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The field of modern
Paleoceanography began in 1955

PLEISTOCENE TEMPERATURES!
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ABSTRACT

Oxygen isotopic analyses of pelagic Foraminifera from Atlantic, Caribbean, and Pacific deep-sea cores ip

dicate that the temperature of superficial waters in the equatorial Atlantic and Caribbean underw

ent perj.

odic oscillations during the Pleistocene with an amplitude of about 6° C. The temperature record of the Pagi,
cores was much affected by local oceanographic conditions. . Cific
Seven complete temperature cycles are shown by a Caribbean core. By extrapolating rates of sediment
tion based on radiocarbon data, an age of about 280,000 years is obtained for the earliest temperama.
minimum. Correlation with continental events suggests that the earliest temperature minimum correspOnéz

to the first major glaciation.

The chronology of Pacific cores proposed by Arrhenius (1952) must be modified if corres i
the chronology of Atlantic and Cari};)bgan core}s is desired. ( ) pondence with

In one Pacific core which extends to the Pliocene, the 610-cm. level below top is believed to represent t},
Plio-Pleistocene boundary. About fifteen complete temperature cycles occur ahove this level, and the Jen 1;
of Pleistocene time is estimated at about 600,000 years. The so-called pre-Giinzian stages appear to sp;:fI a
time interval about as long as the Giinz and post-Giinzian stages. A glacial lowering of sea-level of aboy,

100 m. is indicated.

Closely spaced samples from short pilot cores furnish a detailed temperature record for postglacial times
A continuous temperature increase from about 16,500 to about 6,000 years ago is indicated, followed by 5
small temperature decrease. The temperature maximum at about 6,000 years ago is correlated with (he

“Climatic Optimum.”

Isotopic analyses of calcareous benthonic Foraminifera show that the temperature of bottom water in
the equatorial Pacific during glacial ages was similar to the present, but in the eastern equatorial Atlantic
it was about 2.1° C. lower. This difference resulted from the large amount of marine ice present in the North
Atlantic. Interglacial bottom temperature in the equatorial Pacific was not more than about 0.8° C. higher

than glacial temperatures; interglacial data for the equatori

a] Atlantic are inconclusive with respect to temper-

ature but indicate an influx of ice meltwater along the bottom larger than at present.

Correspondence in time between temperature varia
glacial events in the high northern latitudes indicate:

phases and wet or dry phases, respectively.

tions in the low latitudes, as shown by the cores, and
s close correspondence between glacial or interglacial

Good correlat'ion exists bem:een ti.m.es of temperature minima as indicated by extrapolated rates of sedi-
mentation and times of insolation minima in high northern latitudes. Control of world climate during the
Pleistocene by insolation in the high northern latitudes is indicated. A retardation of about 5,000 years oc-

curred between temperature and insolation cycles.

Complete revision of current correlations between the insolation curve and continental events is neces.

ary. i . .
The glacial epoch and its ages may be explained by a theory combining topographical and insolation

effects.

Conditions may be suitable for the beginning of a new ice age in about 10,600 years.

INTRODUCTION

The idea of using as a thermometer
the variations with temperature of the
fractionation factors in isotopic exchange
equilibria was first formulated by Urey
(1947), in particular relation to the oxy-
gen isotopes in the system CQO,-H,O-
CaCOs.

Three important problems required
solution before even preliminary testing
of the method could be attempted:

! Manuscript received August 11, 1955,

1. The precision attainable at that
time in the mass spectrometric measure-
ments of oxygen isotope ratios had to be
increased about ten times: an improved
six-inch 60° deflection mass spectrome-
ter, based on Nier’s design (Nier, 1940.
1947), was constructed by McKinney,
McCrea, Epstein, Allen, and Urey
(1950); this instrument has now made
some 12,000 analyses in Urey’s labora-
tory without subsequent modification.

2. A method of extracting CO, from
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A Pliocene-Pleistocene stack of 57 globally distributed
benthic §'*0 records
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LRO5 stack - most citations in journal

Paleoceanography........ever
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Most cores do not have the decadal
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Figure 2 | Planktonic foraminifera Mg /Ca records of mixed-ayer foram/Globigerina_ooze.jpg
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Late Pleistocene oxygen isotope stratigraphy:
equatorial Indian Ocean (Maldives)
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Outline

Experimental organism - Orbulina universa

LA-ICPMS and NanoSIMS reveal the timing of Mg
banding in O. universa

Combining SIMS and LA-ICPMS to resolve intrashell
8180 and 613C variations at the micron scale

Tracing carbon flow in a symbiont system by
combining NanoSIMS and TEM

Exploring the chemistry of a calcite bio-mineral
interface with APT (atom probe tomography)



One of the most important climate archives - the CaCO;
shells of planktonic foraminifera

Sphere
diameter O. universa

~500 um

Pre-sphere, trochospiral O. universa (with sphere) -
shell form of O. universa; feeding on brine shrimp nauplius
hote symbionts on spines



Most planktic foraminifera complete their lifecycles
in 2-4 weeks. O. universa secretes and thickens its
spherical chamber over the final 3-7 days of its
lifecycle




After sphere thickening, O. universa sheds its
spines over a 12h period




Gametes are released within 24 hours of spine
shortening, ending the life of the individual




Post-gametogenic O. universa from the laboratory
is identical to a million year old fossil.




Sphere Development thru ontogeny
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Orbulina universa experiments yield robust calibrations for
Me/Ca ratios; Shell Mg/Ca covaries with temperature and
Shell Ba/Ca is proportional to [Ba,,]
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LA-ICPMS depth profiling

Deep UV laser (193 nm) and low pulse energy
(~0.1-0.2 GW/cm?)

Neogloboguadrina dutertrei

Each laser pulse shaves ~100 nm layer from
test surface

( .

a8

100 laser pulses

Gem quality Iceland spar
Eggins et al (2004) Pulleniatina obliguiloculata



NanoSIMS image of

OrtiL_‘lJi‘hC_l §pher‘e wall Orbulina wall [Mg]

Aleksy Sadekov (unpub image)




LA-ICPMS profile of O. universa grown on 12h:12h
L:D cycle @ 20C in seawater
One days growth adds ~4-5 um to the shell wall
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Ba/Ca is constant thru shell



Orbulina universa can be transferred between
different culture jars that have normal or

geochemically modified seawater to label calcite
12h Day Ba - Spike
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Comparison of Mg/Ca ratios between 20C and
25C groups - T affects both day and night calcite

O. universa @ 20C

O. universa @ 25C
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Mean Mg/Ca The really good news -
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Combining SIMS and LA-ICPMS; pulse chase
experiments with Orbulina universa

Resolving 12/24 hr intrashell calcite bands in an O. universa shell

Spider Vetter, Claudia
Mora and Reinhard
Kozdon analyzing cultured
foraminifera

U. Wisconsin SIMS - Cameca 1280



Combining SIMS and LA-ICPMS; pulse
chase experiments with Orbulina
universa

Culture O. universa in ambient & then labeled
(Ba/Ca, 87Sr, 13C or 180-enriched) seawater

Crack post-gam shells into fragments

Analyze one fragment with LA-ICPMS, another
using SIMS

Cross-section through Orbulina universa shell

(Spero 1988)



Available online at www.sciencedirect.com
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Micron-scale intrashell oxygen isotope variation in cultured
planktic foraminifers

Lael Vetter ®*, Reinhard Kozdon®, Claudia 1. Mora®, Stephen M. Eggins ¢,
John W. Valley®, Biirbel Honisch ¢, Howard J. Spero®

SIMS spots across O. universa chamber:;
2x3 um for 6180




Full 880, shift is
recorded across 2-3 um
of calcitel

20 individual spot s.d. (all runs) ranges
between +£0.3-1.1%o
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SIMS measurements of intrashell 8'°C in the cultured
planktic foraminifer Orbulina universa

Lael Vetter “*, Reinhard Kozdon®, John W. Valley °, Claudia I. Mora®,

Howard J. Spero™
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6 um SIMS spot recovers the predicted range (+3.2 to +51.8 %) of
313C values. 24 hr band width estimated to be 4-5 um.
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LA-ICPMS used to identify Ba
and 87Sr tracers added to

seawater to constrain calcite
with 13C spike
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The symbiotic system plays a major role in controlling shell
geochemistry - effect of light on shell 8!3C

After Spero and Williams (1988)

Orbulina universa Experimental Data
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Exploring carbon flow through a
symbiont system using 13C and TEM/
NanoSIMS

Charlotte LeKieffre and Anders Meibom
Univ. Lausanne, Switzerland

Charlotte LeKieffre on NanoSIMS 50L
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Diurnal rhythm in a symbiotic planktonic foraminifera

Night

Symbionts migrate into vacuoles
in foraminifera at night and move
on to spines during the day




Combining TEM and NanoSIMS to explore
symbiont to host carbon update and translocation

Chloroplasts N
Nucleus

Pyrenoid

Starch sheath
around pyrenoid -
fixed Carbon



Exploring The Chemistry of a Bio-Mineral
Interface with Atom Probe Tomography

Oscar Branson, Daniel Perea, Howard J Spero, Maria Winters,
Alexander C Gagnon




Extracting a shell wall sample with a focused ion beam (FIB)

o

Liftout

Rotate 120° Transfer to Probe j

|

Rough Sharpening Fine Sharpening Final Tip

Branson, et al. (manuscript in prep)



Point cloud data using a Cameca Local Electron
Atom Probe (LEAP) 4000

Organic 1 Micro- Organic 1 FIB Damage

Organic/mineral
interface




Choosing the right chamber/shell region for analysis is
important for paleoceangraphic reconstructions

Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real
vs. apparent vital effects by ion microprobe

. . ) ) Chemical Geology 258 (2009) 327-337
R. Kozdon *, T. Ushikubo, N.T. Kita, M. Spicuzza, ].W. Valley

Department of Geology & Geophysics, University of Wisconsin-Madison, 1215 W Dayton St., Madison, W1 53706, USA

N. pachyderma - non-spinose & adds calcite
crust at end of its lifecycle

removed
by grinding




The Paleoclimate Frontier.....

« New instrumentation/applications are ushering in the
next growth phase in paleoceanography and
paleoclimatology

« Techniques such as LA-ICP-MS, SIMS and NanoSIMS,
TEM, APT are mutually compatible and offer a view of
spatial variation in materials that has not been
previously possible.

« BUT.... SIMS, NanoSIMS, LA-ICP-MS are the wrong
tools for >90% of our questions!

« HOWEVER.....they are the tools that will likely yield
many of the breakthrough discoveries over the next
decade. So pick your problems and tools carefully.



