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     This work explores the effects of Fe2+ substitution on SIMS δ13C and δ18O 
bias in the analysis of carbonate minerals with compositions that fall along 
the siderite-magnesite solid-solution series [FeCO3-MgCO3]. Bias is the per 
mil (‰) difference between measured 'raw' and 'true' (i.e., VPDB or 
VSMOW) values of δ13C or δ18O (also referred to as 'instrumental mass frac-
tionation'). The component of total bias related specifically to variations in 
sample chemistry along a solid-solution can be referred to as the sample 
'matrix effect'.  

BACKGROUND & MOTIVATION  
     Carbonates of the siderite-magnesite series are encountered in many different geological environ-
ments on Earth [1] as well as in Martian meteorites [2,3]. Some examples of siderite (+/- Mg) occurrenc-
es include concretions/cements in marine and fresh-water sediments,  banded-iron formations (BIFs) and 
carbonatite deposits. Magnesites (+/-) occur, for example, in association with evaporitic sediments and 
as a product of weathering / hydrothermal alteration of igneous and metamorphic rock bodies rich in 
Ca-Mg-Fe silicate minerals.
     
     The isotopic composition of the carbon and oxygen atoms they contain are widely used in the geosci-
ences as proxies for inferring the conditions of carbonate formation. Of interest most commonly is the 
temperature of precipitation, the source(s) of carbon, and the nature/source of the fluids involved (e.g., 
marine, meteoric, mixed or hydrothermal waters). Variations in the δ13C and δ18O signatures of pedo-
genic (soil) carbonates, for example, are frequently used as indicators of past ecologic and climatic 
change on the continents [4-6].

     The motivation for this research grew out of a need for standards in the wake of recent technical ad-
vances in carbonate δ13C and δ18O microanalysis by SIMS, and the potential applicability of this tech-
nique in a wide variety of paleoenvironmental and paleoclimatic studies, as well as in the intensifying re-
search efforts concerned with geologic carbon-sequestration [7,8]. 

RESULTS
▌   A suite of 13 calibration standards 
was developed for both isotope sys-
tems, spanning the compositional 
range between Fe# = 0.002 and 0.997 
[Fe# = molar Fe/(Mg+Fe) ].

▌  The calibration curves of both iso-
tope systems are non-linear (Fig. 1) 
and have, over a 2-year period, fallen 
into one of two distinct and largely 
self-consistent shape categories (data 
from 10 analytical sessions) despite 
adherence to well-established analyt-
ical protocols for carbonate  δ13C and 
δ18O analyses at WiscSIMS (CAME-
CA IMS 1280). The cause of this is 
not well understood at present, and 
stresses the importance of having 
available a sufficient number of 
well-characterized standards so that 
potential complexities of curvature 
can be adequately delineated and ac-
counted for on a session-by-session 
basis. 

▌   As with the dolomite-ankerite 
series [10,11], mass bias for the mag-
nesite-siderite solid-solution is con-
sistently most sensitive to changes in 
composition near the iron-free 
end-member. With increasing Fe- 
-content up to ~20 mol% FeCO3 (i.e., 
Fe# 0-0.2), δ13C bias increases by 
3-4.5‰, whereas δ18O bias decreases 
by up to 13-15‰ (the magnitude of 
this bias can vary by 1-2‰ on a ses-
sion-specific basis; refer to the 
right-hand y-axis of Fig. 1). Between 
the end-members of the series, the 
magnitude of δ13C bias increases by 
a total of 10-11‰ (magnesite-sider-
ite), whereas the magnitude of δ18O 
bias decreases by 13-16‰ (refer to 
the right-hand y-axis of Fig. 1).

▌   As an example, if uncorrected, the 
presence of 1-2 mol% FeCO3 in a 
sample material of unknown isotopic 
composition would produce an accu-
racy error of ~1‰ for δ13C and 
~2-3‰ for δ18O measurements.
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EXAMPLES OF THE MORE COMMON BIAS BEHAVIOR OBSERVED TO DATE. 
The left-hand y-axis pertains to the working calibration curves, where bias measurements are normalized (or 
''anchored") to a running standard used for drift-monitoring (in this case end-member magnesite "UWMgs1"). 
Normalized values are thus expressed as "δ13C or δ18O bias*(STD-UWMgs1)." 

The right-hand axis pertains to bias values pre-normalization (in other words, simply the per mil difference 
between 'raw' and 'true' δ13C or δ18O value of each standard). Note that all bias values for this series are nega-
tive. Thus, when describing general trends, the bias is said to increase as value become more negative (and vice 
versa). 

     
▌    The compositional dependence of SIMS δ13C and δ18O bias*(RM-UWMgs1) (i.e. the sample matrix effect) was em-
pirically regressed using a mathematical expression stemming from the family of Hill-type functions (here a modified 
form of eq. 27 of Goutelle et al., 2008; Fig. 1). 

▌   The resulting calibration residuals are ≤ 0.5‰ for δ18O analyses performed using either a 3- or 10-µm diameter 
spot-size and for δ13C analyses performed using a 6-µm spot. This is considered a measure of analytical accuracy relative 
to the certified reference material NIST-19 (calcite). 

▌   Based on the spot-to-spot reproducibility of running standard values (n = 8) that "bracket" each set of 10 sample mea-
surements, the analytical precision associated with 10- and 3-µm δ18O spots is ±0.3‰ and ±0.7‰ (2SD, standard devia-
tions), respectively, and that associated with 6-µm δ13C spots is ±0.6-1.2‰ (2SD).

THE BIGGER PICTURE:
CONTOURING THE MATRIX EFFECT 
LANDSCAPE FOR THE Ca-Mg-Fe 

CARBONATES
▌   Isotope ratios in carbonates can now 
be routinely measured in-situ from mi-
crometer-scale sample domains with 
sub-per mil (‰) precision [9]. The accu-
racy of measurement, however, depends 
in large-part on the availability and over-
all quality of matrix-matched standards, 
as the bias imparted to isotope ratios 
during sputtering from the sample sur-
face and the subsequent passage of ions 
through the mass spectrometer cannot be 
accurately predicted from first principles 
for naturally-occurring minerals and 
glasses. 
     For many mineral families wherein 
the compositional end-members form 
extensive or complete solid-solutions 
with one-another – such as the carbon-
ates – proper standardization remains a 
work in-progress for the community of 
SIMS laboratories around the world.
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Ca

Mg Fe

OBJECTIVE

PEDOGENIC SIDERITE NODULES
(SPHEROSIDERITES)

FROM THE LITERATURE -

FROM [13]:  (Top) Sphaerosiderite nodules (mm-scale) weather-
ing out of a paleosol (Cretaceous Dakota Formation). (Bottom) 
Sphaerosiderite nodules in thin section (plane-polarized light). 
(Cretaceous Caballos Formation of Colombia).

1 mm

FERROAN-MAGNESITES (AMONG OTHER CARBONATES)
IN MARTIAN METEORITE ALH84001

FERROAN-MAGNESITES (AMONG OTHER CARBONATES)
IN POSSIBLE TERRESTRIAL ANALOGUES

Meteorites:

(Outcrop studied by Spirit rover)

FILED OF VIEW: 0.42 MM

FILED OF VIEW: 0.42 MM

FROM [14]:  Thin-section view of carbonate globules in Martian me-
teorite ALH84001 (plane-polarized light). The amberish-colored 
cores consist of ankerite and siderite, whereas the clear rims are com-
posed of magnesite (host-rock = pyroxenite).

FROM [14]:  (Left) Thin-section view of carbonate globules in hydrothermally-altered basalts from Spitsbergen (plane-polarized 
light). The amberish-colored cores consist of ankerite and siderite, whereas the clear rims are composed of magnesite. (Right) 
Ca-Mg-Fe carbonate ternary diagram showing the compositions encountered in this proposed terrestrial analogue environment in 
relation to the carbonate compositions in Martian meteorite ALH84001 (shaded gray field). 

FROM [3]:  Ca-Mg-Fe carbonate ternary diagram showing 
the range of compositions encountered in Martian meteor-
ites and surface rocks (Spirit Lander mission). Shaded 
regions: calculated carboante stability fields at 700°C.  
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Samples of naturally-occuring magnesites and siderites were 
acquired for testing.

Subsampling.

Sub-sample preparation (e.g., removal of weathered/altered rinds) 

Preparation of clean grain split (425-710 µm size-fraction)

Grain-mount - Each potential standard material was evaluated for 
chemical and isotopic homogeneity (by EPMA & SIMS, respectively)

[10,11]

M
ag

ne
sit

e-S
ide

rit
e s

er
ies

Dolomite-Ankerite series(Fe,Mn) Calcites

δ18O

M
agnesite-Siderite series

Dolomite-Ankerite series (Fe,Mn) Calcites

δ13C


