–t path that the rocks
experienced must be determined. Because UHP rocks
represent the deepest exposed portions of orogenic
belts, numerous studies have focused on determining
the peak pressures and temperatures achieved by these
rare rocks (e.g. Nakamura & Banno, 1997; Ravna,
2000; Krogh Ravna & Terry, 2004; Nakamura &
Hirajima, 2005; Hacker, 2006; Ernst et al., 2007).
Most temperature estimates of eclogites have relied on
Fe–Mg equilibrium between garnet and clinopyrox-
ene. The accuracy of this thermometer is affected,
however, by the Fe3+ ⁄Fe2+ ratios, which are typically
not measured (e.g. Krogh Ravna & Paquin, 2003;
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Fig. 1. (a) Digital elevation map of the Pamir Mountains–Tibet–Himalayan system; (b) southeastern Pamir xenolith locality plotted in
relation to the Pamir Mountains and Hindu-Kush seismic zones; seismicity from Engdahl et al. (1998); (c) simplified geological and
structural map of the Pamir Mountains and northern Karakoram, showing Palaeozoic to Tertiary magmatic belts and sutures,
Cenozoic gneiss domes, major Cenozoic faults and the location of the Dunkeldik magmatic field (marked by box) (strongly modified
from Vlasov et al., 1991; Schwab et al., 2004; Hacker et al., 2005).
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Proyer et al., 2004; Stı́pská & Powell, 2005). Oxygen-
isotope thermometry represents a complementary
method and a check for major-element thermometry.
For the Pamir Mountains xenoliths, oxygen diffusion
should have been negligible during the rapid eruption
and cooling experienced by these xenoliths (Hacker
et al., 2005), and therefore, fractionation of oxygen
isotopes among the minerals should reflect pre-erup-
tion metamorphic equilibrium (e.g. Sharp et al., 1992,
1993; Rumble & Yui, 1998; Zheng et al., 1998; Valley,
2001; Schulze et al., 2003a). In addition, some com-
plications associated with major-element thermoba-
rometry, such as non-ideal mixing, H2O activity and
pressure dependence, do not affect oxygen-isotope
fractionation (Hoering, 1961; Wolfsberg, 1972; Clay-
ton et al., 1975). A combination of conventional
thermobarometry and oxygen thermometry tech-
niques can be applied to the Pamir Mountains xeno-
liths to assess mineral equilibrium and pre-eruption
P–T conditions, which were reached during crustal
thickening of a large orogen.

In this study, phase equilibria and pre-eruption P–T
conditions are estimated from eclogite and granulite
xenoliths by combining oxygen-isotope thermometry,
major-element thermobarometry and pseudosections.
The samples represent a range of protoliths, from
gabbro–granodiorite (for the eclogites) to peralumi-
nous metasedimentary rocks (for the granulites). To
further constrain the thermal structure of the region,
we also discuss the P–T equilibration of several web-
sterite xenoliths. It is found that at depths of �60–
100 km, the Miocene crust of the Pamir Mountains
consisted of eclogite interlayered with garnet–kyanite
granulites and websterites. The xenoliths record
probable subduction of crustal material in an actively
shortening collisional orogen. The granulite xenoliths
suggest some cooling and decompression prior to the
final eruption at 11 Ma (Hacker et al., 2005).

GEOLOGICAL SETTING

The Pamir Mountains represent the westernmost ex-
tent of the Pamir Mountains–Tibet orogen (Fig. 1a).
Similar to Tibet, the Pamir Mountains constitute a
plateau with a thick crust (�65 km; Beloussov et al.,
1980; Mechie et al., 2011), resulting from 1800–
2100 km of Cenozoic intracontinental shortening
(Johnson, 2002) associated with the India–Eurasia
collision. However, in comparison to Tibet, the
shortening has been accommodated in half the oro-
genic width. The Pamir Mountains are still shortening
at a rate of 16–20 mm yr)1 (Reigber et al., 2001; Mo-
hadjer et al., 2010) and are underlain by intermediate-
depth seismicity that may be associated with intra-
continental subduction (Fig. 1b; e.g. Pegler & Das,
1998; Negredo et al., 2007). Three belts of mid- to
lower-crustal gneiss domes were exhumed chiefly be-
tween 25 and 10 Ma (Fig. 1c, Robinson et al., 2007;
McGraw et al., 2010; Stearns et al., 2011). A variety of

Cretaceous granitoids to Miocene shoshonitic ⁄ calcal-
kaline igneous bodies intruded the Pamir Mountains
crust, including the domes (Schwab et al., 2004).

The volcanic pipes that host the xenoliths studied in
this article (first described by Dmitriev, 1976) belong to
theDunkeldik magmatic field in the southeastern Pamir
(Fig. 1c). The Dunkeldik magmatic field is the result of
the youngest known magmatism in the Pamir Moun-
tains (c. 11 Ma; Hacker et al., 2005) and consists of
ultrapotassic (4–7 wt% K2O; K2O ⁄Na2O = 4–7)
dykes, pipes and sub-volcanic bodies that range from
alkali basalt, to trachyte, syenite and carbonatite
(Dmitriev, 1976). The field is exposed between the Late
Triassic–Early Jurassic Tanymas suture and the Late
Jurassic–Early Cretaceous Rushan–Pshart suture, in an
area of active deformation related to the Karakoram
fault zone (Fig. 1c; Dmitriev, 1976; Strecker et al.,
1995). The Dunkeldik xenolith suite consists of 38%
eclogite and garnet–omphacite granulite, 19% phlogo-
pite pyroxenite and glimmerite, 15% biotite–garnet
clinopyroxenite, 8% garnet–biotite gneiss, 6% garnet–
kyanite granulite, 4% garnet gneiss, 3% phlogopite–
garnet websterite and 7% other rocks (Lutkov, 2003).
The xenoliths are up to 50 cm in diameter and most are
foliated. Hacker et al. (2005) studied six of these
xenoliths, including sanidine ± biotite eclogite, felsic
garnet–sanidine–kyanite ± biotite granulites and
glimmerite. Major-element thermobarometry revealed
equilibration of the eclogites at 1000–1100 �C and 25–
28 kbar. The rocks were interpreted to be residues of
high-pressure dehydration melting and K-rich metaso-
matism of granodioritic to gabbroic protoliths. Our
study not only focuses on seven garnet–kyanite granu-
lites, but also includes one garnet–omphacite granulite,
two eclogites, one garnet–biotite gneiss and five web-
sterites; these rocks equilibrated at a broader range of
pressures and temperatures and, thus, provide more
constraints on the thermal structure of the Miocene
Pamir crust. Analytical methods are outlined in
Appendices S1 and S2.

RESULTS

Mineral chemistry and bulk-rock compositions

The studied xenoliths form a continuous composi-
tional series, from quartzofeldspathic garnet–kyanite
granulites to eclogite (Table 1). Their protoliths were
likely magmatic (i.e. granodioritic–gabbroic) and me-
tasedimentary rocks. Mineral compositions for all
samples are reported in Table S1.

Garnet–biotite gneiss

Garnet–biotite gneiss DK83 has a grano-lepidoblastic
texture, with 22 vol.% biotite that defines a strong
foliation along with quartz and feldspar (Fig. 2a).
Grain sizes average 0.5–1.0 mm. The matrix biotite is
Ti rich (TiO2 = 7.1 wt%), whereas biotite inclusions
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in garnet have less TiO2 (�4.7 wt%) and higher Mg#
(molar Mg ⁄ (Mg + Fe); 0.66 v. 0.63 for matrix bio-
tite). The garnet (�12 vol.%) is anhedral and shows
weak zoning, with Alm50Prp01Grs38Sps11 cores and
Alm53Prp03Grs35Sps09 rims (Fig. 3a); these composi-
tions are significantly different from the garnet in
other xenoliths (Fig. 3a; see below). Homogeneous
plagioclase (An28–29Ab61–62Or09–10) and alkali feld-
spar (An00Ab02Or98) are present throughout the
matrix (Fig. 3c). Matrix quartz has lobate bound-
aries; some grains form ribbons or have chessboard
extinction. Throughout the sample, carbonate veins

parallel the foliation, and carbonate-filled cracks
occur in garnet. Carbonate + K-feldspar aggregates
replace an unknown mineral. Overall, the garnet–
biotite gneiss represents a rare rock type within the
xenolith suite; there are few xenoliths that contain
hydrous minerals.

Garnet–omphacite granulite

In general, the garnet–omphacite granulite DK32 is
similar in texture and composition to the eclogites and
garnet–kyanite granulites (described in the next sec-

Table 1. Measured bulk compositions of the Pamir Mountains xenoliths.

Sample DK7 DK13 DK32 DK43 DK63 DK69 DK71 DK74 DK83 DK84 1309

XRF

SiO2 69.57 59.01 50.44 69.01 49.20 63.13 57.60 60.43 62.44 48.74 56.05

TiO2 1.22 1.26 1.63 0.77 1.19 0.69 1.13 0.80 0.66 1.16 0.90

Al2O3 14.42 19.95 17.40 13.43 24.66 15.08 17.42 19.63 14.72 19.65 19.12

FeO* 5.97 8.38 9.33 5.43 14.21 6.04 8.60 6.86 4.88 9.57 7.15

MnO 0.15 0.18 0.17 0.12 0.82 0.29 0.17 0.15 0.10 0.23 0.12

MgO 1.89 2.83 4.01 1.92 3.57 2.05 3.24 2.77 2.81 4.25 3.72

CaO 0.88 1.43 9.59 0.59 1.68 3.33 2.59 2.10 3.28 7.54 6.70

Na2O 0.62 0.88 2.96 0.93 0.57 1.61 0.82 0.90 2.51 2.42 2.46

K2O 3.89 4.04 2.03 3.77 3.87 4.75 4.86 3.89 4.21 4.18 3.80

P2O5 0.03 0.18 0.25 0.03 0.26 0.12 0.22 0.04 0.32 0.25 0.20

Sum 98.64 98.13 97.79 96.00 100.03 97.08 96.64 97.56 95.93 97.99 100.22

Oxides in wt%. Analyses accomplished using the XRF at Washington State University (Johnson et al., 1999).
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Fig. 2. Representative photomicrographs from the Pamir Mountains xenoliths: (a) garnet–biotite gneiss DK83 with lobate quartz
grain boundaries; (b) kinked and tabular kyanite surrounded by feldspar and quartz in granulite DK63; (c) tabular twinned kyanite
with undulatory extinction in granulite DK63; (d) garnet encloses elongate kyanite in granulite DK69, with a ribbon of sanidine also
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tions) but contains plagioclase and omphacite in
equilibrium with garnet, kyanite and alkali feldspar.

The grains in xenolith DK32 have an average size of
0.5–1.5 mm. Garnet cores are Alm48Prp26Grs25Sps01,
and rims are Alm44Prp21Grs34Sps01 (Fig. 3a). Om-
phacite shows a rimward decrease in jadeite content
from 37 to 33 mol.% and in Mg# from 0.67 to 0.64 in
the outermost 50 lm (Fig. 3b). Micron-scale carbon-
ate veins (Ca0.58–0.60Mg0.28–0.30Fe0.11–0.12)CO3 cut the
rock, and 100–500 lm calcite grains (Ca0.96Mg0.02Fe0.02)
CO3 are spatially associated with plagioclase and
omphacite. Coronas around clinopyroxene consist
of quartz, oligoclase (An15Ab73Or12) and sanidine
(An00Ab02–06Or94–98) (Fig. 3c). Clinopyroxene in these
coronas has a much lower jadeite content of 11 mol.%,
and clinopyroxene in fractures that cut garnet has only
4 mol.% jadeite. Homogeneous oligoclase (An16Ab73Or11)
throughout the thin section appears to be in textural
equilibrium with garnet and omphacite (Fig. 3c). Most

quartz grains and minor, skeletal kyanite are sur-
rounded by alkali-feldspar coronas (An00–03Ab02–04
Or93–98; Fig. 3c).

Garnet–kyanite granulites

In general, the garnet–kyanite granulites only show
minor alteration at the tens of micron scale, mostly on
the rims of garnet, including symplectite coronas
composed of two feldspars (An00–01Ab03–04Or96–99 and
An01–03Ab23–31Or66–75) ± quartz ± spinel. Veins of
similar feldspars locally cut garnet and surround gar-
net inclusions; in the matrix, Or96–99 feldspar forms
coronae around kyanite. The veins also contain local
carbonate (Ca50–59Mg25–36Fe12–19). Minor-oriented
ilmenite lamellae are found in rutile. Below, each
sample is described in more detail.

The plagioclase-bearing garnet–kyanite granulite
DK69 contains abundant, up to �1 cm long kyanite.
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Garnet, plagioclase, minor alkali feldspar and quartz
are also present and have an average grain size of
1–2 mm. Minor graphite is present in the matrix.
Garnet occurs both as porphyroblasts and as coronae
on kyanite (Fig. 2d); all garnet grains are zoned from
Alm50Prp35Grs12Sps03 cores to Alm48Prp32Grs17Sps03
rims, with similar rim compositions at the kyanite
interface as well as at the interface with feldspar
(Fig. 3a). Homogeneous An29–32Ab58–60Or09–11
plagioclase dominates the matrix, whereas plagioclase
included in garnet is zoned from cores of An33–34Ab57–58
Or08–09 to rims of An29–32Ab46–55Or14–25 (Fig. 3c).
K-feldspar inclusions in garnet have An04Ab26Or70
rims and An04Ab30Or66 cores or are homogeneous
Or99. The matrix alkali feldspar (An04–05Ab28–30Or65–67)
occurs in ribbons parallel to the elongate garnet and
kyanite grains, and is associated with calcite (Ca0.95–0.97
Mg0.01Fe0.01–0.04)CO3 nodules, which are also present
as inclusions in garnet.

Quartz, sanidine and elongate garnet define a strong
foliation in DK7. The sample is porphyroblastic, with
an average grain size of 1–2 mm. Garnet is up to 1 cm
in diameter and homogenous (Alm53Prp37Grs09Sps01;
Fig. 3a); it contains inclusions of quartz, sanidine,
kyanite and graphite. Matrix quartz displays
chessboard extinction. Matrix kyanite is bent around
garnet grains and is typically surrounded by a moat of
alkali feldspar similar in composition to the coarser
feldspar grains (An02–03Ab26–29Or68–72; Fig. 3c).
Abundant fluid ⁄melt inclusions in the kyanite are
elongate parallel to the fold hinges in the host grain
and sub-parallel to the matrix foliation. Rutile crystals
are large (>1 mm), homogeneous and xenoblastic.

Granulite DK13 has a strong foliation defined by
elongate garnet, kyanite and quartz. The sample con-
sists of �41 vol.% garnet, �15% quartz, �12% kya-
nite and �30% alkali feldspar (An01–03Ab26–30Or68–76;
Fig. 3c). The grain size averages 1–2 mm. The majority
of garnet show only micron-scale rim alteration and is
homogeneous Alm55Prp35Grs09Sps01 (Fig. 3a). Elon-
gated kyanite, as well as sanidine, mica, quartz, rutile
and apatite, are included in garnet. As in DK7, kyanite
contains abundant fluid ⁄melt inclusions, is bent and is
rimmed by alkali feldspar of the same composition as
in the matrix.

Granulite DK43 has a strong foliation defined by
quartz (�63 vol.%), alkali feldspar (�17%), garnet
(12%) and kyanite (�8%). The grain-size averages
1–2 mm, with coarser quartz and feldspar (�1 mm)
than in other samples. Garnet forms small (2 mm),
homogeneous (Alm56Prp39Grs04Sps01), typically elon-
gated xenoblasts (Fig. 3a), with few quartz and kyanite
inclusions. The matrix alkali feldspar is homogeneous
An03Ab36Or61 (Fig. 3c). Most kyanite grains are sur-
rounded by moats of late feldspar (Or97–99) (Fig. 3c);
some have undulatory extinction and fluid ⁄melt(?)
inclusion trails.

Granulite DK63 is characterized by �15 vol.% de-
formed kyanite in up to 0.5 cm elongate crystals that

define the foliation (Fig. 2b). Quartz, sanidine and
garnet have an average grain size of 0.5–1.5 mm.
Kyanite is commonly twinned and displays undulatory
extinction (Fig. 2b,c); kyanite included in garnet is
undeformed. Garnet is slightly zoned, with inclusion-
rich, altered and fractured cores of Alm59Prp27Grs10
Sps04 and inclusion-free, homogeneous rims of
Alm60Prp29Grs08Sps03 (Fig. 3a). Alkali feldspar is
homogeneous An01Ab21Or78 (Fig. 3c).
Sample DK71 contains subidioblastic garnet in a

matrix of alkali feldspar (�30 vol.%), quartz (�20%)
and kyanite (�8%). The feldspar and kyanite define
the foliation and have an average grain size of 1–2 mm.
The garnet grains are zoned in their outermost
�50 lm, from Alm57Prp38Grs04Sps01 to Alm53Prp36
Grs10Sps01 rims (Fig. 3a). Alkali feldspar is homoge-
neous An02Ab26Or72 (Fig. 3c). Kyanite is kinked, has
undulatory extinction and is typically surrounded by
late An04Ab28Or68 feldspar. Similar coronas between
kyanite and garnet contain An15Ab38Or47 feldspar.
Quartz forms elongate ribbons that wrap around
garnet.
Granulite DK74 is granoblastic, with �1 mm grains

of garnet, quartz, kyanite and alkali feldspar that
define a weak foliation. Garnet is weakly zoned, from
Alm51Prp35Grs13Sps01 cores to Alm51Prp36Grs12Sps01
rims (Fig. 3a). They are sub- to idioblastic and have
�10–20 lm rims of feldspar and carbonate (Ca51–56
Mg30–34Fe13–16). Feldspar (An00–03Ab00–08Or92–99) plus
carbonate coronas surround quartz and kyanite that
are adjacent to garnet. The matrix feldspar is similar in
composition to the corona feldspar but locally has
more sodic (An02Ab16Or83) rims (Fig. 3c). The alkali
feldspar in the matrix and in garnet strain shadows is
zoned from An00Ab16Or84 cores to An00Ab29Or71 rims
(Fig. 3c). Garnet contains inclusions of Or99 and
An05Ab68Or27 alkali feldspar.

Sanidine eclogites

The garnet- and omphacite-dominated samples,
including DK84 and 1309, contain kyanite, quartz,
sanidine, and minor rutile, apatite, zircon and mona-
zite. The samples are transected by small veins of
feldspar or carbonate (see below; Fig. 2e). In addition,
garnet and omphacite have <10 lm thick quartz +
feldspar coronas.
Eclogite DK84 (Fig. 2e,f) has a foliation defined

by the shape-preferred orientation of omphacite, quartz
and sanidine. The garnet grains are zoned, and different
grains have distinct rim compositions. Some have
Alm40Prp25Grs34Sps01 core, a Alm44Prp31Grs24Sps01
mantle and Alm47Prp25Grs27Sps01 rim (Fig. 3a); others
have rims of Alm42Prp22Grs34Sps02. Most garnet has a
�50 lm corona of intermingled An01Ab12Or87 and
An04Ab61Or35 feldspar (Fig. 3c). The omphacite grains
have cores of 32 mol.% Jd and Mg# 0.71 and rims of
42 mol.% Jd and Mg# 0.64 (Fig. 3b). Micron-scale
carbonate veins (Ca0.52–0.62Mg0.25–0.30Fe0.12–0.18)CO3
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traverse the sample and cut garnet (Fig. 2e). Coronas
(>10 lm thick) of sodic clinopyroxene + plagioclase
have replaced <10% of the omphacite. Homogeneous
sanidine (An04–06Ab43–50Or44–54) is interspersed and in
textural equilibriumwithomphacite andgarnet (Fig. 3b).
Minor quartz (�10%) is typically associated with
kyanite, but also occurs as inclusions in omphacite.
Quartz–omphacite boundaries are separated by a film of
quartz and feldspar (An01Ab03Or96). Kyanite grains are
surrounded by coronas of two feldspars, An01Ab25Or74
and An12Ab81Or07.

Eclogite 1309, described in Hacker et al. (2005),
consists of garnet, omphacite, sanidine, kyanite, quartz
and rutile. Garnet and clinopyroxene are homoge-
neous, whereas the sanidine is zoned outward from a
Or73–74Ab25 core to a Or56–68Ab31–43 rim. Like DK84,
veins of carbonate cut the sample.

Garnet–phlogopite websterites

The websterite xenoliths (samples 1170, DK17, DK24,
DK57, DK70) are foliated and range from granob-
lastic to porphyroblastic and grano–lepidoblastic. The
foliation is defined by the shape-preferred orientation
of phlogopite and ⁄ or pyroxene. They consist mainly of
orthopyroxene, clinopyroxene, garnet and phlogopite
and <1 vol.% apatite and pyrrhotite or rutile. Grain
sizes average 1–2 mm, but poikiloblastic garnet
reaches 3–5 mm. Unlike the eclogites, the garnet in
websterites shows no significant compositional vari-
ability in individual samples (Table S1); compositions
range from Prp55Alm33Grs11Sps01 to Prp35Alm56

Grs08Sps01. Pyroxene-dominated patches are granob-
lastic–polygonal, with typical 120� triple junctions.
Clinopyroxene ranges from sodic augite to omphacite
but is nearly homogeneous in each sample; the overall
compositional range is Di44–68Hed12–15Jd5–25
CaTs01–06(En + Fs)08–15 (Table S1). Some matrix
clinopyroxene is surrounded by <10 lm symplectite
rims of a Na-poor clinopyroxene and ternary feldspar.
Orthopyroxene grains are in general homogeneous
with compositions falling in the En71–78Fs16–23
(Di + Hd)02–05MgTs01–02 range; some larger grains
display Al zoning (Table S1). Matrix orthopyroxene
grains are coated by narrow selvages of unidentified,
late submicroscopic minerals (likely phyllosilicate
and ⁄ or amphibole). Phlogopite is in general homoge-
neous in composition (Table S1); in some websterites,
it appears to be in textural equilibrium with other
phases, whereas in other samples, it is secondary after
pyroxene, indicating late potassium metasomatism.
The websterites show varying degrees of alteration and
local disequilibrium, which are mostly confined to the
rinds of the xenoliths where late phlogopite formation
and clinopyroxene breakdown to symplectite are
abundant. Garnet and pyroxene away from the rinds
are much less altered. The outermost mineral rims
locally display distinct Mg# increases even in the cores
of some of the xenoliths.

Oxygen-isotope data

Oxygen isotopes from the eight granulites and two
eclogites were first measured using the laser-fluorina-
tion technique on bulk separates of kyanite, garnet,
quartz and rutile to obtain high-precision measure-
ments at the millimetre- to centimetre-scale (Fig. 4,
Table 2). The d18Oquartz values range from 8.4& to
15.4& (Fig. 4), with the lighter values from eclogites
1309 and DK84, and garnet–omphacite granulite
DK32. Garnet d18O values parallel those in quartz,
and range from 6.8& in eclogite 1309 to 14.3& in
garnet–kyanite granulite DK7 (Fig. 4a). Garnet in
garnet–omphacite granulite DK32 is inhomogeneous,
with a �0.9& difference between the two laser-fluori-
nation analyses. Kyanite d18O values range from 7.7&
to 14.4& (Fig. 4b). Rutile yielded the lightest d18O
values 6.6–11.0& in DK32 and DK84, and 9.9–11.9&
in the remaining granulites (Fig. 4c).

To determine whether the minerals are homogeneous
in d18O at single grain and sample scales, in situ oxygen-
isotope measurements on quartz, rutile, kyanite, garnet
and zircon were performed by ion microprobe (Fig. 5,
Tables 3 & S2). The ion-microprobe analyses targeted
the extremes in major-element zoning where found in
garnet; in other minerals, cores and rims were analysed.
Thus, the in situ data are not necessarily representative
of the average values measured by laser fluorination.
For the ion-microprobe analyses on rutile, only the
precision within grains can be compared and not from
grain to grain. The instrumental mass fractionation for
rutile varies according to the orientation of the crystal
lattice relative to the primary and secondary beams of
the ion microprobe, and it is not possible to accurately
convert the raw ion-microprobe data to the VSMOW
scale for this mineral. Thus, grain-to-grain rutile com-
parison is not possible as each grain may have a dif-
ferent orientation. Overall, the results for the different
minerals show some zoning in the d18O of individual
grains as well as grain-to-grain variability for the min-
erals except for rutile.

The kyanite ion-microprobe values of d18O are
similar to those obtained through laser fluorination
and overlap with 99% confidence (Fig. 5a). The kya-
nite grains reveal a spread in values (0.2–0.9& 2r
standard deviation) when including all of the data for
the individual samples (Fig. 5a, Table S3). The spread
is not caused by zoning within individual grains but
rather differences from grain to grain.

The ion-microprobe results on garnet cluster near
the laser data, but like kyanite, reveal heterogeneity
(Fig. 5b, Table S3). As described above, most garnet
is zoned in major cations; however, d18O does
not typically follow the same zoning trend. In gen-
eral, individual grains are homogeneous and the
variability in d18O measurements reflects grain-to-
grain differences. The garnet in granulite DK32
tends to have lighter rims (�12.1&) than cores
(�12.5&).
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Quartz d18O values show the smallest range of
oxygen-isotope ratios, except for sample DK69
(Fig. 5c), for which ion-microprobe analyses reveal
two populations, one �13.7& and a second averaging
10.8&. The latter, lighter values correspond to quartz
grains found in a late alkali-feldspar + carbonate
ribbon formed parallel to the foliation. Xenoliths
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Fig. 5. Values of laser fluorination d18O v. ion microprobe d18O for (a) kyanite, (b) garnet, (c) quartz and (d) rutile. Note the
heterogeneity found in the individual measurements. Rutile analyses by ion microprobe vary systematically from grain to grain due to
orientation effects and are only accurate for assessing intra-mineral homogeneity.

Table 3. Average WiscSIMS ion-microprobe oxygen-isotope analyses and calculated temperatures.

Sample Rock type

d18O Grt

(%o VSMOW)

2 SDa

(% VSMOW)

d18O Qtz

(% VSMOW)

2 SDa

(% VSMOW)

d18O Ky

(% VSMOW)

2 SDa

(% VSMOW)

d 18O Zirc

(% VSMOW)

2 SDa

(% VSMOW)

d18O Rt

(% VSMOW)

DK7 Granulite 14.28 0.31 15.38 0.32 14.81 0.31 14.30 0.32 12.62

DK13 Granulite 13.87 0.20 15.77 0.21 14.49 0.21 13.76 0.21 12.08

DK32 Eclogite 12.23 0.25 14.32 0.27 10.74

DK43 Granulite 13.25 0.38 14.69 0.39 13.60 0.39 13.59 0.41 10.17

DK69 Granulite 11.66 0.29 12.60 0.42 12.75 0.32 10.73

DK71 Granulite 12.68 0.45 13.40 0.27 13.15 0.27 12.87 0.22 8.80

DK74 Granulite 9.06 0.23 11.01 0.28 9.56 0.28 9.47 0.45 7.18

DK84 Eclogite 7.31 0.22 9.61 0.34 8.10 0.22 8.14 0.21 6.24

Temperatures are calculated using the temperature coefficients from Valley (2003).
a2 SD uncertainties are calculated based on the analytical 2 SD uncertainty on the standard UWG-2.
b2 SD temperature uncertainties are calculated by taking the square root of the sum of the squares of the uncertainties of the individual mineral analyses.
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DK32 and DK43 each contain one heavier d18O quartz
outlier; these are from quartz inclusions in garnet.

Of all the minerals, rutile reveals the broadest vari-
ability in the d18O raw values measured by ion
microprobe (Fig. 5d). The heterogeneous nature of the
measurements is mostly due to differences from grain
to grain, which as described above is likely biased by
crystal-orientation effects.

P–T estimates

Oxygen-isotope thermometry

Oxygen fractionation by a range of different mineral
pairs (e.g. Zheng, 1993a,b; Chacko et al., 2001; Valley,
2003) allows the potential of multiple temperatures to
be obtained from a single sample. Thus, oxygen iso-
topes reveal either equilibrium temperatures or infor-
mation concerning disequilibrium among minerals,
which is crucial for interpreting P–T paths. However,
the temperature sensitivity of most mineral pairs is
poor at ultrahigh temperatures. For instance, at
1000 �C, even if both minerals are homogeneous, an
uncertainty of 0.5& in fractionation between the
minerals shifts temperature by +128 ⁄ )97 �C for
quartz–rutile, +240 ⁄ )153 �C for quartz–garnet,
+317 ⁄ )182 �C for quartz–kyanite and +301 ⁄ )176 �C
for quartz–zircon pairs. In the xenoliths, there is local
textural disequilibrium in areas affected by K-feld-
spar + carbonate metasomatism, and in DK32, relict
kyanite suggests that at least some of the xenoliths
have undergone decompression.

Even though the majority of the minerals appear to
be texturally in equilibrium in the studied xenoliths,
oxygen-isotope fractionation for the mineral pairs
quartz–garnet, quartz–kyanite and quartz–zircon all
yield geologically unrealistic temperatures and ⁄ or
large uncertainties (see Appendix S2). The quartz–
rutile pairs, however, yield the most precise temperatures
at these high-grade conditions. The D18Oquartz–rutile

laser-fluorination values range from 2.84& in DK74 to
3.56& in DK71, indicating a relatively narrow range
in temperatures of 1012 + 58 ⁄ )51 �C to 875 +
23 ⁄ )22 �C (Fig. 4c; for individual temperature results,
see Table 2). A discussion of the other mineral
pairs and their uncertainties can be found in Appen-
dix S2.

The rutile oxygen-isotope results obtained by ion
microprobe are more heterogeneous than those ob-
tained by laser fluorination, and most likely reflect
orientation effects in rutile (see Appendix S2 for a
detailed discussion). Based on these observations, only
the laser fluorination T(D18Oquartz–rutile) are used to
evaluate the thermal history. However, the ion-
microprobe analyses of rutile can accurately reflect
zonation within single crystals. The ion-microprobe
analyses indicate that most rutile is homogeneous
within a single grain, supporting the use of laser-
fluorination data to calculate temperature.

Major-element thermobarometry

To further evaluate the equilibrium conditions of the
different xenoliths, major-element thermobarometry
was applied to the samples that had an appropriate
mineral assemblage. In this respect, it is important to
determine which mineral compositions do reflect pre-
eruption equilibrium. Volume diffusion of Fe and Mg
during eruption is expected at length scales <10 lm
(see Hacker et al., 2005 for a more detailed discussion).
Mineral zoning in DK32 and DK84 occurs within
garnet and omphacite on a large scale (>50 lm) and
therefore represents pre-eruption heterogeneity. The
garnet zoning is slightly different in the two samples:
DK32 shows a continuous increase in grossular and
decrease in both almandine and pyrope from core to
rim. The DK84 garnet has outward decreases in
grossular and increases in pyrope, but in the outermost
�250–300 lm of the grain, the opposite trend is
observed. Garnet zoning similar to that in DK32 was
observed in another Dunkeldik eclogite xenolith by
Hacker et al. (2005).
The intersection of net-transfer and ion-exchange

reactions defines pre-eruption equilibration pressures
and temperatures and was used for the thermoba-
rometry. The near-rim compositions of garnet, clino-
pyroxene and feldspar (see mineral chemistry section)
were used to calculate these reactions with THERMO-THERMO-

CALCCALC (Holland & Powell, 1998), assuming no Fe3+ in
the minerals. If Fe3+ is present, the omphacite will
take up more Fe3+ than the garnet and Fe–Mg
exchange thermometry will predict lower temperatures.
Conversely, this implies that temperatures derived
from Fe–Mg exchange between garnet and clinopy-
roxene represent maxima if Fe3+ is ignored (Krogh
Ravna & Paquin, 2003). Grains used for thermoba-
rometry were carefully selected to avoid any visible
signs of disequilibrium. Both the garnet–kyanite and
the garnet–omphacite granulites typically contain
multiple feldspars. Late, Or-rich (>97 mol.%) feld-
spar moats around kyanite were not used for ther-
mobarometry. Instead, only coarse matrix feldspar in
textural equilibrium with garnet and omphacite was
used. Uncertainties in the major-element thermoba-
rometry are a consequence of the assumption of
equilibrium among the mineral assemblage, the accu-
racy and precision of the electron-microprobe analy-
ses, and the calculations using THERMOCALCTHERMOCALC. The
pressure and temperature from garnet–omphacite
granulite DK32 have been estimated from Fe–Mg ex-
change between garnet and clinopyroxene and the net-
transfer reaction albite = jadeite + quartz. These two
reactions intersect at �880 �C and 19 kbar (Fig. 6a).
Kyanite is present in the sample, but its relict
appearance suggests that it is no longer part of the
equilibrium assemblage; this it was not used for ther-
mobarometry.
For eclogite DK84, in which various garnet rim

compositions have been observed, different garnet–
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clinopyroxene pairs yield a wide range of temperatures.
The Fe–Mg exchange reaction between garnet and
clinopyroxene and the net-transfer reactions albite =
jadeite + quartz and diopside + kyanite = grossu-
lar + quartz intersect at a pressure of �18 kbar and
815 �C for one garnet–clinopyroxene pair (Fig. 6b)
and �24 kbar and 1025 �C for a second pair (Fig. 6c).
These results further emphasize disequilibrium in
DK84.

In comparison with the garnet–omphacite granulite
DK32 and eclogite DK84, constraining the pre-
eruption P–T conditions of the clinopyroxene-free
granulites is severely limited by the fact that the
assemblage garnet–kyanite–sanidine–quartz is stable
over a broad P–T range (e.g. DK7; Fig. 7), within
which mineral compositions change insignificantly.
The only net-transfer reaction applicable to these rocks
is 3 anorthite (in sanidine) = grossular + 2 kya-
nite + quartz (GASP; Ghent, 1976). However, the Ca
exchange between garnet and alkali feldspar is negli-
gible in the P–T range of interest (<1 mol.% variation
of anorthite and grossular; see pseudosection descrip-
tion below). The anhydrous nature of the samples
suggests that they formed by dehydration melting of
metapelites at >900 �C (Patiño Douce & McCarthy,
1998), which yields a loose first-order temperature
estimate. Oxygen-isotope equilibria thus provide the
more reliable pre-eruption temperature estimates.

The pre-eruption pressure for granulite DK69 can be
calculated using the GASP barometer; this reaction
yields a pressure of 17 kbar using the T(D18Oquartz–rutile)
of �930 �C (see below). Feldspar-solvus thermometry
can also be applied to DK69. At the �17 kbar
obtained from GASP, the calibration of Elkins &
Grove (1990) yields �925 �C (±3 kbar uncertainty
translates to a ±8 �C uncertainty) for matrix plagio-
clase (An29Ab61Or10) and sanidine (An05Ab29Or66).
Using the composition of feldspar rims (An29Ab46Or25
and An04Ab26Or70) included in garnet yields a higher
temperature of �1025 �C at �17 kbar.

The pre-eruption P–T conditions of five garnet–
phlogopite websterites were evaluated using equilibria
among garnet, orthopyroxene and clinopyroxene.
Here, we summarize the results; more details will
appear in a separate paper (P. Luffi, unpublished
data). Pressures and temperatures were calculated
using the Al-in-orthopyroxene barometer of Nickel &
Green (1985), based on the distribution of Al between
garnet and orthopyroxene, in combination with the
orthopyroxene–clinopyroxene solvus thermometer of
Taylor (1998). Nimis & Grütter (2010) demonstrated
that this is the most reliable method to assess equilib-
rium P–T conditions of fertile peridotites and
pyroxenites. Only mineral analyses of adjacent grains
were used. Results indicate that the websterites equil-
ibrated in the 20–33 kbar ⁄ 884–1012 �C range, which is
similar to our estimates for the eclogite xenoliths.
Individual samples yield core and rim P–T values that
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Jd = jadeite; Ky = kyanite; Qz = quartz; Prp = pyrope.

T H E R M AL S TR U CT U R E O F C R U S T I N A C T I V E O R O G E N S 42 3

� 2012 Blackwell Publishing Ltd



are similar within calibration errors (±2 kbar,
±15–30 �C).

The garnet–biotite gneiss reveals the lowest P–T
estimates of the sample suite. Both garnet core com-
positions + biotite inclusions in garnet and garnet rim
compositions + adjacent matrix biotite give 790–
850 �C for Fe–Mg exchange, using Holdaway & Lee
(1977), Bhattacharya et al. (1992) and Perchuk &
Lavrent�eva (1983).

Pseudosection calculations

The mineral assemblages dominating several of the
studied xenoliths are not appropriate for determining
the pre-eruption pressures via major-element ther-
mobarometry. To place some constraints on such
pressures, pseudosections were calculated using the
bulk composition of the xenoliths. Such pseudosec-
tions reveal the P–T region in which the dominant
mineral assemblages equilibrated (e.g. for the granu-
lites, including DK7, Fig. 7). In addition, in the case of
samples for which thermobarometric results have been
calculated, such pseudosections can be used to evaluate
the significance of the obtained pressures and temper-
atures and to show whether these values correspond to
bulk or rather small-scale equilibrium. The pseudo-
sections were calculated using Theriak ⁄Domino
01.08.09 (De Capitani & Petrakakis, 2010) with the

JUN92 thermodynamic database (based on end-
member and solution models of Berman, 1988, 1991)
completed with the omphacite solution model of
Meyre et al. (1997) and the phengite solution model of
Keller et al. (2005). To evaluate to what extent the
topology of the obtained pseudosections depends on
the chosen thermodynamic models in the P–T range of
interest, we have also employed Perple_X 7 (Connolly
& Petrini, 2002) with the Holland & Powell (1998)
thermodynamic database, fitted with the garnet solu-
tion model of White et al. (2007), the feldspar solution
model of Fuhrman & Lindsley (1988) and the om-
phacite model of Green et al. (2007).
The presented results (Figs 7–9 & S1) were calcu-

lated in Theriak ⁄Domino; a pseudosection calculated
with Perple_X for xenolith DK32 is shown in Fig. S2
for comparison. A comparison of Figs 8 & S2 corre-
sponding to sample DK32 suggests that the pseudo-
sections built with Theriak ⁄Domino and Perple_X are
similar in the P–T region of interest, and therefore
insensitive to the employed thermodynamic models.
Mineral abbreviations in the figures are after Whitney
& Evans (2010), and several minor fields in the low-
pressure ⁄ high-temperature region of the calculated
pseudosections are too small to list the compositions
and are labelled by numbers.
Whole-rock compositions used in these calculations

are shown in Table 1; the models are calculated in the
NCKFMAS (Na2O–CaO–K2O–FeO–MgO–Al2O3–
SiO2) system. To preserve consistency with the
assumptions in the major-element thermobarometry,
the pseudosections were calculated in Fe3+-free sys-
tems. All pseudosections, except for DK83, were cal-
culated without H2O due to their anhydrous mineral
assemblage. Due to the abundant biotite found in the
thin section, it is assumed that DK83 does not repre-
sent a restite as interpreted for the other studied
xenoliths. To equilibrate for the amount of biotite
observed in DK83, 0.85 wt% H2O was added to its
bulk composition. Significantly more water would
suppress the alkali feldspar observed in the assem-
blage; significantly less water would extend the stability
of pyroxene against biotite and suppress the garnet–
two-feldspar–biotite–quartz assemblage dominating
this sample.
Uncertainties in the pseudosections are a conse-

quence of the chosen activity models, the uncertainty
in the thermochemical data, the assumption of equi-
librium and the assumption that the chosen bulk
composition is that with which all minerals equili-
brated. In the ideal case of equilibrium, isopleths of the
observed mineral rim compositions should intersect in
a P–T point in an assemblage field that includes all the
minerals in the sample. This is rarely the case in natural
rocks, and samples containing zoned minerals, relict
phases, evidence for metasomatism and ⁄ or two or
more generations of a mineral, like the xenoliths
studied here, will deviate from this ideal condition.
Perhaps, the biggest limitation is that there is no
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internally consistent set of activity models nor a
thermodynamic database for silicate melts for the
compositions, high pressures and temperatures of
interest.

For granulite DK32, the molar isopleths of grossu-
lar, almandine and pyrope rim compositions intersect
at �960–975 �C and 20–21 kbar in the equilibrium
assemblage of garnet–clinopyroxene–sanidine–plagio-
clase–quartz–(rutile) (Fig. 8). DK32 also contains
kyanite, but the presence of feldspar rims around
kyanite and the fact that eclogites from this same
xenolith suite record higher pressures and tempera-
tures (Hacker et al., 2005) suggest that the kyanite is
relict and that DK32 cooled and decompressed from
the sanidine–kyanite–clinopyroxene–garnet–quartz
stability field. The core-composition isopleths of the
garnet intersect at unrealistically high temperatures
above those shown on the pseudosection.

Estimating the pre-eruption P–T conditions for
eclogite DK84 is difficult because the garnet has dif-

ferent rim compositions (Fig. 3a), indicating that only
local equilibrium has been achieved. Further compli-
cations arise from the presence of secondary alkali
feldspar and sanidine not equilibrated with the primary
assemblage. These factors explain why the molar
isopleths for garnet do not intersect within the calcu-
lated stability field for the assemblage observed in the
xenolith (Fig. S1).

The pseudosection constructed for garnet–biotite
gneiss DK83 is shown in Fig. 9. According to The-
riak ⁄Domino, garnet, phengite, omphacite and alkali
feldspar are stable in the low-temperature–high-pres-
sure domain of the examined P–T range. There is a
P–T field (600–840 �C and 5–14 kbar) in which the
assemblage two feldspars–quartz–biotite–garnet ±
H2O is stable. In the case of DK83, the model is limited
by uncertainties in the H2O contents in the rock (here
estimated by the modal biotite) and, thereby, by the
approximate constraints on the solidus position.
Nevertheless, the temperature range of stability of
the observed assemblage estimated from the pseudo-
section is consistent with conventional thermometry
results from this sample. Thus, we conclude that DK83
must have equilibrated somewhere in the 5–14 kbar
range.
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Metamorphic pressures

To determine metamorphic pressures in samples for
which major-element thermobarometry was not pos-
sible, we combine the oxygen-isotope quartz–rutile
temperatures and the calculated stability field of the
mineral assemblages. To ensure that results of such a
combination are meaningful, the oxygen-thermometry
results are first compared with the major-element
thermometry and pseudosections. Individual samples
yield consistent temperatures for all of the techniques.
For example, for garnet–omphacite granulite DK32,
major-element thermobarometry indicates �890 ±
70 �C ⁄ 19 ± 2 kbar, the pseudosection yields �960–
975 ± 70 �C ⁄ 20–21 ± 4 kbar and laser fluorination
T(D18Oquartz–rutile) = 940 ± 45 �C. The uncertainties
associated with the thermobarometry and pseudosec-
tion P–T estimates are similar to those of the quartz–
rutile thermometry, and the overall results suggest a
pre-eruption P–T condition of 900 �C ⁄ 20 kbar.
Exchange thermometry serves as a check for the oxy-
gen-derived temperatures for granulite DK69. Feld-
spar-solvus thermometry yielded a temperature of
925 ± 50 �C, whereas laser fluorination resulted in
T(D18Oquartz–rutile) = 930 ± 42 �C. In conclusion, the
results from both DK32 and DK69 suggest that the
quartz–rutile T(D18O) temperatures can be directly
applied to the samples not suitable for conventional
thermometry.

For most samples, the mineral assemblage stability
field is large (e.g. DK7, Fig. 7). For granulite DK13,
T(D18Oquartz–rutile) = 877 �C superposed on the sta-
bility field of garnet + sanidine + kyanite + quartz
indicates a pressure of 12–25 kbar. For DK43,
T(D18Oquartz–rutile) = 930 �C, the same mineral
assemblage indicates 13–26 kbar. Xenolith DK71 has
a laser-fluorination T(D18Oquartz–rutile) of 875 �C,
corresponding to a pressure of 12–25 kbar. At
T(D18Oquartz–rutile) = 1011 �C, the garnet–sanidine–
kyanite–quartz–rutile assemblage of DK74 is stable at
15–29 kbar. DK69 is the only clinopyroxene-free gar-
net–kyanite granulite for which a pre-eruption pressure
can be determined. This sample equilibrated at
�930 �C, and on the pseudosection, falls in the same
pressure range as the other granulites (13–26 kbar); the
GASP barometer yields a more precise pressure of
17 kbar. Finally, the 790–850 �C cation-exchange
temperature inferred for the garnet–biotite gneiss
(DK83) indicates a pressure <14 kbar, based on
the pseudosection (Fig. 9). Overall, the equilibrium
pressures for the granulites lacking clinopyroxene
range from �12 kbar (the stability field of kyanite) up
to the clinopyroxene-in boundary (�25 kbar at
900 �C).

Depth-profiling U–Pb zircon analyses

Zircon U–Pb SHRIMP depth-profiling analyses were
obtained from xenoliths DK32 and DK84 (Table S4).

The depth-profiling technique may allow acquisition
of the isotopic signature of the last event to affect
zircon and thus may indicate the pre-eruption age of
the zircon. The unpolished rims of 15 zircon analysed
from the granulite DK32 yielded a lower intercept
date of 19.9 ± 3.3 Ma (Fig. 10a). The zircon dates
from eclogite DK84 are more scattered: most of the
20 zircon analysed yielded 238U ⁄ 206Pb rim dates from
97.6 ± 3.7 to 23.6 ± 1.0 Ma (Table S4), whereas five
zircon yielded a lower intercept date of 12.9 ± 1.0 Ma
(Fig. 10b), indistinguishable from the eruption age of
11.5 ± 0.2 Ma (Hacker et al., 2005), given current
uncertainties in intercalibration of the U–Pb and
K–Ar decay schemes (Renne et al., 2010).

DISCUSSION

Origin of the Dunkeldik xenoliths

The origin of the Dunkeldik xenoliths is partly ob-
scured by partial melting and infiltration that produced
potassium feldspar + carbonate. However, oxygen
isotopes measured from the xenoliths provide insight
into the fluid–rock interaction history. The d18O values
measured from all the minerals in the studied xenoliths
are heavy compared to mantle values, with the
weighted-mean values for quartz ranging from 9.5& to
15.4&. These heavy d18O signatures – including those
from garnet cores – mean that even the eclogites DK84
and 1309 must have been altered at shallow crustal
depths or have a metasedimentary protolith (most
mafic eclogite xenoliths have d18O values lighter than
+9.0&; e.g. Garlick et al., 1971; Deines et al., 1991;
Jacob et al., 1994; Schulze et al., 2003b). The oxygen-
isotope data for the granulites lacking clinopyroxene
are consistent with the metasedimentary origin inferred
from the bulk chemistry of the samples [molar
Al2O3 > (CaO + Na2O + K2O); Table 1], mineral
parageneses, melting history (Hacker et al., 2005) and
zircon ages (Ducea et al., 2003). The xenolith suite thus
covers a range of crustal rocks that have magmatic and
sedimentary protoliths.

Pre-eruption P–T conditions

Most of this study focuses on the understanding of the
last P–T conditions of the various xenoliths prior to
their eruption. Textures in the samples argue that the
xenoliths were not greatly affected by the host magma
during transport to the surface. In addition, ascent
rates of the xenoliths are expected to be �0.1–3 m s)1

(Spera, 1984), and thus, the xenoliths are thought to
have cooled rapidly (<<1 year) to below their closure
temperatures for oxygen diffusion. In such conditions,
re-equilibration is unlikely during eruption (Hacker
et al., 2005) because grain-boundary and volume dif-
fusion in the xenoliths and constituent minerals are
expected to be slow even at magmatic temperatures
(<1000–1200 �C; e.g. Yund, 1997; Ganguly et al.,
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1998; Dimanov & Sautter, 2000; Cole & Chakraborty,
2001; Milke et al., 2001; Valley, 2001; Page et al.,
2007a,b). For oxygen diffusion, closure temperatures
are estimated at >1500 �C and diffusion distances are

<5 lm for all the analysed phases assuming the fast
cooling ⁄ eruption rates and using the diffusion char-
acteristics summarized by Valley (2001) and Cole &
Chakraborty (2001). Thus, the elemental and isotopic
measurements used in this study are considered the
representatives of the pre-eruption conditions and not
affected by the magma during eruption.

Thermobarometry results from this study and
Hacker et al. (2005) suggest a broad range of pre-
eruption P–T conditions for the Dunkeldik xenolith
suite (Fig. 11). The anhydrous granulites and eclogites
yield conditions from �815 �C at 18 kbar to 1100 �C
at 28 kbar and the garnet–biotite gneiss yields 790–
850 �C at pressures between 5 and 14 kbar. The web-
sterites appear to have equilibrated at temperatures
that overlap those of the eclogites and granulites;
however, the pressures recorded in the websterites
appear to be 5–10 kbar greater.

The P–T results, combined with the dearth of
hydrous phases in most of the xenoliths, corroborate
the earlier view (Hacker et al., 2005) that the Dun-
keldik xenoliths underwent partial melting and that the
granulites with a metasedimentary protolith represent
the residue of this melting. The absence of hydrous
minerals – combined with the bulk composition –
suggests that temperatures were >900 �C for most of
the xenolith suite (Patiño Douce & McCarthy, 1998).
The single garnet–biotite gneiss is an outlier and rep-
resents the coldest end of the suite.

Whereas most of the xenoliths record high-grade
pressures and temperatures, several samples reveal
evidence of decompression and ⁄ or cooling prior to
eruption. As described above, xenolith DK32 contains
relict kyanite that is not in equilibrium with the two-
feldspar–quartz–clinopyroxene–garnet assemblage.
This relationship suggests that DK32 left the stability
field of sanidine–kyanite–clinopyroxene–garnet–quartz
(an assemblage observed in other eclogite xenoliths
from Dunkeldik) via decompression and, probably,
cooling. Eclogite DK84 also contains evidence for
decompression prior to eruption. It yields multiple
pressures and temperatures from garnet with different
rim compositions, presumably reflecting cooling and
decompression from 1025 �C ⁄ 24 kbar to 815 �C ⁄ 18
kbar. Finally, we interpret the granulites as melting
residues, and in order for these rocks to have under-
gone phengite and biotite consumption, they must
have reached >�1050 �C (at >20 kbar; Patiño Douce
& McCarthy, 1998); however, many of the samples
record lower temperatures, again suggesting cooling.
Granulite DK69 also records multiple temperatures,
with garnet inclusions yielding >1000 �C, whereas the
matrix yields a lower temperature near 900 �C.

Miocene Pamir lithosphere

The xenolith pressures of �19–33 kbar indicate that
crustal material, represented by Miocene eclogites,
granulites and websterites, was taken to mantle depths
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(�65–110 km). Late Mesozoic zircon and monazite
ages from the xenoliths (Fig. 10c; this study, Ducea
et al., 2003) preclude derivation of the xenoliths from
Indian crust (e.g. Hodges, 2000) and suggest instead an
affinity to the southern Pamir–eastern Hindu Kush–
Karakoram–Kohistan–Ladakh continental and oce-
anic arc rocks of southern Asia (e.g. Parrish & Tirrul,
1989; Hildebrand et al., 1998, 2001; Fraser et al.,
2001). In particular, the protracted Tertiary high-grade
thermal and magmatic history of the Hindu Kush,
Karakoram and southern Pamir appears to be reflected
in the xenoliths (Fig. 10c).

Using the six investigated garnet–omphacite granu-
lite and eclogites from this study and from Hacker
et al. (2005), the rocks define a geotherm of 12–
13 �C km)1 in the 65–110 km depth range (cold geo-
therm of Fig. 11). The metasedimentary xenoliths are
compositionally similar to Barrovian metamorphic
rocks exposed in the nearby, southwestern Pamir
Shakhdara gneiss dome (Fig. 1c) that reached peak
pressures of 8–12 kbar and temperatures of 675–
800 �C (Fig. 11; McGraw, 2010). Metamorphism in
the Shakhdara dome is Miocene and older (McGraw
et al., 2010; Stearns et al., 2011). Similar metamorphic
and magmatic ages characterize the basement domes of
the eastern Hindu Kush and Karakoram to the south
of the Pamir Mountains (Fig. 10c). They reflect a
protracted tectonothermal reworking of the upper and
middle crust of the southern Asian plate margin, which

is contemporaneous with the UHT–(U)HP metamor-
phism, melting, and subsequent decompression and
cooling of the lower crust, reflected by the xenoliths.
The lower crust of continental cratons can be cold

(<500 �C at 40 km; average thermal gradient of
12.5 �C km)1; Hyndman, 2010), whereas thermal gra-
dients in continent–continent collisions can be as steep
as 25–40 �C km)1 (hot geotherm of Fig. 11; e.g. Lee
et al., 2004; Root et al., 2005; Hyndman, 2010). The
relatively low ratio of heat conduction to advection in
Earth�s crust means that a typical continent–continent
collision is characterized by shallow thermal gradients
during thickening stages and by steep thermal gradi-
ents during thinning stages (Oxburgh & Turcotte,
1974). For example, during the Miocene, the lower
crust of southern Tibet was characterized by a thermal
gradient of �16 �C km)1 (1130–1330 �C ⁄ 22–26 kbar),
as defined by felsic and mafic crustal xenoliths similar
to those analysed for this study that were erupted in an
ultrapotassic dyke (Chan et al., 2009). In comparison,
the lower crust of the central Tibetan Plateau is now
hot (>1000 �C at 40 km depth, �25 �C km)1; Hacker
et al., 2000), and development of that steep thermal
gradient may have required 50 Ma of thermal relaxa-
tion assisted by radiogenic heating (LePichon et al.,
1997; McKenzie & Priestley, 2008) or magmatic input
(e.g. Ding et al., 2003). Over the same time interval, the
southern Tibetan Plateau remained refrigerated by
subduction (Hetenyi et al., 2007).
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In light of these considerations, the fact that the
Pamir Mountains xenoliths define an average thermal
gradient of 12–13 �C km)1 (Fig. 11) in a collisional
orogen indicates that they had not reached thermal
equilibrium corresponding to a mature continent–
continent collision. Instead, the results support the
view that the crustal material reached �1000–1100 �C
at >90 km prior to decompressing and cooling to
lower pressures and temperatures of �800–
900 �C ⁄ 18 kbar and then being entrained in their host
magma. This inference is supported by features of the
xenoliths described above, such as oxygen-isotope
disequilibrium and multiple compositions of garnet
within a single thin section.

How the crustal material reached depths in the
Miocene greater than the present-day Moho (�65 km
depth for the southern Pamir; Mechie et al., 2011) re-

mains an open question. U–Pb zircon data suggest that
the material most likely was ablated from the Asian
upper plate during the subduction of India (Ducea
et al., 2003; Hacker et al., 2005). Alternatively, it may
have been introduced to the mantle by intracontinental
subduction (Meyer et al., 1998) or could have sunk
into the mantle owing to a gravitational instability
(Hacker et al., 2005). We exclude DK83, the garnet–biotite
gneiss, from consideration in these models because it
equilibrated at shallower pressure than the other
xenoliths; it was probably located within the mid-crust
and collected during eruption.

As described, the P–T history recorded in the
eclogitic and granulitic xenoliths implies that the crus-
tal material did not fully equilibrate at peak pressures
and temperatures or if the samples did, the record of
that equilibration was obliterated by the decompression
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and cooling. Thus, the samples must have reached
maximum depths and then decompressed ⁄ cooled
potentially via buoyancy-driven exhumation after
melting and melt extraction but prior to the eruption of
the xenoliths at c. 11.5 Ma. In the gravitational insta-
bility model, the denser part of the descending body
may have sunk into the mantle, whereas the felsic rocks
separated from the dense lithologies and rose buoy-
antly. In the subduction model, felsic material could
have been carried downward with the dense, subduct-
ing plate until heating decreased its viscosity sufficiently
to allow diapiric rise of the felsic material through the
overlying mantle wedge (e.g. Gerya & Yuen, 2003;
Keppie et al., 2009; Behn et al., 2011).

Our preferred model (Fig. 12) for the Neogene to
recent crustal and lithospheric mantle evolution be-
neath the southern Pamir calls for early Miocene steep
subduction of Indian lithosphere beneath the southern
Pamir region, similar to the present-day Hindu Kush
slab. This induced local subduction erosion or gravi-
tational foundering of Asian crust, which served as the
protolith for the Pamir Mountains xenoliths. The
deeply subducted Indian lithosphere slab subsequently
broke off. Since the Late Miocene, Indian mantle
lithosphere has been underthrusting nearly horizon-
tally, effectively cooling the overlying Asian crust. The
leading edge of India is currently outlined by the Pamir
Mountains seismic zone (Fig. 1b). This underthrusting
Indian mantle lithosphere probably corresponds to the
cool upper mantle underneath the inferred from wide-
angle seismic data Pamir (Mechie et al., 2011).

CONCLUSIONS

Ultrapotassic volcanic rock in the southeast Pamir
contains crustal xenoliths scavenged from depths of
�40 km (garnet–biotite gneiss) to �90 km (eclogites,
granulites and websterites), with most of the granulites,
eclogites and websterites intermingled at 60 to 100 km
depths. Most of these samples achieved ultrahigh-
temperatures of 1000–1100 �C, leading to mica-dehy-
dration melting. The resulting UHT–near-UHP
xenoliths represent the residue of these melts and de-
fine an average thermal gradient of 12–13 �C km)1 for
depths of 60–100 km. Thermobarometry suggests that
the eclogites and granulites cooled and decompressed
from >1000 �C to �900 �C before eruption. The
xenoliths may have reached great depth through sub-
duction erosion, intracontinental subduction or a
smaller gravitational instability. Regardless, the ther-
mobarometry, oxygen-isotope data and textures indi-
cate that the rocks did not thermally equilibrate at
temperatures expected for these depths, but instead
cooled to �900 �C. The xenoliths provide a rare win-
dow into the fate of crustal material taken to mantle
depths and highlight the dehydration melting and
subsequent cooling ⁄ decompression that occurs when
the crustal material reaches P–T conditions at which
phengite ⁄ biotite are no longer stable.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in
the online version of this article:

Figure S1. Pseudosection for eclogite DK84. Excess
SiO2 was added to the bulk composition (Table 1) in
order to suppress corundum at high pressure. Corun-
dum is not found in the mineral assemblage. Multiple
composition garnet rims were found within a single
thin section of DK84; garnet isopleths are drawn
for the garnet rim composition Alm47Prp25Grs27Sps01.
Coe = coesite; Cpx = clinopyroxene; Fsp = feld-
spar; Grt = garnet; Ky = kyanite; Ol = olivine; Opx
= orthopyroxene; Qz = quartz.

Figure S2. Pseudosection for garnet–omphacite
granulite DK32, calculated using Perple_X. Coe =
coesite; Cpx = clinopyroxene; Fsp = feldspar; Grt =
garnet; Ky = kyanite; Ol = olivine; Opx = ortho-
pyroxene; Qz = quartz.

Table S1. Electron microprobe mineral composi-
tions from the Pamir Mountains xenoliths.
Table S2. Individual WiscSIMS ion-microprobe

oxygen-isotope spot analyses of unknowns and stan-
dards.
Table S3. SHRIMP U–Pb zircon depth-profiling

isotopic data.
Appendix S1. Analytical methods used in this study.
Appendix S2. Uncertainties associated with oxygen-

isotope thermometry using the quartz–garnet, quartz–
kyanite and quartz–zircon pairs.
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