

Introduction to the CAMECA IMS 7f-GEO P. Peres, P. Saliot, E. De Chambost, M. Schuhmacher

CAMECA, 29 quai des Grésillons, 92622 Gennevilliers, peres@cameca.com, www.cameca.com

Introduction

SIMS technique benefits for Geosciences

- In-situ analysis (any polished surface)
- High spatial resolution
- Large application range (from H to U)

Two types of CAMECA instrumentation

- Large mass spectrometer with multicollection system (IMS 1280, NS50) -> full application range in Geosciences
- Compact mass spectrometer and monocollection system (IMS 7f-GEO) -> limited application range in Geosciences

For high precision isotope ratio measurements

• FCs are preferred to EMs provided that secondary ion intensities are strong enough

IMS 7f-GEO Features

Quasi-continuous primary beam intensity monitoring

- Combination of a fast beam blanking and a Faraday cup equipped with repeller and running in charge mode
- For every elementary acquisition (80ms) a given percentage (software controlled) is dedicated to the primary intensity (Ip) measurement
- One Ip value returned per data point

Sextupole at the entrance of the magnet

- 2nd order aberration cancellation allowing the use of a larger field aperture @ constant MRP
- Provides higher instrument transmission at HMRP

Fast mass peak switching system

- Combination of magnetic & electrostatic beam deflection
- During a mass jump the Hall probe measures the B field. The Hall probe signal is used to apply an electrostatic voltage feedback on the magnet flight tube. This voltage rapidly deflects the

- When parallel detection is not available
 - Primary beam intensity monitoring during analysis provides benefits in terms of measurement precision (by minimizing short term instrument stability effects)
 - Fast mass peak switching provides benefits in terms of analysis throughput

The IMS 7f-GEO has been designed to meet with these instrumental performance requirements.

Applications

REE Analysis

- O⁻, positive secondary ions
- Analysis area size ~20x20µm²
- Low mass resolution

Silicon isotopes

Sample: Si quartz disk 10 spots within 15mm in Ø • O⁻, positive secondary ions

secondary beam and therefore allows to speed up the peak positioning in the exit slit plane.

• As fast as 0.3 sec at HMRP

system

channels are

implemented

two isotopes

• Applicable over the full mass range (compatible with REE analysis)

Secondary beam blanking system

• Allows to control exactly the time the secondary beam is addressed into a given FC channel

Example : ${}^{18}O/{}^{16}O$ analysis

- Primary beam control precision: 1‰
- Analysis required precision: 0.4‰
 - ¹⁸O signal intensity: ~2e6c/s

Mode	Requested measurement time
EM/EM	3016 sec.
FC/FC (charge mode)	56 sec.

Oxygen isotopes

Sample: Si quartz disk 3 series of 10 spots within 15mm in Ø

- Cs⁺, negative secondary ions
- : :

- Energy filtering technique
- Detection: ${}^{28}Si^+$ on FC2 (R=1e11 Ω) all other species on EM

Sample: NBS 610 Internal error vs. Poisson statistics for one spot:

Ratio	139La/Si	140Ce/Si	141Pr/Si	143Nd/Si	149Sm/Si
Mean	7.15E-04	6.18E-04	7.45E-04	9.12E-05	1.14E-04
Std. err %	0.14	0.12	0.13	0.12	0.15
Poisson %	0.11	0.12	0.11	0.22	0.20

151Eu/Si	156/Si	157Gd/Si	159Tb/Si	161Dy/Si
3.97E-04	2.82E-04	2.42E-04	6.96E-04	1.35E-04
0.12	0.22	0.24	0.07	0.21
0.15	0.18	0.14	0.12	0.18

165Ho/Si	167Er/Si	169Tm/Si	172Yb/Si	175Lu/Si
6.68E-04	1.65E-04	6.31E-04	1.49E-04	5.54E-04
0.14	0.11	0.15	0.22	0.13
0.12	0.17	0.12	0.18	0.13

- Analysis area size ~15x15µm²
- High mass resolution
- Detection: ${}^{28}Si^+$ on FC1 (R=1e10 Ω) 30 Si⁺ on FC2 (R=1e11 Ω)

- ²⁸Si/³⁰Si ratio:
- I(³⁰Si⁺) ~2e6c/s
- Expected counting statistics for a total integration time of 56s: 0.04%
- Experimental Std. dev. over 10 spots: 0.03%

- Analysis area size ~15x15µm²
- High mass resolution
- Detection: ${}^{16}O^{-}$ on FC1 (R=1e10 Ω) ¹⁸O⁻ on FC2 (R=1e11 Ω)

- ¹⁶O/¹⁸O ratio:
- I(18O) ~2e6c/s

• Expected counting statistics for a total integration time of 56s: 0.04% • Experimental Std. dev. over 3 series of 10 spots: 0.04%