Isotopic analysis of presolar graphite from the Murchison meteorite

Sachiko Amari¹, Ernst Zinner¹, and Roy S. Lewis²

¹Washington University, St. Louis, MO 63130, USA (sa@wuphys.wustl.edu), ²The University of Chicago, Chicago, IL 60637, USA

I. Presolar grains

- ♥ Stardust in meteorites
- ♥ Formed in the stellar outflow or stellar ejecta
- ♥ Remain (almost) intact throughout the journey from stars to the interstellar medium, and finally to the earth
- ♥ Born before the solar system formation (4.6 billion years ago)
- Mineral types of presolar grains include diamond, SiC, graphite, oxides, refractory carbides, silicates, and Si₂N₄.
- ♥ Abundances: a few ppb to a few hundred ppm in meteorites
- II. Presolar graphite
 - ♥ Range of density $(1.6 2.2 \text{ g/cm}^3)$
 - ♥ Abundance: ~one ppm in the Murchison meteorite (CM2)
 - ♥ Two morphological types

Fig. 1 (a) Onion type

(b) Cauliflower type

♥ Individual grains, more than a thousand of them, were analyzed using the IMS-3f and the NanoSIMS at Washington University in St. Louis.

♥ We have analyzed grains from KE3 (1.65 – 1.72 g/cm³), KFA1 (2.05 - 2.10 g/cm³), KFB1 (2.10 - 2.15 g/cm3), and KFC1 (2.15 - 2.20 g/cm3) extracted from the Murchison meteorite.

♥ Grains with ²⁸Si excesses are mainly found in the lower-density separates, especially in KE3. In KFC1, many grains show ^{29,30}Si excesses (Fig. 5).

♥ Grain KFA1f-302 shows the ⁴⁴Ca/⁴⁰Ca ratio 138 times solar, whereas the other Ca isotopic ratios are normal within 2σ (errors in **Fig. 6** are 1σ). It indicates that the excess is due to the decay of ${}^{44}\text{Ti}$ (T₁₂ = 60 a), which is produced only by explosive nucleosynthesis in supernovae.

♥ Titanium isotopic patterns of KE3 and KFC1 grains show signatures of neutron capture in massive stars for KE3 grains, and in low-metallicity asymptotic giant branch stars for KFC1 grains (Figs. 7 & 8).

♥We compared the isotopic signatures of the graphite grains to predicted ratios in various types of stars.

♥From the comparison, we conclude, in general,

▲ Oxygen-18 and ²⁸Si excesses in many KE3 grains as well as the initial presence of 44Ti indicate that the grains from separate KE3 most likely formed in supernovae.

▲ High ¹²C/¹³C ratios and excesses in ^{29,30}Si in the KFC1 grains indicate that they formed in low-metallicity (~0.007 < Z < 0.02, $Z_{solar} =$ 0.02) AGB stars.

References: Amari et al. (1993) Nature 365, 806-809, Amari (unpublished data), Hoppe et al. (1995) GCA 59, 4029-4056. Travaglio et al. (1999) ApJ 510, 325-354.

III. Isotopic ratios of graphite grains