

- Oxygen Three Isotopes in Chondrules
- Early Solar System Chronology of Refractory Inclusions

Noriko Kita

Wisc-SIMS Laboratory, University of Wisconsin-Madison

Taka Ushikubo, John Valley, John Fournell Hiroko Nagahara, Shogo Tachibana, Makoto Kimura, Tomoki Nakamura Andrew M. Davis, Frank Richter, Kim Knight, Ruslan Mendybaev

CAMECA IMS-1280: New Generation Large Radius Sector SIMS

Oxygen Isotopes in Chondrules from Ordinary Chondrites

No detailed SIMS study in the past: Variations among normal chondrules were too small for previous SIMS analytical uncertainty

Systematic Survey of Chondrules from LL3.0-3.1

The least equilibrated ordinary chondrites: **Semarkona** (LL3.0), **Bishunpur** and **Krymka** (LL3.1)

Al-Mg chronology and bulk chemical compositions: Kita et al. (2000); Mostefaoui et al. (2002); Tachibana et al. (2003); Kita et al. (2005)

Tomomura et al. (2004): Bulk compositions of ~70 randomly selected chondrules

This Work: In-situ oxygen isotope analyses of 36 chondrules from Semarkona (N=12), Bishunpur (N=17), and Krymka (N=7) that cover entire range of chondrule types.

Oxygen Three Isotope Analyses (Multi-FC Mode)

0kV x1.50k BSECOMP

Reproducibility of Standards ($\delta^{18}O$)

Reproducibility of Standards ($\Delta^{17}O = \delta^{17}O - 0.52 \times \delta^{18}O$)

Chondrules from Ordinary Chondrites (LL3.0-3.1)

Relict ¹⁶O-poor Fo in ¹⁶O-rich melt-grown olivine

¹⁶O-poor forsterite
¹⁶O-rich refractory forsterite (Ca, Al-rich)
¹⁶O-rich Al, Ca-rich Glass normal

No evidence of isotope exchange between ¹⁶O-poor gas and melt

²⁶AI-²⁶Mg (0.73Ma) Chronology of Ca, AI-rich Inclusions (CAIs)

Initial Ratios of (²⁶Al/²⁷Al) in CAIs ~5×10⁻⁵ (MacPherson et al., 1995)

Supra-Canonical Value? (6-7)×10⁻⁵ using ICP-MS and SIMS (Young et al., 2005; Thrane et al., 2006; Cosarinsky et al., 2007)

Protostar: 0.01-0.1 Myr

PROPERTIES	Infalling Protostar	Evolved Protostar	Classical T Tauri Star	Weak-lined T Tauri Star	Main Sequence Star
Sketch			North Contraction	No.	• () o
Age (years)	10 ⁴	10 ⁵	10 ⁶ - 10 ⁷	10 ⁶ - 10 ⁷	> 10 ⁷
mm/INFRARED CLASS	Class 0	Class I	Class II	Class III	(Class III)

CAI formation could be - as short as 0.02 Myr ?

Time Scale of proto-planetary disk evolution (Feigelson and Montmerle, 1999)

⁻ as long as 0.4 Myr ?

Variation of ²⁶Al/²⁷Al ratios in CAIs (Canonical or Supra-Canonical?)

ICP-MS bulk isochrons: Two data differ by 10%, 0.1 Myr

Melilite (Ca₂AlSiO₇-Ca₂MgSi₂O₇), Anorthite (CaAl₂Si₂O₈)

Reproducibility of Mg isotope analyses

Synthetic Melilite standard (Åk100, Åk20-70, Åk67Glass)

20µm spots Multi-collector Farady Cups (8min/spot) $^{24}Mg = (0.5-2) \times 10^8$ cps, 300s integration Mass fractionation correction factor: 0.514

Reproducibility of Ak67 Glass ${}^{27}\text{Al}/{}^{24}\text{Mg} <<1\%; \delta^{26}\text{Mg} <0.1\%$

Plagioclase standard (Natural crystal and synthetic glass)

8µm spots Single collector EM (^{24, 25, 26}Mg) + multi-FC(²⁷Al) ²⁴Mg ~2×10⁵ cps for 0.1% MgO (30s x 50 cycles))

Reproducibility of An60 standard $^{27}Al/^{24}Mg < 1\%$; $\delta^{26}Mg < 1\%$

Corresponding isochron error as small as 2-3% (=30Ky)

Melilite Isochron (20µm spot)

The same CAI was studied for Mg isotope fractionation in zoned melilite (Richter et a., 2007; Knight et al., 2008)

Α

Melilite+Anorthite Combined Data

- Consistent with Canonical initial (Jacobsen et al., 2008).
- Well-defined isochron with age error ~8ky.
- Slightly elevated initial $\delta^{26}Mg$; remelting of refractory precursor?

A few An spots did not plot on the isochron: After SIMS SEM Evaluation

High Precision SIMS analyses provide us new set of information that was not available before

Oxygen Isotopes in chondrules

- Evidence for evaporation and condensation
- mixing of different precursors

Oxygen Isotopes in Stardust returned samples

- Heterogeneous oxygen isotope within a few µm scale

AI-Mg chronology of CAIs

- High time resolution <10kyr
- Evaluation of isotope closure since the formation