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Cyclotrons and Synchrotrons

The termcircular acceleratorrefers to any machine in which beams describe a closed orbit. All
circular accelerators have a vertical magnetic field to bend particle trajectories and one or more
gaps coupled to inductively isolated cavities to accelerate particles. Beam orbits are often not true
circles; for instance, large synchrotrons are composed of alternating straight and circular sections.
The main characteristic of resonant circular accelerators is synchronization between oscillating
acceleration fields and the revolution frequency of particles.

Particle recirculation is a major advantage of resonant circular accelerators over rf linacs. In a
circular machine, particles pass through the same acceleration gap many times (102 to greater than
108). High kinetic energy can be achieved with relatively low gap voltage. One criterion to
compare circular and linear accelerators for high-energy applications is the energy gain per length
of the machine; the cost of many accelerator components is linearly proportional to the length of
the beamline. Dividing the energy of a beam from a conventional synchrotron by the
circumference of the machine gives effective gradients exceeding 50 MV/m. The gradient is
considerably higher for accelerators with superconducting magnets. This figure of merit has not
been approached in either conventional or collective linear accelerators.

There are numerous types of resonant circular accelerators, some with specific advantages and
some of mainly historic significance. Before beginning a detailed study, it is useful to review
briefly existing classes of accelerators. In the following outline, a standard terminology is defined
and the significance of each device is emphasized.
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Most resonant circular accelerators can be classed as either cyclotrons or synchrotrons. One
exception is the microtron (Section 14.7), which is technologically akin to linear accelerators. The
microtron may be classified as a cyclotron for relativistic electrons, operating well beyond the
transition energy (see Section 15.6). The other exception is the synchrocyclotron (Section 15.4).

A. Cyclotron

A cyclotron has constant magnetic field magnitude and constant rf frequency. Beam energy is
limited by relativistic effects, which destroy synchronization between particle orbits and rf fields.
Therefore, the cyclotron is useful only for ion acceleration. The virtue of cyclotrons is that they
generate a continuous train of beam micropulses. Cyclotrons are characterized by large-area
magnetic fields to confine ions from zero energy to the output energy.

1. Uniform-Field Cyclotron

The uniform-field cyclotron has considerable historic significance. It was the first accelerator to
generate multi-MeV particle beams for nuclear physics research. The vertical field is uniform in
azimuth. The field magnitude is almost constant in the radial direction, with small positive field
index for vertical focusing. Resonant acceleration in the uniform-field cyclotron depends on the
constancy of the non-relativistic gyrofrequency. The energy limit for light ion beams is about
15-20 MeV, determined by relativistic mass increase and the decrease of magnetic field with
radius. There is no synchronous phase in a uniform-field cyclotron.

2. Azimuthally-Varying-Field (AVF) Cyclotron

The AVF cyclotron is a major improvement over the uniform-field cyclotron. Variations are
added to the confining magnetic field by attaching wedge-shaped inserts at periodic azimuthal
positions of the magnet poles. The extra horizontal-field components enhance vertical focusing. It
is possible to tolerate an average negative-field index so that the bending field increases with
radius. With proper choice of focusing elements and field index variation, the magnetic field
variation balances the relativistic mass increase, resulting in a constant-revolution frequency. An
AVF cyclotron with this property is called an isochronous cyclotron. An additional advantage of
AVF cyclotrons is that the stronger vertical focusing allows higher beam intensity. AVF machines
have supplanted the uniform-field cyclotron, even in low-energy applications.

3. Separated-Sector Cyclotron

The separated-sector cyclotron is a special case of the AVF cyclotron. The azimuthal field
variation results from splitting the bending magnet into a number of sectors. The advantages of
the separated sector cyclotron are (1) modular magnet construction and (2) the ability to locate rf



Cyclotrons and Synchrotrons

502

feeds and acceleration gaps between the sectors. The design of separated-sector cyclotrons is
complicated by the fact that particles cannot be accelerated from low energy. This feature can be
used to advantage; beams with lower emittance (better coherence) are achieved if an independent
accelerator is used for low-energy acceleration.

4. Spiral Cyclotron

The pole inserts in a spiral cyclotron have spiral boundaries. Spiral shaping is used in both
standard AVF and separated-sector machines. In a spiral cyclotron, ion orbits have an inclination
at the boundaries of high-field regions. Vertical confinement is enhanced by edge focusing
(Section 6.9). The combined effects of edge focusing and defocusing lead to an additional vertical
confinement force.

5. Superconducting Cyclotron

Superconducting cyclotrons have shaped iron magnet poles that utilize the focusing techniques
outlined above. The magnetizing force is supplied by superconducting coils, which consume little
power. Superconducting cyclotrons are typically compact machines because they are operated at
high fields, well above the saturation level of the iron poles. In this situation, all the magnetic
dipoles in the poles are aligned; the net fields can be predicted accurately.

B. Synchrocyclotron

The synchrocyclotron is a precursor of the synchrotron. It represents an early effort to extend the
kinetic energy limits of cyclotrons. Synchrocyclotrons have a constant magnetic field with
geometry similar to the uniform-field cyclotron. The main difference is that the rf frequency is
varied to maintain particle synchronization into the relativistic regime. Synchrocyclotrons are
cyclic machines with a greatly reduced time-averaged output flux compared to a cyclotron.
Kinetic energies for protons to 1 GeV have been achieved. In the sub-GeV energy range,
synchrocyclotrons were supplanted by AVF cyclotrons, which generate a continuous beam.
Synchrocyclotrons have not been extended to higher energy because of technological and
economic difficulties in fabricating the huge, monolithic magnets that characterize the machine.

C. Synchrotron

Synchrotrons are the present standard accelerators for particle physics research. They are cycled
machines. Both the magnitude of the magnetic field and the rf frequency are varied to maintain a
synchronous particle at a constant orbit radius. The constant-radius feature is very important;
bending and focusing fields need extend over only a small ring-shaped volume. This minimizes the



Cyclotrons and Synchrotrons

503

cost of the magnets, allowing construction of large-diameter machines for ion energies of up to
800 GeV. Synchrotrons are used to accelerate both ions and electrons, although electron
machines are limited in energy by emission of synchrotron radiation. The main limits on achievable
energy for ions are the cost of the machine and availability of real estate. Cycling times are long in
the largest machines, typically many seconds. Electron synchrotrons and proton boosters cycle at
frequencies in the range of 15 to 60 Hz.

1. Weak Focusing Synchrotron

Early synchrotrons used weak focusing. The bending magnets were shaped to produce a field with
index in the range 0 <n < 1. With low focusing force, the combined effects of transverse particle
velocity and synchrotron oscillations (see Section 15.6) resulted in beams with large cross section.
This implies costly, large-bore magnets.

2. Strong Focusing Synchrotron

All modern synchrotrons use transverse focusing systems composed of strong lenses in a
focusing-defocusing array. Strong focusing minimizes the beam cross section, reducing the
magnet size. Beam dynamics are more complex in a strong focusing synchrotron. The magnets
must be constructed and aligned with high precision, and care must be taken to avoid resonance
instabilities. Advances in magnet technology and beam theory have made it possible to overcome
these difficulties.

Alternating Gradient Synchrotron (AGS) . The bending field in an alternating gradient
synchrotron is produced by a ring of wedge-shaped magnets which fit together to form an annular
region of vertical field. The magnets have alternate positive and negative field gradient withn » 1.
The combination of focusing and defocusing in the horizontal and vertical directions leads to net
beam confinement.

Separated Function Synchrotron. Most modern synchrotrons are configured as separated
function synchrotrons. The bending field is provided by sector magnets with uniform vertical field.
Focusing is performed by quadrupole magnetic lens set between the bending magnets. Other
magnets may be included for correction of beam optics.

3. Storage Ring

A storage ring usually has the same focusing and bending field configuration as a separated
function synchrotron, but provides no acceleration. The magnetic fields are constant in time. An
rf cavity may be included for longitudinal beam manipulations such as stacking or, in the case of
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electrons, maintaining kinetic energy in the presence of radiation loss. A storage ring contains
energetic particles at constant energy for long periods of time. The primary applications are for
colliding beam experiments and synchrotron radiation production.

4. Collider

A collider is a synchrotron, storage ring, dual synchrotron, or dual storage ring with special
geometry to allow high-energy charged particles moving in opposite directions to collide head-on
at a number of positions in the machine. The use of colliding beams significantly increases the
amount of energy available to probe the structure of matter for elementary particle physics.
Colliders have been operated (or are planned) for counter-rotating beams of protons (pp collider),
electrons and positrons (e-e+), and protons and antiprotons (p ).p

Section 15.1 introduces the uniform-field cyclotron and the principles of circular resonant
accelerators. The longitudinal dynamics of the uniform-field cyclotron is reviewed in Section 15.2.
The calculations deal with an interesting application of the phase equations when there is no
synchronous particle. The model leads to the choice of optimum acceleration history and tolimits
on achievable kinetic energy. Sections 15.3 and 15.4 are concerned with AVF, or isochronous,
cyclotrons. Transverse focusing is treated in the first section. Section 15.4 summarizes
relationships between magnetic field and rf frequency to preserve synchronization in fixed-field,
fixed-frequency machines. There is also a description of the synchrocyclotron.

Sections 15.5-15.7 are devoted to the synchrotron. The first section describes general features
of synchrotrons, including focusing systems, energy limits, synchrotron radiation, and the
kinematics of colliding beams. The longitudinal dynamics of synchrotrons is the subject of Section
15.6. Material includes constraints on magnetic field and rf frequency variation for
synchronization, synchrotron oscillations, and the transition energy. To conclude, Section 15.7
summarizes the principles and benefits of strong focusing. Derivations are given to illustrate the
effects of alignment errors in a strong focusing system. Forbidden numbers of betatron
wavelengths and mode coupling are discussed qualitatively.

15.1 PRINCIPLES OF THE UNIFORM-FIELD CYCLOTRON

The operation of the uniform-field cyclotron [E. 0. Lawrence, Science72, 376 (1930)] is based on
the fact that the gyrofrequency for non-relativistic ions [Eq. (3.39)] is independent of kinetic
energy. Resonance between the orbital motion and an accelerating electric field can be achieved
for ion kinetic energy that is small compared to the rest energy. The configuration of the
uniform-field cyclotron is illustrated in Figure 15.1a. Ions are constrained to circular orbits by a
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fo � qBo/2πmi � (1.52×107) Bo(tesla)/A, (15.1)

Tmax � 48 (Z�RB)2/A, (15.2)

vertical field between the poles of a magnet. The ions are accelerated in the gap between two
D-shaped metal structures (dees) located within the field region. An ac voltage is applied
to the dees by an rf resonator. The resonator is tuned to oscillate nearωg.

The acceleration history of an ion is indicated in Figure 15.1b. The acceleratorillustrated has
only one dee excited by a bipolar waveform to facilitate extraction. A source, located at the center
of the machine continuously generates ions. The low-energy ions are accelerated to the opposite
electrode during the positive-polarity half of the rf cycle. After crossing the gap, the ions are
shielded from electric fields so that they follow a circular orbit. When the ions return to the gap
after a time interval they are again accelerated because the polarity of the dee voltage isπ/ωgo
reversed. An aperture located at the entrance to the acceleration gaplimits ions to a small range
of phase with respect to the rf field. If the ions were not limited to a small phase range, the output
beam would have an unacceptably large energy spread. In subsequent gap crossings, the ion
kinetic energy and gyroradius increase until the ions are extracted at the periphery of the magnet.
The cyclotron is similar to the Wideröe linearaccelerator (Section 14.2); the increase in the
gyroradius with energy is analogous to the increase in drift-tube length for the linear machine.

The rf frequency in cyclotrons is relatively low. The ion gyrofrequency is

whereA is the atomic mass number,mi/mp. Generally, frequency is in the range of 10 MHz for
magnetic fields near 1 T. The maximum energy of ions in a cyclotron is limited by relativistic
detuning and radial variations of the magnetic field magnitude. In a uniform-field magnet field, the
kinetic energy and orbit radius of non-relativistic ions are related by

whereTmax is given in MeV,R in meters, andB in tesla. For example, 30-MeV deuterons require a
1-T field with good uniformity over a 1.25-m radius.

Transverse focusing in the uniform-field cyclotron is performed by an azimuthally symmetric
vertical field with a radial gradient (Section 7.3). The main differences from the betatron are that
the field index is small compared to unity ( and ) and that particle orbits extendνr � 1 νz « 1
over a wide range of radii. Figure 15.2 diagrams magnetic field in a typical uniform-field cyclotron
magnet and indicates the radial variation of field magnitude and field index,n. The field index is
not constant with radius. Symmetry requires that the field index be zero at the center of the
magnet. It increases rapidly with radius at the edge of the pole. Cyclotron magnets are designed
for smalln over most of the field area to minimize desynchronization of particle orbits. Therefore,
vertical focusing in a uniform-field cyclotron is weak.

There is no vertical magnetic focusing at the center of the magnet. By a fortunate coincidence,



Cyclotrons and Synchrotrons

507



Cyclotrons and Synchrotrons

508

electrostatic focusing by the accelerating fields is effective for low-energy ions. The electric field
pattern between the dees of a cyclotron act as the one-dimensional equivalent of the electrostatic
immersion lens discussed in Section 6.6. The main difference from the electrostatic lens is that ion
transit-time effects can enhance or reduce focusing. For example, consider the portion of the
accelerating half-cycle when the electric field is rising. Ions are focused at the entrance side of the
gap and defocused at the exit. When the transit time is comparable to the rf half-period, the
transverse electric field is stronger when the ions are near the exit, thereby reducing the net
focusing. The converse holds in the part of the accelerating half-cycle with falling field.

In order to extract ions from the machine at a specific location, deflection fields must be
applied. Deflection fields should affect only the maximum energy ions. Ordinarily, static electric
(magnetic) fields in vacuum extend a distance comparable to the spacing between electrodes
(poles) by the properties of the Laplace equation (Section 4.1). Shielding of other ions is
accomplished with a septum (separator), an electrode or pole that carries image charge or current
to localize deflection fields. An electrostatic septum is illustrated in Figure 15.3. A strong radial
electric field deflects maximum energy ions to a radius wheren > 1. Ions spiral out of the machine
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∆R � (R/2) (2qVo sinφs/T). (15.3)

V(t) � Vo sinωt, (15.4)

along a well-defined trajectory. Clearly, a septum should not intercept a substantial fraction of the
beam. Septa are useful in the cyclotron because there is a relatively large separation between
orbits. The separation for non-relativistic ions is

For example, with a peak dee voltageVo = 100 kV,φs = 60�, R = 1 m, and T = 20 MeV, Eq.
(15.3) implies that∆R = 0.44 cm.

15.2 LONGITUDINAL DYNAMICS OF THE UNIFORM-FIELD
CYCLOTRON

In the uniform-field cyclotron, the oscillation frequency of gap voltage remains constant while the
ion gyrofrequency continually decreases. The reduction inωg with energy arises from two causes:
(1) the relativistic increase in ion mass and (2) the reduction of magnetic field magnitude at large
radius. Models of longitudinal particle motion in a uniform-field cyclotron are similar to those
for a traveling wave linear electron accelerator (Section 13.6); there is no synchronous phase. In
this section, we shall develop equations to describe the phase history of ions in a uniform-field
cyclotron. As in the electron linac, the behavior of a pulse of ions is found by following individual
orbits rather than performing an orbit expansion about a synchronous particle. The model predicts
the maximum attainable energy and energy spread as a function of the phase width of the ion
pulse. The latter quantity is determined by the geometry of the aperture illustrated in Figure 15.1.
The model indicates strategies to maximize beam energy.
The geometry of the calculation is illustrated in Figure 15.4. Assume that the voltage of dee1
relative to dee2 is given by

whereω is the rf frequency. The following simplifying assumptions facilitate development of a
phase equation:

1. Effects of the gap width are neglected. This is true when the gap width divided by the
ion velocity is small compared to 1/ω.

2. The magnetic field is radially uniform. The model is easily extended to include the
effects of field variations.

3. The ions circulate many times during the acceleraton cycle, so that it is sufficient to
approximate kinetic energy as a continuous variable and to identify the centroid of the
particle orbits with the symmetry axis of the machine.
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φ � ωt � θ(t). (15.5)

dφ/dt � ω � dθ/dt � ω � ωg, (15.6)

ωg � qBo/γmi � qc2Bo/E. (15.7)

The phase of an ion at azimuthal positionθ and timet is defined as

Equation (15.5) is consistent with our previous definition of phase (Chapter 13). Particles
crossing the gap from deel to dee2 att = 0 haveφ = 0 and experience zero accelerating voltage.
The derivative of Eq. (15.5) is

where

The quantityE in Eq. (15.7) is the total relativistic ion energy, . In the limit thatE � T � mic
2

, the gyrofrequency is almost constant and Eq. (15.6) implies that particles haveT « mic
2

constant phase during acceleration. Relativistic effects reduce the second term in Eq. (15.6). If the
rf frequency equals the non-relativistic gyrofrequency , then dφ/dt is always positive.ω � ωgo
The limit of acceleration occurs whenφ reaches 180�. In this circumstance, ions arrive at the gap
when the accelerating voltage is zero; ions are trapped at a particular energy and circulate in the
cyclotron at constant radius.
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∆Em � qVo sinφm. (15.8)

∆φ � (dφ/dt) (π/ωg) � π [(ωE/c2qBo) � 1]. (15.9)

∆φ/∆E � dφ/dE � (π/qVo sinφ) [(ωE/c2qBo) � 1]. (15.10)

sinφ dφ � (π/qVo) [(ωE/c2qBo) � 1] dE. (15.11)

cosφ � cosφo � (π/qVo) [(ω/2c2qBo) (E 2
� Eo) � (E � Eo)], (15.12)

cosφ � cosφo � (π/qVo) (1 � ω/ωgo) T � (π/2qVomic
2) (ω/ωgo) T 2. (15.13)

Equation (15.4), combined with the assumption of small gap width, implies that particles
making theirmth transit of the gap with phaseφm gain an energy.

In order to develop an analytic phase equation, it is assumed that energy increases continually and
that phase is a continuous function of energy,φ(E). The change of phase for a particle during the
transit through a dee is

Dividing Eq. (15.9) by Eq. (15.8) gives an approximate equation forφ(E):

Equation (15.10) can be rewritten

Integration of Eq. (15.11) gives an equation for phase as a function of particle energy:

whereφo is the injection phase. The cyclotron phase equation is usually expressed in terms of the
kinetic energy T. Taking and , Eq. (15.12) becomesT � E � m2

oc ωgo � qBo/mi

During acceleration, ion phase may traverse the range . The content of Eq.0� < φ < 180�
(15.13) can be visualized with the help of Figure 15.5. The quantity cosφ is plotted versusT with
φo as a parameter. The curves are parabolas. In Figure 15.5a, the magnetic field is adjusted so that

. The maximum kinetic energy is defined by the intersection of the curve with cosφ = - 1.ω � ωo
The best strategy is to inject the particles in a narrow range nearφo = 0. Clearly, higher kinetic
energy can be obtained if (Fig. 15.5b). The particle is injected withφo > 0. It initiallyω < ωo
gains on the rf field phase and then lags. A particle phase history is valid only if cosφ remains
between -1 and +1. In Figure 15.5b, the orbit withφo = 45� is not consistent with acceleration to
high energy. The curve forφo = 90� leads to a higher final energy thanφo = 135�.
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cosφ � �1 for T � Tmax (15.14)

cosφ � �1 for T � ½Tmax. (15.15)

The curves of Figure 15.5 depend onVo, mi, and . The maximum achievable energyω/ωgo
corresponds to the curve illustrated in Figure 15.5c. The particle is injected atφo = 180�. The rf
frequency is set lower than the non-relativistic ion gyrofrequency. The two frequencies are equal
whenφ approaches 0�. The curve of Figure 15.5c represents the maximum possible phase
excursion of ions during acceleration and therefore the longest possible time of acceleration.
Defining Tmax as the maximum kinetic energy, Figure 15.5c implies, the constraints

and

The last condition proceeds from the symmetric shape of the parabolic curve. Substitution of Eqs.
(15.14) and (15.15) in Eq. (15.13) gives two equations in two unknowns forTmax and . Theω/ωgo
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ω/ωgo � 1/(1 � Tmax/2mic
2) (15.16)

Tmax � 16qVomic
2/π. (15.17)

solution is

and

Equation (15.17) is a good approximation when .T « mic
2

Note that the final kinetic energy is maximized by takingVo large. This comes about because a
high gap voltage accelerates particles in fewer revolutions so that there is less opportunity for
particles to get out of synchronization. Typical acceleration gap voltages are ±100 kV. Inspection
of Eq. (15.17) indicates that the maximum kinetic energy attainable is quite small compared
to mic

2. In a typical cyclotron, the relativistic mass increase amounts to less than 2%. The small
relativistic effects are important because they accumulate over many particle revolutions.

To illustrate typical parameters, consideracceleration of deuterium ions. The rest energy is 1.9
GeV. If Vo = 100 kV, Eq. (15.17) implies thatTmax = 31 MeV. The peak energy will be lower if
radial variations of magnetic field are included. WithBo = 1.5 T, the non-relativistic
gyrofrequency isfo = 13.6 MHz. For peak kinetic energy, the rf frequency should be about 13.5
MHz. The ions make approximately 500 revolutions during acceleration.

15.3 FOCUSING BY AZIMUTHALLY VARYING FIELDS (AVF)

Inspection of Eqs. (15.6) and (15.7) shows that synchronization in a cyclotron can be preserved
only if the average bending magnetic field increases with radius. A positive field gradient
corresponds to a negative field index in a magnetic field with azimuthal symmetry, leading to
vertical defocusing. A positive field index can be tolerated if there is an extra source of vertical
focusing. One way to provide additional focusing is to introduce azimuthal variations in the
bending field. In this section, we shall study particle orbits in azimuthally varying fields. The intent
is to achieve a physical understanding of AVF focusing through simple models. The actual design
of accelerators with AVF focusing [K.R. Symon,et. al., Phys. Rev.103, 1837 (1956); F.T. Cole,
et .al., Rev. Sci. Instrum.28, 403 (1957)] is carried out using complex analytic calculations and,
inevitably, numerical solution of particle orbits. The results of this section will be applied to
isochronous cyclotrons in Section 15.4. In principle, azimuthally varying fields could be used for
focusing in accelerators with constant particle orbit radius, such as synchrotrons or betatrons.
These configurations are usually referred to as FFAG (fixed-field, alternating-gradient)
accelerators. In practice, the cost of magnets in FFAG machines is considerably higher than more
conventional approaches, so AVF focusing is presently limited to cyclotrons.
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Figure 15.6a illustrates an AVF cyclotron field generated by circular magnet poles with
wedge-shaped extensions attached. We begin by considering extensions with boundaries that lie
along diameters of the poles; more general extension shapes, such as sections with spiral
boundaries, are discussed below. Focusing by fields produced by wedge-shaped extensions is
usually referred to asThomas focusing[L.H. Thomas, Phys. Rev.54, 580 (1938)]. The raised
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Bz(R,θ) � Bo(R) Φ(R,θ), (15.18)

Φ(R,θ) � 1 � f(R) g(θ), (15.19)

Bz(R,θ) � Bo(R) [1 � f(R) sinNθ], (15.20)

Φ(θ) � 1 � f(R) sinNθ. (15.21)

F(R) � [(Bz(R,θ) � Bo(R))/Bo(R)]2
� (1/2π) �

2π

0

[Φ(R,θ) � 1]2 dθ. (15.22)

regions are called hills, and the recessed regions are called valleys. The magnitude of the vertical
magnetic field is approximately inversely proportional to gap width; therefore, the field is stronger
in hill regions. An element of field periodicity along a particle orbit is called asector; a sector
contains one hill and one valley. The number of sectors equals the number of pole extensions and
is denotedN. Figure 15.6a shows a magnetic field withN = 3. The variation of magnetic with
azimuth along a circle of radiusR is plotted in Figure 15.6b. The definition of sector (as applied to
the AVF cyclotron) should be noted carefully to avoid confusion with the termsector magnet.

The terminology associated with AVF focusing systems is illustrated in Figure 15.6b. The
azimuthal variation of magnetic field is calledflutter. Flutter is represented as a function of
position by

where is themodulation functionwhich parametrizes the relative changes of magneticΦ(R,θ)
field with azimuth. The modulation function is usually resolved as

whereg(θ) is a function with maximum amplitude equal to 1 and an average value equal to zero.
The modulation function has aθ-averaged value of 1. The functionf(R) in Eq. (15.19) is the
flutter amplitude.

The modulation function illustrated in Figure 15.6b is a step function. Other types of variation
are possible. The magnetic field corresponding to a sinusoidal variation of gap width is
approximately

so that

The flutter function F(R) is defined as the mean-squared relative azimuthal fluctuation of
magnetic field along a circle of radiusR:

For example,F(R) = f(R)2 for a step-function variation and for the sinusoidalF(R) � ½ f(R)2

variation of Eq. (15.21).
Particle orbits in azimuthally varying magnetic bending fields are generally complex. In order to

develop an analytic orbit theory, simplifying assumptions will be adopted. We limit consideration
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to a field with sharp transitions of magnitude between hills and valleys (Fig. 15.6b). The hills and
valleys occupy equal angles. The step-function assumption is not too restrictive; similar particle
orbits result from continuous variations of gap width. Two limiting cases will be considered to
illustrate the main features of AVF focusing: (1) small magnetic field variations (f « 1) and (2)
large field variations with zero magnetic field in the valleys. In the latter case, the bending field is
produced by a number of separated sector magnets. Methods developed in Chapters 6 and 8 for
periodic focusing can be applied to derive particle orbits.

To begin, takef « 1. As usual, the strategy is to find the equilibrium orbit and then to investigate
focusing forces in the radial and vertical directions. The magnetic field magnitude is assumed
independent of radius; effects of average field gradient will be introduced in Section 15.4. In the
absence of flutter, the equilibrium orbit is a circle of radius . With flutter, theR � γmic/qBo
equilibrium orbit is changed from the circular orbit to the orbit of Figure 15.7a. In the sharp field
boundary approximation, the modified orbit is composed of circular sections. In the hill regions,
the radius of curvature is reduced, while the radius of curvature is increased in the valley regions.
The main result is that the equilibrium orbit is not normal to the field boundaries at the hill-valley
transitions.

There is strong radial focusing in a bending field with zero average field index; therefore, flutter
has little relative effect on radial focusing in the limit f « 1. Focusing in a cyclotron is conveniently
characterized by the dimensionless parameterν (see Section 7.2), the number of betatron
wavelengths during a particle revolution. Following the discussion of Section 7.3, we find that
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ν
2
r � 1 (15.23)

focal length� (γmic/q[2Bof]) / |tanβ| � �R/2f |tanβ|, (15.24)

Ab �
1 0

�2f tanβ/R 1
(15.25)

|β| � πf/2N, (15.26)

Ab �
1 0

�πf 2/NR 1
(15.26)

Ad �
1 πR/N

0 1
(15.26)

for a radially uniform average field magnitude.
In contrast, flutter plays an important part in vertical focusing. Inspection of Figure 15.7a shows

that the equilibrium orbit crosses between hill and valley regions at an angle to the boundary. The
vertical forces acting on the particle are similar to those encountered in edge focusing (Section
6.9). The field can be resolved into a uniform magnetic field of magnitudeBo[l - f (R)]
superimposed on fields of magnitude 2Bof(R) in the hill regions. Comparing Figure 15.7a to
Figure 6.20, the orbit is inclined so that there is focusing at both the entrance and exit of a hill
region. The vertical force arises from the fringing fields at the boundary; the horizontal field
components are proportional to the change in magnetic field, 2Bof(R). Following Eq. 6.30, the
boundary fields act as a thin lens with positive focal length

whereβ is the angle of inclination of the orbit to the boundary. The ray transfer matrix
corresponding to transit across a boundary is

The inclination angle can be evaluated from the geometric construction of Figure 15.7b. The
equilibrium orbit crosses the boundary at aboutr = R. The orbit radii of curvature in the hill and
valley regions areR(1 ± f). To first order, the inclination angle is

whereN is the number of sectors. The ray transfer matrix for a boundary is expressed as

for smallβ. Neglecting variations in the orbit length through hills and valleys caused by the flutter,
the transfer matrix for drift is
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A �

1 πR/N

�πf 2/NR 1�½(πf/N)2
(15.29)

cosµ � 1 � ½µ2
� ½TrA � 1 � ½(πf/N)2, (15.30)

µ � πf/N. (15.31)

νz � 2Nµ/2π � f. (15.32)

ν
2
z � F. (15.33)

A focusing cell, the smallest element of periodicity, consists of half a sector (a drift region and one
boundary transition). The total ray transfer matrix is

The phase advance in the vertical direction is

or

The net phase advance during one revolution is equal to 2Nµ. The number of betatron oscillations
per revolution is therefore

The final form is derived by substituting from Eq. (15.31). The vertical number of betatron
wavelengths can also be expressed in terms of a flutter function as

Equation (15.33) is-not specific to a step-function field. It applies generally for all modulation
functions.

Stronger vertical focusing results if the hill-valley boundaries are modified from the simple
diametric lines of Figure 15.6. Consider, for instance, spiral-shaped pole extensions, as shown in
Figure 15.8. At a radiusR, the boundaries between hills and valleys are inclined at an angleζ(R)
with respect to a diameter. Spiral-shaped pole extensions lead to an additional inclination of
magnitudeζ(R) between the equilibrium particle orbit and the boundary. The edge fields from the
spiral inclination act to alternately focus and defocus particles, depending on whether the particle
is entering or leaving a hill region. For example, the spiral of Figure 15.8 is defocusing at a
hill-to-valley transition. A focusing-defocusing lens array provides net focusing.

The effect of boundary inclination can easily be derived in the limit thatf « 1 and combined with
Thomas focusing for a totalνz. A focusing cell extends over a sector; a cell consists of a drift
region of length , a thin lens of focal length , a second drift region, and a lensπR/N �2f tanζ/R
with focal length . The total ray transfer matrix for a sector is�2f tanζ/R
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A �

[1�2fπ tanζ/N�(2πf tanζ/N)2] [2πR/N�2fπ2R tanζ/N2]

[�4πf 2 tan2ζ/NR] [1�2πf tanζ/N]
(15.34)

µ � 2πf tanζ / N. (15.35)

ν
2
z � f 2 (1 � 2tanζ) � F (1 � 2tanζ). (15.36)

Again, identifying TrA with cosµ, we find that

Following the method used above, the number of vertical betatron oscillations per revolution is
expressed simply as

Vertical focusing forces can be varied with radius through the choice of the spiral shape. The
Archimedean spiral is often used; the boundaries of the pole extensions are defined by
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r � A [θ � 2πJ/2N], (15.37)

tanζ(r) � d(rθ)/dr � 2r/A. (15.38)

where J = 0, 1, 2,...,2N - 1. The corresponding inclination angle is

Archimedean spiral pole extensions lead to vertical focusing forces that increase with radius.
An analytical treatment of AVF focusing is also possible for a step-function field withf = 1. In

this case (corresponding to the separated sector cyclotron), the bending field consists of regions
of uniform magnetic field separated by field-free regions. Focusing forces arise from the shape of
the sector magnet boundaries. As an introduction, consider vertical and radial focusing in a
single-sector magnet with inclined boundaries (Fig. 15.9a). The equilibrium orbit in the magnetic
field region is a circular section of radiusR centered vertically in the gap. The circular section
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β � ½α (15.39)

ν
2
z � (1 � 2 tanζ) (15.40)

ν
2
r � 2 tanζ. (15.41)

subtends an angleα. Assume that the boundary inclinations,β, are equal at the entrance and exit
of the magnet.

In the vertical direction, the ray transfer matrix for the magnet is the product of matrices
representing edge focusing at the entrance, a drift distanceαR, and focusing at the exit. We can
apply Eqs. (15.27) and (15.28) to calculate the total ray transfer matrix. In order to calculate
focusing in the radial direction, we must include the effect of the missing sector field introduced
by the inclination angle P. For the geometry of Figure 15.9a, the inclination reduces radial
focusing in the sector magnet. Orbits with and without a boundary inclination are plotted in
Figure 15.9b. Figure 15.9c shows the equilibrium particle orbit and an off-axis parallel orbit in a
sector magnet with . The boundary is parallel to a line through the midplane of theβ � ½α

magnet; the gyrocenters of both orbits also lie on this line. Therefore, the orbits are parallel
throughout the sector and there is no focusing. A value of inclination moves theβ < ½α

gyrocenter of the off-axis particle to the left; the particle emerges from the sector focused toward
the axis. The limit on for radial focusing in a uniform-field sector magnet is

We now turn our attention to the AVF sector field with diametric boundaries shown in Figure
15.10. The equilibrium orbits can be constructed with compass and straightedge. The orbits are
circles in the sector magnets and straight lines in between. They must match in position and angle
at the boundaries. Figures 15.10a, b show solutions withN = 2 andN = 3 for hills and valleys
occupying equal azimuths ( ). Note that in all cases the inclination angle of the orbit at aα � π/N
boundary is one-half the angular extent of the sector, . Figures 15.10c and d illustrate theβ � ½α

geometric construction of off-axis horizontal orbits for conditions corresponding to stability
( ) and instability ( ). The case ofN = 2 is unstable for allα > π/N,β < ½α α < π/N,β > ½α

choices ofα. This arises because particles are overfocused when . This effect is clearlyα > π/N
visible in Figure 15.10e. It is generally true that particle orbits are unstable in any type of AVF
field with N = 2.

Spiral boundaries may also be utilized in separated sector fields. Depending on whether the
particles are entering or leaving a sector, the edge-focusing effects are either focusing or
defocusing in the vertical direction. Applying matrix algebra and the results of Section 6.9, it is
easy to show thatνz is

for . Spiral boundaries contribute alternate focusing and defocusing forces in the radialα � π/N
direction that are 180� out of phase with the axial forces. For , the number of radialα � π/N
betatron oscillations per revolution is approximately
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15.4 THE SYNCHROCYCLOTRON AND THE AVF CYCLOTRON

Following the success of the uniform-field cyclotron, efforts were made to reach higher beam
kinetic energy. Two descendants of the cyclotron are the synchrocyclotron and the AVF
(isochronous) cyclotron. The machines resolve the problem of detuning between particle
revolutions and rf field in quite different ways. Synchrocyclotrons have the same geometry as the
SF cyclotron. A large magnet with circular poles produces an azimuthally symmetric vertical field
with positive field index. Ions are accelerated from rest to high energy by an oscillating voltage
applied between dees. The main difference is that the frequency is varied to preserve synchronism.

There are a number of differences in the operation of synchrocyclotrons and cyclotrons.
Synchrocyclotrons are cycled, rather than continuous; therefore, the time-average beam current is
much lower. The longitudinal dynamics of particles in a synchrocyclotron do not follow the model
of Section 15.2 because there is a synchronous phase. The models for phase dynamics developed
in Chapter 13 can be adapted to the synchrocyclotron. The machine can contain a number of
confined particle bunches with phase parameters centered about the bunch that has ideal matching
to the rf frequency. The beam bunches are distributed as a group of closely spaced turns of
slightly different energy. The acceptance of the rf buckets decreases moving away from the ideal
match, defining a range of time over which particles can be injected into the machine. In research
applications, the number of bunches contained in the machine in a cycle is constrained by the
allowed energy spread of the output beam.

There are technological limits on the rate at which the frequency of oscillators cpn be swept.
These limits were particularly severe in early synchrocyclotrons that used movable mechanical
tuners rather than the ferrite tuners common on modern synchrotrons. The result is that the
acceleration cycle of a synchrocyclotron extends over a longer period than the acceleration time
for an ion in a cyclotron. Typically, ions perform between 10,000 and 50,000 revolutions during
acceleration in a synchrocyclotron. The high recirculation factor implies lower voltage between
the dees. The cycled operation of the synchrocyclotron leads to different methods of beam
extraction compared to cyclotrons. The low dee voltage implies that orbits have small separation
(< 1 mm), ruling out the use of a septum. On the other hand, all turns can be extracted at the same
time by a pulsed field because they are closely spaced in radius. Figure 15.11illustrates one
method of beam extraction from a synchrocyclotron. A pulsed electric field is used to deflect ions
on to a perturbed orbit which leads them to a magnetic shield. The risetime of voltage on the
kicker electrodes should be short compared to the revolution time of ions. Pulsed extraction is
characteristic of cycled machines like the synchrocyclotron and synchrotron. In large synchrotrons
with relatively long revolution time, pulsed magnets with ferrite cores are used for beam
deflection.

Containment of high-energy ions requires large magnets. For example, a 600-MeV proton has a
gyroradius of 2.4 m in a 1.5-T field. This implies a pole diameter greater than 15 ft.
Synchro-cyclotron magnets are among the largest monolithic, iron core magnets ever built. The
limitation of this approach is evident; the volume of iron required rises roughly as the cube of the
kinetic energy. Two synchrocyclotrons are still in operation: the 184-in. machine at Lawrence
Berkeley Laboratory and the CERN SC.
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ω � qBo/mi, (14.42)

B(R) � γ(R)miω/q, (15.43)

The AVF cyclotron has fixed magnetic field and rf frequency; it generates a continuous-beam
pulse train. Compensation for relativistic mass increase is accomplished by a magnetic field that
increases with radius. The vertical defocusing of the negative field index is overcome by the
focusing methods described in Section 15.3.

We begin by calculating the radial field variations of theθ-averaged vertical field necessary for
synchronization. The quantityB(R) is the averaged field around a circle of radiusR andBo is the
field at the center of the machine. Assume that flutter is small, so that particle orbits approximate
circles of radiusR, and letB(R) represent the average bending field atR. Near the origin (R = 0),
the AVF cyclotron has the same characteristics as a uniform field cyclotron; therefore, the rf
frequency is

wheremi is the rest energy of the ion. Synchronization with the fixed frequency at all radii implies
that

or
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B(R)/Bo � γ(R). (15.44)

R �

γ(R) βmic

qB(R)
�

mic

qB(R)
γ2
�1 �

mic

qBo

γ2
�1
γ

. (15.45)

B(R)/Bo � γ(R) � 1 � (qBoR/mic
2)2 . (15.46)

n(R) � � [R/B(R)] [dB(R)/dR] � � (γ2
�1). (15.47)

The average magnetic field is also related to the average orbit radius and ion energy through Eq.
(3.38):

Combining Eqs. (15.44) and (15.45), we find

Equation (15.46) gives the following radial variation of the field index:

Two methods for generating a bending field with negative field index (positive radial gradient) are
illustrated in Figure 15.12. In the first, the distance between poles decreases as a function of
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ν
2
r � 1 � n � F(R)n 2/N2

� ..., (15.48)

ν
2
z � n � F(R) � 2F(R) tan2ζ � F(R)n 2/N2

� .... (15.49)

radius. This method is useful mainly in small, low-energy cyclotrons. It has the following
drawbacks for large research machines:

1. The constricted gap can interfere with the dees.

2. The poles must be shaped with great accuracy.

3. A particular pole shape is suitable for only a single type of ion.

A better method to generate average radial field gradient is the use oftrimming coils, illustrated in
Figure 15.12b. Trimming coils (ork coils) are a set of adjustable concentric coils located on the
pole pieces inside the magnet gap. They are used to shift the distribution of vertical field. With
adjustable trimming coils, an AVF cyclotron canaccelerate a wide range of ion species.

In the limit of small flutter amplitude (f « 1), the radial and vertical betatron oscillations per
revolution in an AVF cyclotron are given approximately by

Equations (15.48) and (15.49) are derived through a linear analysis of orbits in an AVF field in the
small flutter limit. The terms on the right-hand side represent contributions from various types of
focusing forces. In Eq. (15.48), the terms have the following interpretations:

Term 1: Normal radial focusing in a bending field.

Term 2: Contribution from an average field gradient (n < 0 in an AVF cyclotron).

Term 3: Alternating-gradient focusing arising from the change in the actual field index
between hills and valleys. Usually, this is a small effect.

A term involving the spiral angleζ is absent from the radial equation. This comes about because
of cancellation between the spiral term and a term arising from differences of the centrifugal force
on particles between hills and valleys.

The terms on the right-hand side of Eq. (15.49) for vertical motion represent the following
contributions:

Term 1: Defocusing by the average radial field gradient.

Term 2: Thomas focusing.
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νr � γ (15.50)

Term 3: FD focusing by the edge fields of a spiral boundary.

Term 4: Same as the third term of Eq. (15.48).

Symmetry considerations dictate that the field index and spiral angle near the center of an AVF
cyclotron approach zero. The flutter amplitude also approaches zero at the center because the
effects of hills and valleys on the field cancel out at radii comparable to or less than the gap width
between poles. As in the conventional cyclotron, electrostatic focusing at the acceleraton gaps
plays an important role for vertical focusing of low-energy ions. At large radius, there is little
problem in ensuring good radial focusing. Neglecting the third term, Eq. (15.48) may be rewritten
as

using Eq. (15.47). The quantityνr is always greater than unity; radial focusing is strong.
Regarding vertical focusing, the combination of Thomas focusing and spiral focusing in Eq.
(15.49) must increase with radius to compensate for the increase in field index. This can be
accomplished by a radial increase ofF(R) or ζ(R). In the latter case, boundary curves with
increasingζ (such as the Archimedean spiral) can be used. Isochronous cyclotrons have the
property that the revolution time is independent of the energy history of the ions. Therefore, there
are no phase oscillations, and ions have neutral stability with respect to the rf phase. The magnet
poles of high-energy isochronous cyclotrons must be designed with high accuracy so that particle
synchronization is maintained through the acceleration process.

In addition to high-energy applications, AVF cyclotrons are well suited to low-energy medical
and industrial applications. The increased vertical focusing compared to a simple gradient field
means that the accelerator has greater transverse acceptance. Higher beam currents can be
contained, and the machine is more tolerant to field errors (see Section 15.7). Phase stability is
helpful, even in low-energy machines. The existence of a synchronous phase implies higher
longitudinal acceptance and lower beam energy spread. The AVF cyclotron is much less
expensive per ion produced than a uniform-field cyclotron.

In the range of kinetic energy above 100 MeV, the separated sector cyclotron is a better choice
than the single-magnet AVF cyclotron. The separated sector cyclotron consists of three or more
bending magnets separated by field-free regions. It has the following advantages:

1. Radio-frequency cavities for beam acceleration can be located between the sectors
rather than between the magnet poles. This allows greater latitude in designing the
focusing magnetic field and the acceleration system. Multiple acceleration gaps can be
accommodated, leading to rapid acceleration and large orbit separation.

2. The bending field is produced by a number of modular magnets rather than a single
larger unit. Modular construction reduces the problems of fabrication and mechanical
stress. This is particularly important at high energy.
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The main drawback of the separated sector cyclotron is that it cannot accelerate ions from zero
energy. The beam transport region is annular because structures for mechanical support of the
individual magnet poles must be located on axis. Ions are pre-accelerated for injection into a
separated sector cyclotron. Pre-acceleration can be accomplished with a low-energy AVF
cyclotron or a linac. The injector must be synchronized so that micropulses are injected into the
high-energy machine at the proper phase.

Figure 15.13a shows the separated sector cyclotron at the Swiss Nuclear Institute. Parameters
of the machine are summarized in Table 15.1. The machine was designed for a high average flux
of light ions to generate mesons for applications to radiation therapy and nuclear research. The
accelerator has eight spiral sector magnets with a maximum hill field of 2.1 T. Large waveguides
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connect rf supplies to a four acceleration gaps. In operation, the machine requires 0.5 MW of rf
input power. The peak acceleration gap voltage is 500 kV. The maximum orbit diameter of the
cyclotron is 9 in for a maximum output energy of 590 MeV (protons). The time-averaged beam
current is 200 µA. A standard AVF cyclotron with four spiral-shaped sectors is used as an
injector. An increase of average beam current to 1 mA is expected with the addition of a new
injector. The injector is a spiral cyclotron with four sectors. The injector operates at 50.7 MHz
and generates 72-MeV protons. Figure 15.13b is an overhead view of the magnets and rf cavities
in the separated sector cyclotron. Six selected orbits are illustrated at equal energy intervals from
72 to 590 MeV. Note that the distance an ion travels through the sector field increases with orbit
radius (negative effective field index). The diagram also indicates the radial increase of the
inclination angle between sector field boundaries and the particle orbits.

15.5 PRINCIPLES OF TliE SYNCHROTRON

Synchrotrons are resonant circular particle accelerators in which both the magnitude of the
bending magnetic field and the rf frequency are cycled. An additional feature of most modem
synchrotrons is that focusing forces are adjustable independent of the bending field. Independent
variation of the focusing forces, beam-bending field, and rf frequency gives synchrotrons two
capabilities that lead to beam energies far higher than those from other types of circular
accelerators:

1. The betatron wavelength of particles can be maintained constant as acceleration proceeds. This
makes it possible to avoid the orbital resonances that limit the output energy of the AVF
cyclotron.

2. The magnetic field amplitude is varied to preserve a constant particle orbit radius during
acceleration. Therefore, the bending field need extend over only a small annulus rather than fill a
complete circle. This implies large savings in the cost of the accelerator magnets. Furthermore,
the magnets can be fabricated as modules and assembled into ring accelerators exceeding 6 km
in circumference.

The main problems of the synchrotron are (1) a complex operation cycle and (2) low average flux.
The components of a modem separated function synchrotron are illustrated in Figure 15.14. An

ultra-high-vacuum chamber for beam transport forms a closed loop. Circular sections may be
interrupted by straight sections to facilitate beam injection, beam extraction, and experiments.
Acceleration takes place in a cavity filled with ferrite cores to provide inductive iso a over a
broad frequency range. The cavity is similar to a linear inductionaccelerator cavity. The two
differences are (1) an ac voltage is applied across the gap and (2) the ferrites are not driven to
saturation to minimize power loss.
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Beam bending and focusing are accomplished with magnetic fields. The separated function
synchrotron usually has three types of magnets, classified according to the number of poles used
to generate the field.Dipole magnets(Fig. 15.15a) bend the beam in a closed orbit.Quadrupole
magnets(Fig. 15.15b) (grouped as quadrupole lens sets) focus the beam.Sextupole magnets(Fig.
15.15c) are usually included to increase the tolerance of the focusing system to beam energy
spread. The global arrangement of magnets around the synchrotron is referred to as afocusing
lattice. The lattice is carefully designed to maintain a stationary beam envelope. In order to avoid
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resonance instabilities, the lattice design must not allow betatron wavelengths to equal a
characteristic dimension of the machine (such as the circumference). Resonance conditions are
parametrized in terms offorbidden valuesof νr andνz.

A focusing cell is strictly defined as the smallest element of periodicity in a focusing system.
A period of a noncircular synchrotron contains a large number of optical elements. A cell may
encompass a curved section, a straight section, focusing and bending magnets, and transition
elements between the sections. The termsuperperiodis usually used to designate the minimum
periodic division of a synchrotron, while focusing cell is applied to a local element of periodicity
within a superperiod. The most common local cell configuration is theFODO cell. It consists of a
focusing quadrupole (relative to ther or z direction), a dipole magnet, a defocusing quadrupole,
and another dipole. Horizontal focusing forces in the bending magnets are small compared to that
in the quadrupoles. For transverse focusing, the cell is represented as a series of focusing and
defocusing lenses separated. by drift (open) spaces.

The alternating-gradient synchrotron (AGS) is the precursor of the separated function
synchrotron. The AGS has a ring of magnets which combine the functions of beam bending and
focusing. Cross sections of AGS magnets are illustrated in Figure 15.16. A strong positive or
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negative radial gradient is superimposed on the bending field; horizontal and vertical focusing
arises from the transverse fields associated with the gradient (Section 7.3). The magnet of
Figure 15.16a gives strong radial focusing and horizontal defocusing, while the opposite holds for
the magnet of Figure 15.16b.

Early synchrotrons utilized simple gradient focusing in an azimuthally symmetric field. They
were constructed from a number of adjacent bending magnets with uniform field index in the
range 0 <n < 1. These machines are now referred to asweak focusing synchrotronsbecause the
betatron wavelength of particles was larger than the machine circumference. The zero-gradient
synchrotron (ZGS) (Fig. 15.16c) was an interesting variant of the weak focusing machine.
Bending and focusing were performed by sector magnets with uniform-field magnitude (zero
gradient). The sector field boundaries were inclined with respect to the orbits to give vertical
focusing [via edge focusing (Section 6.9)] and horizontal focusing [via sector focusing (Section
6.8)]. The advantage of the ZGS compared to other weak focusing machines was that higher
bending fields could be achieved without local saturation of the poles.
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R � 3.3E/B (m), (15.51)

P � 2cE4ro/3R2(moc
2)3 (watts), (15.52)

ro � q 2/4πεomoc
2. (15.53)

re � 2.82 × 10�15 m. (15.54)

P � cVo/2πR. (15.55)

E � [3Vo(moc
2)3R/4πro]

0.25. (15.56)

The limit on kinetic energy in an ion synchrotron is set by the bending magnetic field magnitude
and the area available for the machine. The ring radius of relativistic protons is given by

where is the average magnetic field (in tesla) andE is the total ion energy in GeV. Most ionB
synchrotrons accelerate protons; protons have the highest charge-to-mass ratio and reach the
highest kinetic energy per nucleon for a given magnetic field. Synchrotrons have been used for
heavy-ion acceleration. In this application, ions are pre-accelerated in a linear accelerator and
directed through a thin foil to strip electrons. Only ions with high charge states are selected for
injection into the synchrotron.

The maximum energy in an electron synchrotron is set by emission ofsynchrotron radiation.
Synchrotron radiation results from the continuous transverse acceleration of particles in a circular
orbit. The total power emitted per particle is

whereE is the total particle energy andR is the radius of the circle. Power in Eq. (15.52) is given
in electron volts per second if all energies on the right-hand side are expressed in electron volts.
The quantityro is the classical radius of the particle,

The classical radius of the electron is

Inspection of Eqs. (15.52) and (15.53) shows that synchrotron radiation has a negligible effect
in ion accelerators. Compared to electrons, the power loss is reduced by a factor of . To(me/mi)

4

illustrate the significance of synchrotron radiation in electronaccelerators, consider a synchrotron
in which electrons gain an energyeVo per turn. The power input to electrons (in eV/s) is

Setting Eqs. (15.52) and (15.55) equal, the maximum allowed total energy is
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∆θ � (mec
2/E) (15.57)

For example, withR = 20 m andVo = 100 kV, the maximum energy is E = 2.2 GeV. Higher
energies result from a larger ring radius and higher power input to the accelerating cavities, but
the scaling is weak. The peak energy achieved in electron synchrotrons is about 12 GeV forR =
130 m. Linear accelerators are the only viable choice to reach higher electron energy for particle
physics research. Nonetheless, electron synchrotrons are actively employed in other areas of
applied physics research. They are a unique source of intense radiation over a wide spectral range
via synchrotron radiation. New synchrotron radiation facilities are planned as research tools in
atomic and solid-state physics.

Synchrotron radiation has some advantageous effects on electron beam dynamics in
synchrotrons. The quality of the beam (or the degree to which particle orbit parameters are
identical) is actually enhanced by radiation. Consider, for instance, the spread in longitudinal
energy in a beam bunch. Synchrotron radiation is emitted over a narrow cone of angle

in the forward direction relative to the instantaneous electron motion. Therefore, the emission of
photons slows electrons along their main direction of motion while making a small contribution to
transverse motion. According to Eq. (15.52), higher-energy electrons lose more energy; therefore,
the energy spread of an electron bunch decreases. This is the simplest example of beam cooling.
The process results in a reduction of the random spread of particle orbits about a mean; hence, the
termcooling.

The highest-energy accelerator currently in operation is located at the Fermi National
Accelerator Laboratory. The 2-km-diameter proton synchrotron consists of two accelerating
rings, built in two stages. In the main ring (completed in 1971), beam focusing and bending are
performed by conventional magnets. Beam energies up to 450 GeV have been achieved in this
ring. After seven years of operation, an additional ring was added in the tunnel beneath the
main ring. This ring, known as the energy doubler, utilizes superconducting magnets. The higher
magnetic field makes it possible to generate beams with 800 GeV kinetic energy. The total
experimental facility, with beam transport elements and experimental areas designed to
accommodate the high-energy beams, is known as the Tevatron. A scale drawing of the
accelerator and experimental areas is shown in Figure 15.17a. Protons, extracted from a
750-kV electrostatic accelerator, are accelerated in a 200-MeV linear accelerator. The beam is
then injected into a rapid cycling booster synchrotron which increases the energy to 8 GeV. The
booster synchrotron cycles in 33 ms. The outputs from 12 cycles of the booster synchrotron are
used to fill the main ring during a constant-field initial phase of the main ring acceleration cycle.
The booster synchrotron has a circumference equal to 1/13.5 that of the main ring. The 12 pulses
are injected head to tail to fill most of the main ring circumference.

A cross section of a superconducting bending magnet from the energy doubler is shown in
Figure 15.17b. It consists of a central bore tube of average radius 7 cm surrounded by
superconducting windings with a spatial distribution calculated to give a highly uniform bending
field. The windings are surrounded by a layer of stainless steel laminations to clamp the windings
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securely to the tube. The assembly is supported in a vacuum cryostat by fiberglas supports,
surrounded by a thermal shield at liquid nitrogen temperature. A flow of liquid helium maintains
the low temperature of the magnet coils. Bending magnets in the energy doubler are 6.4 m in
length. A total of 774 units are necessary. Quadrupoles are constructed in a similar manner; a total
of 216 focusing magnets are required. The parameters of the FNAL accelerator are listed in Table
15.2.

Storage rings consist of bending and focusing magnets and a vacuum chamber in which
high-energy particles can be stored for long periods of time. The background pressure must be
very low to prevent particle loss through collisions. Storage rings are filled with particles by a
high-energy synchrotron or a linear accelerator. Their geometry is almost identical to the
separated function synchrotron. The main difference is that the particle energy remains constant.
The magnetic field is constant, resulting in considerable simplification of the design. A storage
ring may have one or more acceleration cavities to compensate for radiative energy loss of
electrons or for longitudinal bunching of ions.
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cβ�1 � c (β1 � βi) / (1 � βuβ1). (15.59)

cβ�2 � �cβu, (15.58)

One of the main applications of storage rings is in colliding beam facilities for high-energy particle
physics. A geometry used in the ISR (intersecting storage ring) at CERN is shown in Figure
15.18. Two storage rings with straight and curved sections are interleaved. Proton beams
circulating in opposite directions intersect at small angles at eight points of the ring.
Proton-proton interactions are studied by detectors located near the intersection points.

Colliding beams have a significant advantage for high-energy physics research. The main
requisite for probing the nature of elementary particles is that a large amount of energy must be
available to drive reactions with a high threshold. When a moving beam strikes a stationary target
(Fig. 15.19a), the kinetic energy of the incident particle is used inefficiently. Conservation of
momentum dictates that a large portion of the energy is transformed to kinetic energy of the
reaction products. The maximum energy available to drive a reaction in Figure 15.19a can be
calculated by a transformation to the center-of-momentum (CM) frame. In the CM frame, the
incident and target particles move toward one another with equal and opposite momenta. The
reaction products need not have kinetic energy to conserve momentum when viewed in the CM
frame; therefore, all the initial kinetic energy is available for the reaction.

For simplicity, assume that the rest mass of the incident particle is equal to that of the target
particle. Assume the CM frame moves at a velocitycβu relative to the stationary frame. Using Eq.
(2.30), the velocity of the target particle in the CM frame is given by

and the transformed velocity of the incident particle is

Both particles have the same value ofγ’ in the CM frame; the condition of equal and opposite
momenta implies
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�β
�

2 � β
�

1. (15.60)

βu � (1/β1) � (1/β2
1) � 1. (15.61)

T � (γ1�1) moc
2, (15.62)

Tcm � 2 (γ�1�1) moc
2, (15.63)

γ1 � 1/ 1�β2
1, γ

�

1 � 1/ 1�β2
u.

Combining Eqs. (15.58), (15.59), and (15.60), we find that

Equation (15.61) allows us to compare the energy invested in the incident particle,

to the maximum energy available for particle reactions,

where
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Tcm � 2 (γ1�1) moc
2. (15.63)

Table 15.3 showsTcm/T as a function ofγ1, along with equivalent kinetic energy values for
protons. In the non-relativistic range, half the energy is available. The fraction drops off at high
kinetic energy. Increasing the kinetic energy of particles striking a stationary target gives
diminishing returns. The situation is much more favorable in an intersecting storage ring. The
stationary frame is the CM frame. The CM energy available from ring particles withγ1 is
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For example, a 21-GeV proton accelerator operated in conjunction with an intersecting storage
ring can investigate the same reactions as a 1000-GeV accelerator with a stationary target. The
price to pay for this advantage is reduction in the number of measurable events for physics
experiments. A stationary target is usually at solid density. The density of a stored beam is
more than 10 orders of magnitude lower. A major concern in intersecting storage rings is
luminosity, a measure of beam density in physical space and velocity space. Given a
velocity-dependent cross section, the luminosity determines the reaction rate between the beams.
The required luminosity depends on the cross section of the reaction and the nature of the event
detectors.

A list of accelerators and storage rings with the most energetic beams is given in Table 15.4.
The energy figure is the kinetic energy measured in the accelerator frame. The history of
accelerators for particle physics during the last 50 years has been one of an exponential increase in
the available CM energy. Although this is attributable in part to an increase in the size of
equipment, the main reason for the dramatic improvement has been the introduction of new
acceleration techniques. When a particular technology reached the knee of its growth curve, a
new type of accelerator was developed. For example, proton accelerators evolved from
electrostatic machines to cyclotrons. The energy energy limit of cyclotrons was resolved by
synchrocyclotrons which lead to the weak focusing synchrotron. The development of strong
focusing made the construction of large synchrotrons possible. Subsequently, colliding beam
techniques brought about a substantial increase in CM energy from existing machines. At
present, there is considerable activity in converting the largest synchrotrons to colliding beam
facilities.

In the continuing quest for high-energy proton beams for elementary particle research, the next
stated goal is to reach a proton kinetic energy of 20 TeV (20 × 1012 eV). At present, the only
identified technique to achieve such an extrapolation is to build an extremely large machine. A
20-TeV synchrotron with conventional magnets operating at an average field of I T has a radius
of 66 km and a circumference of 414 km. The power requirements of conventional magnets in
such a large machine are prohibitive; superconducting magnets are essential. Superconducting
magnets can be designed in two ranges. Superconducting coils can be combined with a
conventional pole assembly for fields below saturation. Because superconducting coils sustain a
field with little power input, there is also the option for high-field magnets with completely
saturated poles. A machine with 6-T magnets has a circumference of 70 km.

Studies have recently been carried out for a superconducting super collider (SSC) [see, M.
Tigner, Ed.,Accelerator Physics Issues for a Superconducting Super Collider, University of
Michigan, UM HE 84-1, 1984]. This machine is envisioned as two interleaved 20-TeV proton
synchrotrons with counter-rotating beams and a number of beam intersection regions. Estimates
of the circumference of the machine range from 90 to 160 km, depending on details of the magnet
design. The CM energy is a factor of 40 higher than that attainable in existing accelerators. If it is
constructed, the SSC may mark the termination point of accelerator technology in terms of
particle energy; it is difficult to imagine a larger machine. Considerations of cost versus rewards in
building the SSC raise interesting questions about economic limits to our knowledge of the
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γ
2
t �

δp/ps

δS/S
, (15.64)

universe.

15.6 LONGITUDINAL DYNAMICS OF SYNCHROTRONS

The description of longitudinal particle motion in synchrotrons has two unique aspects compared
to synchrocyclotrons and AVF cyclotrons. The features arise from the geometry of the machine
and the high energy of the particles:

1. Variations of longitudinal energy associated with stable phase confinement of particles
in an rf bucket result in horizontal particle oscillations. The synchrotron oscillations sum
with the usual betatron oscillations that arise from spreads in transverse velocity.
Synchrotron oscillations must be taken intoaccount in choosing the size of thegood field
region of focusing magnets.

2. The range of stable synchronous phase in a synchrotron depends on the energy of
particles. This effect is easily understood. At energies comparable to or less thanmoc

2,
particles are non-relativistic; therefore, their velocity depends on energy. In this regime,
low-energy particles in a beam bunch take a longer time to complete a circuit of the
accelerator and return to the acceleration cavity. Therefore, the accelerating voltage must
rise with time atφs for phase
stability ( ). At relativistic energies, particle velocity is almost independent of0 < φs < π/2
energy; the particle orbit circumference is the main determinant of the revolution time.
Low-energy particles have smaller orbit radii and therefore take less time to return to the
acceleration gap. In this case, the range of stable phase is . The energy thatπ/2 < φs < π

divides the regimes is called thetransition energy. In synchrotrons that bridge the
transition energy, it is
essential to shift the phase of the rf field before the bunched structure of the beam is lost.
This effect is unimportant in electron synchrotrons because electrons are always injected
above the transition energy.

Models are developed in this section to describe the longitudinal dynamics of particles in
synchrotrons. We begin by introducing the quantityγt, the transition gamma factor. The parameter
characterizes the dependence of particle orbit radius in the focusing lattice to changes in
momentum. We shall see thatγt corresponds to the relativistic mass factor at the transition energy.
After calculating examples ofγt in different focusing systems, we shall investigate the equilibrium
conditions that define a synchronous phase. The final step is to calculate longitudinal oscillations
about the synchronous particle.

The transition gamma factor is defined by
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γ
2
t �

δp/ps

δR/R
, (15.65)

δp/ps � (δr/R) � (δB/Bo). (15.66)

γ
2
t �

δp/ps

δr/R
� (1 � n) �

ωr

ωgo

2

. (15.67)

Fr � �γomoω
2
r δr � qBoc, (15.68)

γomoω
2
r δr � qBoc � γomoc

2/R � δγmoc
2/R � γmoc

2 δr/R2. (15.69)

whereps is the momentum of the synchronous particle andS is the pathlength of its orbit around
the machine. In a circular accelerator with no straight sections, the equilibrium radius is related to
pathlength byS= 2πR; therefore,

The transition gamma factor must be evaluated numerically for noncircular machines with
complex lattices. We will develop simple analytic expressions forγt in ideal circular accelerators
with weak and strong focusing.

In a weak focusing synchrotron, momentum is related to vertical magnetic field and position by
Eq. (3.38), so thatp � qrB,

for and . The relative change in vertical field can be related to the change inδr « R δB « Bo
radius though Eq. (7.18), so that

The requirement of stable betatron oscillations in a weak focusing machine limitsγt to the range
.0 < γt < 1

We can also evaluateγt for an ideal circular machine with uniform bending field and a strong
focusing system. Focusing in the radial direction is characterized byνr, the number of radial
betatron oscillations per revolution. For simplicity, assume that the particles are relativistic so that
the magnetic forces are almost independent of energy. The quantityR is the equilibrium radius for
particles of momentum . The radial force expanded aboutR isγomoc

whereδr = r - R. The equilibrium radius for momentum is determined by the balance(γo�δγ) moc
of magnetic forces with centrifugal force, .Neglecting second-order terms, we find(γo�δγ) moc

2/r
that

Zero-order terms cancel, leaving
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(δr/R) (ω2
r � ω

2
go) � (δγ/γo) ω

2
go � (δp/p) ω

2
go,

γ
2
t � 1 � (ωr/ωgo)

2
� 1 � ν

2
r . (15.70)

qE � (qVo sinφs/δ). (15.71)

∆ps � (qVo sinφs/δ) (δ/vs), (15.72)

τo � 2πR/vs. (15.73)

dps/dt � qVo sinφs/2πR. (15.74)

ps � pso � (qVo sinφs/2πR) t. (15.75)

or

Note that in a strong focusing system with highνr. Therefore, particle position in a strongγt » 1
focusing system is much less sensitive to momentum errors than in a weak focusing system.

Both the magnetic field and frequency of accelerating electric fields must vary in a synchrotron
to maintain a synchronous particle with constant radiusR. There are a variety of possible
acceleration histories corresponding to different combinations of synchronous phase, cavity
voltage amplitude, magnetic field strength, and rf frequency. We shall derive equations to relate
the different quantities.

We begin by calculating the momentum of the synchronous particle as a function of time.
Assume the acceleration gap has narrow widthδ so that transit-time effects can be neglected. The
electric force acting on the synchronous particle in a gap with peak voltageVo is

The momentum change passing through the gap is the electric force times the transit time, or

wherevs is the synchronous particle velocity. Acceleration occurs over a large number of
revolutions; it is sufficient to approximateps as a continuous function of time. The smoothed
derivative ofps is found by dividing both sides of Eq. (15.72) by the revolution time

The result is

If Vo andφs are constant, Eq. (15.74) has the solution

Either Eq. (15.74) or (15.75) can be used to findps(t). Equation (2.37) can then be used to
determineγs(t) from ps(t). The time history of the frequency is then constrained. The revolution
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ω � (Mc/R) 1 � 1/γ2
s. (15.77)

Bo � (moc/qR) γ
2
s � 1. (15.78)

ω �

MqBo/mo

1 � (qBoR/moc)2
. (15.79)

dp/dt � (qVo/2πR) sinφ, (15.80)

dδp/dt � (qVo/2πR) (sinφ � sinφs) � (qVoωgo/2βsc) (sinφ � sinφs). (15.81)

dφ/dt � ω � Mωg. (15.82)

frequency is through Eq. (2.21). The rf frequency must be anωgo � vs/R � (c/R) 1 � 1/γ2
s

integer multiple of the revolution frequency, . In small synchrotrons,M may equal 1 toω � Mωgo
minimize the rf frequency. In larger machines,M is usually greater than unity. In this case, there
areM circulating beam bunches contained in the ring. The rf frequency is related to the particle
energy by

Similarly, the equation implies that the magnetic field magnitude isBo � γomovs/qR

The rf frequency and magnetic field are related to each other by

As an example of the application of Eqs. (15.75), (15.77), and (15.78), consider the parameters
of a moderate-energy synchrotron (the Bevatron). The injection and final energies for protons are
9.8 MeV and 6.4 GeV. The machine radius is 18.2 m andM = 1. The variations of rf frequency
andBo during an acceleration cycle are plotted in Figure 15.20. The magnetic field rises from
0.025 to 1.34 T and the frequency ( ) increases from 0.37 to 2.6 MHz.f � ω/2π

The reasoning that leads to Eq. (15.74) can also be applied to derive a momentum equation for
a nonsynchronous particle. Again, averaging the momentum change around one revolution,

whereR is the average radial position of the particle. Substituting , we find (as inδp � p � ps
Section 13.3) that

Applying Eq. (15.6), changes of phase can be related to the difference between the orbital
frequency of a nonsynchronous particle to the rf frequency,

The orbital frequency must be related to variations of relativistic momentum in order to generate a
closed set of equations. The revolution time for a nonsynchronous particle is ,τ � 2πr/v � 2π/ωg



Cyclotrons and Synchrotrons

548

δτ/τo � �δωg/ωgo � (δr/R) � (δv/vs) � (δr/R) � (δβ/βs). (15.83)

(δp/ps) � δγ/γo � δβ/βs � δβ/βs / (1 � β
2
s). (15.84)

�δωg/ωgo � (δr/R) � (δp/ps) / γ
2
s � [(1/γ2

t ) � (1/γ2
s)] (δp/ps). (15.85)

Differential changes inτ arise from variations in particle velocity and changes in orbit radius. The
following equations pertain to small changes about the parameters of the synchronous particle
orbit:

The differential change in momentum ( ) isp � γmoβc

The final form is derived from Eq. (2.22) with some algebraic manipulation. Noting that
, we find thatδβ/βs � (1 � β

2
s) (δp/ps)

Equation (15.85) implies that
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dωg/dt � � (dδp/dt) (ωgo/ps) [(1/γ2
t ) � (1/γ2

s)]. (15.86)

d 2φ/dt 2
� � M (dωg/dt). (15.87)

d 2φ/dt 2
� (Mω

2
go/γomoc

2β
2
s) (eVo/2π) [(1/γ2

t ) � (1/γ2
s)] (sinφ � sinφs). (15.88)

ωs � ωgo �

M cosφs

2πβ2
s

eVo

γsmoc
2

1

γ
2
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�

1

γ
2
s

(15.89)

Equations (15.81), (15.82), and (15.86) can be combined into a single equation for phase in the
limit that the parameters of the synchronous particle and the rf frequency change slowly compared
to the time scale of a phase oscillation. This is an excellent approximation for the long
acceleration cycle of synchrotrons. Treatingω as a constant in Eq. (15.82), we find

Combining Eqs. (15.85), (15.86), and (15.87), the following equation describes phase dynamics in
the synchrotron:

Equation (15.88) describes a nonlinear oscillator; it is similar to Eq. (13.21) with the exception of
the factor multiplying the sine functions. We discussed the implications of Eq. (13.21) in Section
13.3, including phase oscillations, regions ofacceptance for longitudinal stability, and
compression of phase oscillations. Phase oscillations in synchrotrons have two features that are
not encountered in linear accelerators:

1. Phase oscillations lead to changes of momentum aboutps and hence to oscillation of
particle orbit radii. These radial oscillations are calledsynchrotron oscillations.

2. The coefficient of the sine terms may be either positive or negative, depending on the
average particle energy.

In the limit of small phase excursion ( ), the angular frequency for phase oscillations in a∆φ « 1
synchrotron is

Note that the term in brackets contains dimensionless quantities and a factor proportional to the
ratio of the peak energy gain in the acceleration gap divided by the particle energy. This is a very
small quantity; therefore, the synchrotron oscillation frequency is small compared to the frequency
for particle revolutions or betatron oscillations. The radial oscillations occur at angular frequency
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δr � R (∆φ/M) (ωs/ωgo), (15.90)

Et � (moc
2) νr. (15.91)

z � zo cos(Mµ�φ), (15.92)

ws. In the range well beyond transition ( ), the amplitude of radial oscillations can beγs » γt
expressed simply as

where∆φ is the maximum phase excursion of the particle fromφs.
The behavior of the expression determines the range of stable phase and the[(1/γ2

t ) � (1/γ2
s)]

transition energy. For largeγt or smallγs, the expression is negative. In this case, the stability
range is the same as in a linear accelerator, . At high values ofγs, the sign of the0 < φs < π/2
expression is positive, and the stable phase regime becomes .π/2 < φs < π

In a weak focusing synchrotron,γt is always less than unity; therefore, particles are in the
post-transition regime at all values of energy. Transition is a problem specific to strong focusing
synchrotrons. The transition energy in a strong focusing machine is given approximately by

15.7 STRONG FOCUSING

The strong focusing principle [N. C. Christofilos, U.S. Patent No. 2,736,799 (1950)] was in large
part responsible for the development of synchrotrons with output beam kinetic energy exceeding
10 GeV. Strong focusing leads to a reduction in the dimensions of a beam for a given transverse
velocity spread and magnetic field strength. In turn, the magnet gap and transverse extent of the
good field regioncan be reduced, bringing about significant reductions in the overall size and cost
of accelerator magnets.

Weak focusing refers to beam confinement systems in circular accelerators where the betatron
wavelength is longer than the machine circumference. The category includes the gradient-type
field of betatrons and uniform-field cyclotrons. Strong focusing accelerators have , aλb < 2πR
consequence of the increased focusing forces. Examples are the alternating-gradient configuration
andFD or FODO combinations of quadrupole lenses. Progress in rf linear accelerators took place
largely in the early 1950s after the development of high-power rf equipment. Although some early
ion linacs were built with solenoidal lenses, all modem machines use strong focusing quadrupoles,
either magnetic or electric.

The advantage of strong focusing can be demonstrated by comparing the vertical acceptance of
a weak focusing circular accelerator to that of an altemating-gradient (AG) machine. Assume that
the AG field consists ofFD focusing cells of length I (along the beam orbit) with field index ±n,
wheren » 1. The vertical position of a particle at cell boundaries is given by

where
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µ � cos�1 [cos( nωgo/vs) cosh( nωgo/vs)]

z � zo cos(µS/l � φ), (15.93)

z�
� � (zoµ/l) sin(µS/l � φ). (15.94)

Av � πzoz
�

o � πz2
o µ/l. (15.95)

z � zo cos( nS/R � φ). (15.96)

Av � πz2
o n/R. (15.97)

andM is the cell number. For , the orbit consists of a sinusoidal oscillation extending overµ � 1
many cells with small-scale oscillations in individual magnets. Neglecting the small oscillations,
the orbit equation for particles on the beam envelope is

whereS, the distance along the orbit, is given byS= Ml. The angle of the orbit is approximately

Combining Eqs. (15.93) and (15.94), the vertical acceptance is

In a weak focusing system, vertical orbits are described by

Following the same development, the vertical acceptance is

In comparing Eqs. (15.95) and (15.97), note that the field index for weak focusing must be less
than unity. In contrast, the individual field indices of magnets in the alternating gradient are made
as large as possible, consistent with practical magnet design. Typically, the field indices are chosen
to give . For the same field strength, the acceptance of the strong focusing system isµ � 1
therefore larger by a factor on the order ofR/l or N/2π, whereN is the number of focusing cells.
The quantityN is a large number. For example,N = 60 in the AGS accelerator at Brookhaven
National Laboratory.

The major problem of strong focusing systems is that they are sensitive to alignment errors and
other perturbations. The magnets of a strong focusing system must be located precisely. We shall
estimate the effects of alignment error in a strong focusing system using the transport matrix
formalism (Chapter 8). The derivation gives further insight into the origin of resonant instabilities
introduced in Section 7.2.
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x � x � ε (15.98)

x �
� x �

� ε� (15.99)

un�1 � un � ε, (15.100)

For simplicity, consider a circular strong focusing machine with uniformly distributed cells.
Assume that there is an error of alignment in either the horizontal or vertical direction between
two cells. The magnets may be displaced a distanceε, as shown in Figure 15.21a. In this case, the
position component of an orbit vector is transformed according to

when the particle crosses the boundary. An error in magnet orientation by an angleε' (Fig.
15.21b) causes a change in the angular part of the orbit vector:

The general transformation at the boundary is

where .ε � ( ε, ε
� )

Let A be the transfer matrix for a unit cell of the focusing system and assume that there areN
cells distributed about the circle. The initial orbit vector of a particle isu0. For convenience,u0 is
defined at a point immediately following the imperfection. After a revolution around the machine
and traversal of the field error, the orbit vector becomes
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uN � A N u0 � ε. (15.101)

u2N � A N uN � ε � A 2N u0 � (A N
� I ) ε, (15.102)

unN � A nN u0 � Dnε. (15.103)

Dn � (A (n�1)N
� A (n�2)N

� ... � A N
� I ). (15.104)

ε � a1 ν1 � a2 ν2. (15.105)

λ1 � exp( jµ), λ2 � exp(�jµ). (15.106)

Dnε � a1 ν1 exp[j(n�1)Nµ] � exp[j(n�2)Nµ] � ... � 1

� a2 ν2 exp[�j(n�1)Nµ] � exp[�j(n�2)Nµ] � ... � 1 ,
(15.107)

The orbit vector after two revolutions, is

whereI is the identity matrix. By induction, the transformation of the orbit matrix forn
resolutions is

where

We found in Chapter 8 that the first term on the right-hand side of Eq. 1(15.103) corresponds to
bounded betatron oscillations when stability criteria are satisfied. The amplitude of the term is
independent of the perturbation. Particle motion induced by the alignment error is described by
the second term. The expression forDn can be simplified using the eigenvectors (Section 8.6) of
the matrixA: ν1 andν2. The eigenvectors form a complete set; any two-dimensional vector,
includingε can be resolved into a sum of eigenvectors:

We found in Section 8.6 that the eigenvalues for a transfer matrixA are

where µ is the phase:advance in a cell. Substituting Eq. (15.106) in Eq. (15.103), we find

The sums of the geometric series can be rewritten as
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Dnε �

exp( jnNµ) � 1
exp( jNµ) � 1

a1 ν1 � aexp(�jnNµ) � 1
exp(�jNµ) � 1

a2 ν2. (15.108)

Dnε � [sin(nNµ/2)/sin(nµ/2)]

× [exp[ j(n�1)Nµ/2)] a1 ν1 � exp[�j(n�1)Nµ/2)] a2 ν2].
(15.109)

µ � 2πM/N, (15.110)

ν � M. (15.111)

or, alternately,

The second term in braces is always bounded; it has a magnitude on the order ofε. The first term
in brackets determines the cumulative effect of many transitions across the alignment error. The
term becomes large when the denominator approaches zero; this condition occurs when

whereM is an integer. Equation (15.110) can be rewritten in terms ofν, the number of betatron
wavelengths per revolution:

This is the condition for an orbital resonance. When there is a resonance, the effects of an
alignment error sum on successive revolutions. The amplitude of oscillatory motion grows with
time. The motion induced by an error when is an oscillation superimposed on betatronν � M
and synchrotron oscillations. The amplitude of the motion can be easily estimated. For instance, in
the case of a position error of magnitudeε, it is .ε/sin(Nµ/2)
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An alternate view of the nature of resonant instabilities, mode coupling, is useful for general
treatments of particle instabilities. The viewpoint arises from conservation of energy and the
second law of thermodynamics. The second law implies that there is equipartition of energy
between the various modes of oscillation of a physical system in equilibrium. In the treatment of
resonant instabilities in circularaccelerators, we included two modes of oscillation: (1) the
revolution of particles at frequencyωgo and (2) betatron oscillations. There is considerable
longitudinal energy associated with particle revolution and, under normal circumstances, a small
amount of energy in betatron oscillations.
In a linear analysis, there is no exchange of energy between the two modes. A field error
introduces a nonlinear coupling term, represented by in Eq. (15.103). This term allowsDnε

energy exchange. The coupling is strong when the two modes are in resonance. The second law
implies that the energy of the betatron oscillations increases. A complete nonlinear analysis
predicts that the system ultimately approaches an equilibrium with a thermalized distribution of
particle energy in the transverse and longitudinal directions. In an accelerator, the beam is lost on
vacuum chamber walls well before this state is reached.

In a large circular accelerator, there are many elements of periodicity that can induce resonance
coupling of energy to betatron oscillations. In synchrotrons, where particles are contained for long
periods of time, all resonance conditions must be avoided. Resonances are categorized in terms of
forbidden numbers of betatron wavelengths per revolution. The physical bases of some forbidden
values are listed in Table 15.5.


