Robert M. Walker Laboratory for Space Science NASA Johnson Space Center, ARES

Motoo Ito and Scott Messenger

refractory inclusions in meteorites with the **Isotopic imaging of NanoSIMS 50L**

Current research

Isotopic imaging

eteorites, IDPs and

es

Sa

H, C, N, O, & Mg.

²⁶Al-²⁶Mg system, refractory inclusions xygen isotopes: refractory inclusions

VSIS

53Mn-53Cr system: fayalites in carbonaceous

chondrites

လို

²⁷Al/²⁴Mg

Refractory Inclusions or

Progress in Isotopic Analysis of CAIs Bulk analysis (1970~: e.g., Clayton et al., 1973)	O isotopic anomalies in CAI minerals from Allende carbonaceous chondrite	Spot analysis (1989~: e.g., McKeegan, 1989; Yurimoto et al 1994)	 Good agreement with bulk analysis Heterogeneous O isotopic distributions within minerals 	Stepped linear traverse analysis (1998~: e.g., Yurimoto et a 1998; Ito et al., 2004)	The μ m-scale measurement by SIMS provide a new clue for these solar system objects.	Our Next Goal!	Two-dimensional isotope heterogeneity
E E E E E E E E E E E E E E E E E E E	ew mg	10 µm ew ng		ew µm -0.4 ng			

O Isotopic Imaging of CAls by the IMS-1270/SCAPS

O isotopes in CAI minerals

- less than 5 % isotopic anomaly
- Crystal boundary
- **Distributions among/within minerals** с С

Required for measurement

- High precision (~0.5 %)
- High spatial resolution (~0.5 µm) с і
 - <u>-arge area (10-50 µm)</u> . ღ

- Nagashima et al (2004) found O isotopes are heterogeneously distributed
 - among minerals I
 - within a mineral

09	Develop high precision µm-scale isotopic map in minerals with the NanoSIMS
	Key factors in achieving high precision isotopic images Minimize variations in EM yield: HV adjusted to match PHD daily (check
	 Minimize sample charging (E-gun if necessary and Au (or C) film) Require flat sample surface without cracks
	 Accurate QSA and deadtime corrections Reach steady state of the secondary ion beam following pre-sputtering procedure.
•	Spot analysis with high precision and high spatial resolution
•	Capabilities of the JSC NanoSIMS for isotopic images
0 is	otopic imaging Mg isotopic imaging
	10 μm: δ ^{17,18} O = ~ 2-3 ‰ (1σ)
-	Reproducibility = ~ 2 ‰ (1ơ) 8 ²⁵ Mg (1ơ) = 4.5 ‰, 8 ²⁶ Mg (1ơ) = uich anatiol anochinica – 1000 than 6.0 ‰. 8 ²⁶ Mg excess (1ơ) = 7.5 ‰
-	nign spatial resolution = less than 0.4 µm
	excesses: ΗΙΒΟΝΙτε (1σ) = 1.5 ‰, Labradorite (1σ) = 2.0 ‰

δ
ţ
5
Ĩ
۲ ۲
ŭ
Ø
a
at
ň

- 256 x 256 512 x 512 pixels
- Dwell time = $1000-3000 \, \mu s/pixel$
- Each imaging run consisted of 30-80 repeated scans acquired over a ~2-4 hour period
- Terrestrial standards
- Instrumental mass fractionation

Sensitivity factors if necessary

- Differing sensitivities of EMs
- San Carlos olivine
 - Fayalite
- Madagascar hibonite
- Labradorite
- Augite
- Diopside

- Enstatite
- Chromite
- Titanite
- Spessartine
- Spinel

- Synthetic akermanite
- Synthetic gehlenite
- Synthetic forsterite
 - Synthetic diopside
- Synthetic anorthite
 - Ak70Geh30 glass

Analytical Conditions:	JSC NanoSIMS 50L
O Isotopic imaging	<u>Mg isotopic imaging</u>
Primary ions	Primary ions
Cs ⁺ ion beam	□ O ⁻ ion beam
100 nm beam rastered	400 nm beam rastered
over 10 x 10 - 20 x 20 µm	over 15 x 15 µm area
area	Secondary ions
Secondary ions	□ ²⁷ Al++, ²³ Na+, ²⁴ Mg+, ²⁵ Mg ⁺ ,
□ ¹⁶ O-, ¹⁷ O-, ¹⁸ O-, ²⁸ Si-,	²⁶ Mg ⁺ , and ⁵⁴ Fe ⁺
²⁴ Mg ¹⁶ O ⁻ and ²⁷ Al ¹⁶ O ⁻	Isobaric Interferences
Isobaric Interferences	MRP> 8000 to resolve Mg
MRP> 9500 to separate	hydride interferences at
¹⁶ OH from ¹⁷ O peak	mass 25 and 26
(< 0.01 %)	

Allende	 Mellite Ca₂Al₂SiO₇ Ca₂Al₂SiO₇ Ca₂MgSi₂O₇ Ca₂MgSi₂O₈ For the set of different mineral aggregates is ferrich Sp, Pv, Fo (Fo60-80) Mel (~Åk8), An and Py. 	
l, EK1-6-3 from	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	15 11
CA		8
	200, µm ESE 2 15, kV	8

Images of a part of the rim structure of a CAI, EK1-6-3

Spot analysis (Ito and Messenger, 2007)

Ito and Messenger (2008)

◆ Anorthite matrix: 8^{17,18}O = +10 permil

✤ Pyroxene grain: 8^{17,18}O = -40 permil

Spinel grains: 8^{17,18}O = -45 permil

♣ Melilite grains: 8^{17,18}O = +10 permil

Isotope map (Ito and Messenger, 2008)

- Anorthite:
 ⁰^{17,18}O = 0 to +10 permil
 ⁰
 ⁰
 - Spinel : N/A
- ♦ Pyroxene: $\delta^{17,18}$ O = -20 to -30 permil
 - Melilite: $\delta^{17,18}$ O = 0 to +5 permil

Strong isotopic disequilibrium among the minerals in the isotopic image

A closer look at the isotopic boundary between pyroxene and anorthite

	 15 x 15 µm 15 x 15 µm Smoothed by convolving each pixel with a 0.4 x 0.4 µm bin Excess ²⁶Mg = 	6^{101} \sim $x = - 6^{101}$	 Several small Mg- rich grains in the AI/Mg ratio image of anorthite 	 All bins show ²⁶Mg excesses: up to 370 %⁰
12		370		Mg
44	25	0-0		s 26
Ξ		(a) 06		xceS
Ì				d) E
-2;		6		, in the second s
រុះ		•		AND & F
0.45 1425		340	PER	Mg
0.34 1097		260		δ 26
0.23 742		180		
0.12 387		00		
0.01 32		20		

Summary

We established O and Mg isotope map techniques in mineral with the NanoSIMS 50L

Isotope map

- Consistent results with previous spot analyses
- Isotopic images show strong isotopic disequilibrium among the mineral grains

Sharp O isotopic boundary (< 0.4 μm) between two O isotope map + Line Profile between two minerals

>> Very rapid cooling following transient heating. phases.

We found heterogeneous Mg isotopic distributions and AI/Mg ratio in anorthite (15 x 15 μm) reflect a history of thermal alteration

Future JSC NanoSIMS works	 Trace element measurement (i.e., rare earth elements) REE elemental map 	 Mg and O isotopic measurements with Faraday cups 1 Sigma <= 0.12 % (Std-Err <= 0.04%) for FC-FC measurements of ¹⁸O/¹⁶O isotopic ratio 	 Developments of depth profile method, traverse analysis and elemental imaging for diffusion samples High spatial resolution capability is good for a sample with short diffusion profile
	 Trace elem RE 	■ Mg a 1 0	 Deve analy samp High