Seasonal variability in sea surface temperature, salinity, and carbonate chemistry during Greenhouse Extremes (e.g., PETM)

J.C. Zachos

Acknowledgments: C. Kelly, S. Bohaty, C. John, D. Thomas, D. Penman, B. Hönisch, K. Littler, H. Spero, J. Kiehl

Hydrologic Cycle: Rich get richer,

With rising CO_2 and global warming;

- water holding capacity of air increases by about 7% per 1°C warming
- **convection** dry regions become drier, wet regions become wetter
- more intense precipitation events
- frequent/longer droughts

Impacts of future GHG Warming

• Global increase in humidity/mean annual precipitation(MAP)

"the earth has been here before..."

A Case Study in Extreme Greenhouse Warming: Paleocene-Eocene Thermal Maximum (PETM, 55.6 Mya)

- 1. Transient Global Warming (5-6°C)
 - Relatively uniform over latitude
- 2. Massive carbon release (4500 to 7000 PgC)
 - Carbon isotope excursion (CIE) of ~-4.0%
 - Ocean acidification
- 3. Intensification of the hydrologic cycle
 - Overall higher humidity
 - Reduced MAP low latitudes
 - Increased MAP mid to high latitudes
 - Significant Δ in Evaporation-Precipitation (E-P)

Abrupt increase in seasonal extreme precipitation at the Paleocene-Eocene boundary

 Birger Schmitz
 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden

 Victoriano Pujalte
 Department of Stratigraphy and Paleontology, University of the Basque Country, Ap. 644, 48080 Bilbao, Spain

Claret Conglomerate – Alluvial Fan Progradation

 Claret Conglomerate – Rapid Alluvial Fan Progradation (i.e., high energy floods) – Seasonally dry climate, intense wet season

Seasonal Extremes – More frequent flood events

Early Eccene (~56 Mya)

Site 1262 Cores, South Atlantic

•Paleocene-Eocene sediments: ODP Leg 208

Proxies: δ^{18} O, TEX₈₆, Mg/Ca

ACEX - Lomonosov Ridge; New Jersey Margin, Bass River; California, Lodo; Maud Rise, Sites 689 and 690; Allison Guyot, Site 865

Paleo SST/ SSS ($\delta^{18}O_{SW}$)

- Spatial SSS and $\delta^{18}O_{SW}$ variations linked to E-P
 - $\uparrow E-P, \uparrow \delta^{18}O_{SW}$
- Planktonic foraminifera δ^{18} O
 - SST (Mg/Ca)
 - $\delta^{18}O_{SW}$
- Variables (local)
 - seasonality
 - minor in the open ocean
 - vertical mixing
 - runoff (coastal oceans)

GHG Extremes and δ¹⁸O_{sw}

Tindall et al., 2011

- HadCM3
- 280 to 1680 ppm
- Δ sea surface salinity and δ^{18} O
- More energetic hydrologic cycle
- E-P increases in the tropics, decreases in mid-high latitudes (salinity)

Site 1209 - PETM

Mixed-layer Planktics record:

- 0.7% decrease in δ^{18} O
- 50% rise in Mg/Ca

Zachos et al., 2003

Increase in sub-tropical SSS (E-P) during the PETM

Can the primary $\Delta Mg/Ca$ and $\Delta \delta^{18}O$ be restored via microprobes?

- individual in situ δ¹⁸O measurements
- averaged in situ δ¹⁹O measurements multiple tests / single test

M. allisonensis, in situ δ¹⁰O measurements

Can the changes in $\Delta Mg/Ca$ and $\Delta \delta^{18}O$ as influenced by <u>seasonal cycles</u> in SST/SSS be reconstructed using microsampling?

Some basic requirements <u>Co-eval Mg/Ca & δ¹⁸O</u> <u>Temporal resolution</u>

- weekly/monthly?
- micro-, whole shell, and/or multi-shell sampling
- precision vs. accuracystatistical requirements

Single shell isotopes • Mixed Layer Plank. • Thermocline Plank. • Benthic Foraminifera *Thomas et al. 2002* $\Delta \delta^{18}O_{pf} = -2.2\% o$

 $\Delta T = +5-6^{\circ}C$ $\Delta \delta^{18}O_{sw} = -0.8\% o$

PETM/CIE –NJ coastal sections

Rapid accumulation rates

John et al., 2008

- Multiple/Single Shell Isotope Series
- Δ in seasonal SST/SSS range?

Zachos et al. (2007)

P-E Single Shell Isotope Data: Magnitude of the CIE?

- couple Mg/Ca with $\delta^{18}\text{O}$ to constrain relative SST/SSS

Zachos et al. (2007)