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Introduction

The Si isotopic compositions of terrestrial materials
range from -7.5% in macrocrystalline quartz of
groundwater silcretes (Basile-Doelsch et al. 2005) to
+6.1%o in opaline silica of rice grains (Ding et al. 2005).
Si isotopes have been used to study the biogeochemical
cycle of Siin the ocean (De La Rocha et al. 2005) and on
the continents (Basile-Doelsch et al. 2005). Biogenic
precipitation of silica as well as weathering and
silicification are the major players in the terrestrial Si
cycle.

Si isotopes appear to be very robust and retain primary
isotopic compositions even during metamorphism (André
et al. 2006).

Si in conjunction with isotopes of O, Fe, S and C have
the potential to constrain formation conditions and origins
of rocks and soils, and link them to biosignatures.

The development of high-precision isotope analyses with
the IMS-1280 allows us to measure different isotope
systems in situ on the identical mineral grain and allows
us to analyze small domains in contrast to mixed or bulk
signals obtained by other techniques.

Sample preparation

The sample and standards are mounted within 5 mm of
the center of a flat 1-inch mount. The mount is ground
and polished in order to minimize surface relief. High
relief reduces the precision and accuracy of SIMS
measurements.

Fig.1. White light profilometer 3D visualization of top-mounted
UWQ-1 quartz (both panels: red, elevated) and UWC-3 calcite (left
panel: blue, depressed) standard grains on Precambrian BIF
samples. The different hardness of the minerals (Hg,=7 vs.
He,=3) make it difficult to obtain a flat surface by
grinding/polishing and result in uneven relief (left panel). The use
of diamond lapping films reduces the amount of relief to a
minimum as shown on the right panel.
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Fig.2. 8%°Si of selected natural samples (20
errors). The most extreme 8%°Si values besides
circumstellar minerals are observed to occur in
silcretes, hydrothermal siliceous sediments,
sponge spicules and rice grains. Superscript
numbers refer to published data of which
extreme and average data are shown.

Goals

We are developing Si isotope standards for various
minerals.

In a systematic study we will test the effect of
metamorphism on Si isotope compostion in quartz in the
Biwabik banded iron formation (BIF) in Minnesota which
has been studied already for Fe and O isotopes (Valaas
Hyslop et al. 2008).

We will analyze Si-isotopes on the 10 micron, sub-
mineral scale and will compare them with O, C, S and Fe
isotopes of the same locations in BIFs from different
times and continents (Isua 3.8 Ga, Hamersley and
Transvaal 2.5 Ga, Biwabik 1.9 Ga).

The origin of rocks and soils, with biosignatures detected
with Fe, C and S isotopes will be constrained by the Si
isotopic composition. Formation conditions can be further
assessed by correlation of Si with O isotopes.

Si Isotope Standard Developments

Standard analyses are used to bracket sample analyses.
Quartz and garnet standards (UWQ-1 & UWG-2) were
calibrated by ICP-MS (Georg 2006):

50Si = ~0.03 £ 0.04 %o (UWQ-1)
50Si = 0.29 + 0.04 %o (UWG-2)

Opal and zircon standards are in development.

Testing the isotopic homogeneity of standards on the
micron scale at sub-%o precision (WiscSIMS IMS-1280):
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Fig.3. 8%°Si measurements on a polished quartz standard
grain mount with UWQ-1 and NBS-28 grains. A primary
Cs* beam of ~3 nA and a spot diameter of ~ 15 ym
resulted in a precision of 0.2 %0 (20) on UWQ-1.
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Preliminary Results

Si-isotope ion microprobe analyses of individual
quartz minerals in Archean banded iron formation
rocks from Isua, Greenland with a ~15 ym Cs* beam
of ~3nA.

8%0Si of quartz in quartz-rich layers has a larger
variation (—3.7%o to —2.1%o) than in magnetite-rich
layers (—3.0%o to —2.3%o), the precision is 0.3%o to
0.4%o (20). Our preliminary data extend the range of
8%0Si in BIFs by >1%o and confirm recent 500 um-
scale MC-ICP-MS analyses by André et al. (2006)
and hence provides further evidence that the BIF
quartz is a hydrothermal fluid precipitate similar to
modern-day siliceous sea-floor sediments associated
with black smokers.‘
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8%9Si of Ordovician St. Peter sandstone range from —1.0%o to
+1.6%o. In our preliminary study of three samples no clear
trend in 8%°Si of detrital quartz cores vs. quartz overgrowth
has been observed.
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Fig.5. (A) Silica-rich material discovered by the rover Spirit in Gusev Crater
in a 20-cm-wide track of disturbed martian soil. (B) Silica in an electron
microprobe Si image of martian meteorite ALH84001 (Valley et al. 1997).
Silica associated with past hydrothermal activity would be well suited to
look for isotopic biosignatures on Mars (Squyres et al. 2008).
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