HOME RESEARCH FACILITIES PEOPLE PUBLICATIONS
HOLOCENE SOURCES OF SEA-LEVEL RISE
Collaborative Research: Improved constraints on Holocene retreat history of the Laurentide and Scandinavian Ice Sheets from cosmogenic dating and implications for sea-level rise

A major objective of ice sheet and climate research is to understand the responses of ice sheets to climate change. Ascertaining the past rates of ice-sheet retreat and contributions to sea-level rise under climate that was naturally warmer than present provides context for the future Greenland Ice-Sheet response to global warming. Here, this research team proposes to improve the deglacial chronologies and investigate retreat rates of the Laurentide (LIS) and Scandinavian (SIS) Ice Sheets during the early to mid-Holocene (<11.7 ka), a period of time that provides an excellent natural experiment where these terrestrial ice sheets deglaciated under a climate warmer than present but potentially similar to the end of this century. This project proposes to directly date the retreat of the southeastern and eastern LIS margins and the southern, eastern, and northern SIS margins during the early to mid-Holocene using in situ cosmogenic surface exposure ages, significantly improving the chronology for the largest of the LIS domes and the majority of the SIS. The resulting chronologies will be combined with already existing cosmogenic chronologies from western Quebec, northeastern Labrador and southern Finland, and existing minimum limiting radiocarbon dates and varve records. These data will allow calculations of LIS and SIS retreat rates and sea-level rise contributions during the early to mid-Holocene, with the remainder of sea-level rise largely attributable to the Antarctic Ice Sheet. The results will provide estimates of the natural rates at which ice sheets can melt under radiative forcing that may be analogous to the climate of the end of this century.
COLLABORATORS
  • Peter Clark - Oregon State
  • Marc Caffee - Purdue U.

GRADUATE STUDENT

  • Dave Ullman
PUBLICATIONS

Carlson et al., 2007, J. of Climate

Carlson et al., 2008, Nature Geoscience

Carlson et al., 2009, GRL