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Why do we study changing:

» Precipitation
» Water vapor???
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Figure 2: Does the water vapor summed over the d Ine L
whole atmospheric column follow Clausius- de = _T2 = a(T)
Clapeyron for surface temperature? R




The Question:

 What would we see if we tried to produce the
same graph using model data from a transient
simulation of the past 22,000 years?



The Model Run

e CCSM3 at NCAR in Boulder, CO

* Transient simulation
— Atmosphere, ocean, ice, and land components

— Grid points separated by 3.75 degrees latitude &
longitude for atmosphere & land, variable for
ocean/ice, 26 vertical levels in atmosphere, 25
depth levels in ocean.

— Feng He ran the simulation, which took 1 %2 years.

— To reproduce the melting of the ice sheet, he
experimented with different geographical flow
patterns and amounts to best match the proxy
data.




Time Series of Surface Temperature and Atmospheric CO2
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Figure 3: Time series for the long model run.
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Figure 4: Globally-averaged column-integrated water vapor vs. globally-averaged
surface temperature.



Physical reasoning in Held & Soden, 2006:

* Assumptions:
1. Relative humidity is ~ constant.
2. Most humidity is in lower troposphere.

Their Conclusion:

Column-integrated water vapor will increase
following the Clausius-Clapeyron relationship
computed at surface temperature.



Our hypotheses to explain lower rates of water
vapor change with temperature in the colder past :

1. Relative humidity is not constant over climate-
change time scales.

2. Tropical upper troposphere warms more than
surface.

3. Tropics are the main influence on global rate of
change.

4. Rapid CO,-induced warming affects global
water vapor differently than slow warming.



Testing Hypothesis #1 on Relative Humidity:

* H,: Relative humidity is fairly constant over time
between the LGM and the present.

* H,: Relative humidity changes substantially between
the LGM and the present.
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Conclusions about #1:

* Globally-averaged relative humidity is fairly
constant over climate-change time scales.

 The small amount of change over the last
22,000 years is in the wrong direction to
explain our results.



Testing Hypothesis #2 on Vertical Spatial Distribution
of Atmospheric Water Vapor:

* H,: Most of the water vapor is near the surface.

* H,: Asubstantial amount of the water vapor is in

the
upper atmosphere.



Temperature

)

Figure 6: Saturated atmospheres follow a moist adiabatic profile... and
the entire tropics follow a moist adiabatic profile...



Meridional Distribution of Cloud Types and Stable Layers in the Tropics

Johnson et al. (1999)

Figure 7: From Johnson et al. (1999): Hot tower clouds extend up to
the tropopause.



So specific humidity is increasing aloft as surface
temperature rises:

* The percentage increase in saturation specific humidity
should be greater at height.

* So we asked whether the increasing proportion of water
vapor aloft is an important factor.
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Figure 8: Time series of water-equivalent ratio between upper & lower
atmosphere, divided at 925 hPa.

VWater ratio between upper (300-100 hPa) & near-surface (1000-950 hPa) layers



Conclusions about #2:

 Upper-atmospheric water vapor is
increasingly important with global warming.

 The change in column-integrated atmospheric
water vapor is NOT well described by the
surface-Clausius-Clapeyron relationship.



Testing Hypothesis # 3 on tropical influence:

* H,: Water vapor increases are uniform as a function
of latitude.

* H,: Water vapor increases vary as a function of
latitude.



Specific Humidity Anomalies (g/kg) under doubled CO2 averaged over nine-decade run
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Figure 9: Most of the water vapor increase under rapid warming is concentrated in the tropics.



Conclusions about #3:

* The tropics dominate the latitudinal
distribution of water vapor.

 The change in column-integrated atmospheric
water vapor is NOT well described by a
globally-averaged surface-Clausius-Clapeyron
relationship.



Testing Hypothesis # 4 on the rate of warming:

* H,: The rate of warming has no influence on column-
integrated water vapor.

* H,: The rate of warming does influence column-
integrated water vapor.



Warming Pattern for 1-degree global ATsfc
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Figure 10: The normalized surface warming pattern



Averaged Normalized Rapidly Changing Temperature Anomalies
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Figure 11: “Local” normalized temperature change patterns



Conclusions about #4:

* Rapid warming results in a higher rate of water
vapor change than slow warming.

¢ For the rapid case:
> The Southern Hemisphere is not in equilibrium.

» The Southern Ocean is drawing heat from the
overlying atmosphere.

» For a one-degree global-average temperature

increase, a larger share of the heating occurs in the
tropics.

» Thus, more of the increased global water vapor
comes from the tropics.

» The wet tropics drive a higher globally-averaged

rate of water vapor change per degree surface
warming.
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Figure 12: Global-mean precipitation change vs. global-mean surface
temperature change
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Figure 13: Globally-averaged precipitation vs. globally-averaged surface temperature



Summary:

* Regarding the faster rate of global water vapor
increase with temperature over the 215 century
(as compared to the past 22,000 years):

» Relative humidity changes are not relevant.

» The increase in the proportion of water vapor in the
tropical upper atmosphere is a secondary factor.

» Uptake of heat by the Southern Ocean in the rapid-
warming (non-equilibrium) scenario results in a
greater portion of the global water vapor increase
coming from the tropics.

* Global precipitation changes at the same rate
whether warming is fast or slow.
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