Resolving Micron Scale $\delta^{18}O$ and $\delta^{13}C$
Heterogeneity in Cultured Planktic foraminifera

Howard Spero, Lael ‘Spider’ Vetter, Claudia Mora, Reinhard Kozdon and John Valley

High Resolution Proxies of Paleoclimate Workshop, June 24, 2013

One of the most important climate archives - the CaCO$_3$
shells of planktonic foraminifera

Pre-sphere, trochospiral shell form of O. universa

Spherical chamber form of O. universa
Most foraminifera grow their shells over 2-4 weeks. The *O. universa* sphere typically thickens for 3-7 days before completing its life cycle.

After 3-7 days, the spines are shed via selective resoraption; the nucleus undergoes meiotic division.
Gamete release generally occurs within 24 hours of spine resorption

Post-gametogenic *O. universa* shell from the laboratory is identical to a million year old fossil. All extant planktic foraminifera follow this development pattern, but non-spinose species do not shed spines.
Crack the sphere open and the trochospiral shell is still evident inside; note sphere thickness (~20-30 µm)
Orbulina universa is a great geochemist

After Spero and Williams (1988)

O. universa HL (So. Cal. Bight & Puerto Rico combined)

LA-ICPMS depth profiling

Deep UV laser (<200 nm) and low pulse energy (~0.1-0.2 GW/cm²)

Each laser pulse shaves ~100 nm layer from test surface

10 laser pulses 100 laser pulses

Gem quality Iceland spar

Pulleniatina obliquiloculata

How small can we go......

Isotopic and Elemental Analysis of Individual Microfossils: A Submicron view of Climate and Environmental Change

Ph.D. Project by Lael ‘Spider’ Vetter, UC Davis

Orbulina universa in culture and after reproduction

• The next generation of paleoceanographic questions:
 • Can we reconstruct depth migration in a single foraminifera shell?
 • Do foraminifera contain geochemical information related to short duration storm events or surface salinity change?
Can we get around the diagenetic problem in fossil foraminifera?

SIMS and LA-ICPMS help answer the question

Cross-section through Orbulina universa shell

(Spero 1988)

Univ. Wisconsin SIMS - Cameca 1280

Spider Vetter, Claudia Mora and Reinhard Kozdon analyzing cultured foraminifera

U. Wisconsin SIMS
SIMS analyses through an *O*. *universa* chamber – can we resolve $\delta^{18}O$ shifts at this resolution?

Ion microprobe spots across *O*. *universa* chamber (2x3 mm)
NanoSIMS image from a different *O*. *universa* showing Mg banding

SIMS analyses were conducted at the University Wisconsin with R. Kozdon and J. Valley; nanoSIMS image was generated at University of Perth (Kilburn)
(Vetter, unpublished data)

SIMS (secondary ion mass spectrometry) through an *O*. *universa* chamber – $\delta^{18}O$ analyses with 2-3 μm resolution

Cross-section through *O*. *universa*

Vetter et al, 2013
SIMS (secondary ion mass spectrometry) through an *O. universa* chamber - δ¹⁸O analyses with 2-3 μm resolution

Cross-section through *O. universa*

Cameca 1280 SIMS can resolve shifts in chamber δ¹⁸O with ~2 um resolution and +/- 0.4‰ precision

Control Experiment in ambient artificial seawater

(Vetter et al., (submitted))
Predicted ambient $\delta^{18}O_c = -2.15\%$; predicted spike $\delta^{18}O_c = +16.9\%$. Full $\delta^{18}O_c$ shift is recorded across 1-2 μm of calcite!

Daytime spike; note broad bands

(Vetter et al., submitted)

Predicted ambient $\delta^{18}O_c = -2.2\%$; predicted spike $\delta^{18}O_c = +16.9\%$. Full isotopic shift is nearly recorded across 1-2 μm of calcite!

(Vetter, ms in preparation)
Conclusions

- Experiments combining living planktonic foraminifera with emerging technologies can resolve geochemical changes in biogenic carbonate at the micron level.
- Hi and low Mg banding is an inherent component of foraminifera chamber formation; hi [Mg] bands are produced at night and vice versa.
- Mean LA-ICPMS data through individual shells agrees well with published empirical calibrations from solution ICP-MS.
- SIMS analyses can resolve micron scale changes in test $^{18}O/^{16}O$ ratios.

We’ve come a long way in 30 years, when geochemists and paleoceanographers lumped foram biology into ‘Vital Effects’

Laboratory and field observations of living planktonic foraminifera

Allan W.H. Bé et al.; 1977
Micropaleontology, Vol. 23

Colleagues: C. Hemleben, M. Spindler and O.R. Anderson