

MICROSCOPY SOCIETY OF AMERICA 2008

Luminescence Database I-Minerals and Materials

Colin M. MacRae* and Nicholas C. Wilson

CSIRO Minerals, Microbeam Laboratory, Bayview Avenue, Clayton, Victoria 3168, Australia

Abstract: A luminescence database for minerals and materials has been complied from the literature, the aim being to create a resource that will aid in the analysis of luminescence spectral of ionic species in minerals and materials. The database is based on a range of excitation techniques and records both major and minor lines, and their activators. The luminescence techniques included in the database are cathodoluminescence, ion luminescence, and photoluminescence. When combined with other traditional X-ray measurements collected on the same region, use of the luminescence database will give additional insight into the chemistry of minerals and materials.

Key words: luminescence, cathodoluminescence, photoluminescence, ion, minerals

INTRODUCTION

Minerals and materials can luminescence when they are exposed to an electron, X-ray, ion, or photon beam. Luminescence is generally associated with light in the ultraviolet (UV) to infrared (IR) region and can exhibit both broad and narrow band spectra. From the spectra it is possible to identify both the activators responsible for the luminescence and their charge states. A large number of research groups routinely employ luminescence analysis as a key macro- and micro-characterization techniques in the study of minerals and materials.

For many years the microanalyst has had available KLM lines for identifying peaks in X-ray spectra; however, no such tool has been available for luminescence generated by electrons, light, protons, or ions. To address this problem a luminescence database of lines has been compiled that contains over 1,000 lines or bands from over 70 minerals and synthetic materials. In this article the luminescence database is described, and in a subsequent article software tools and web access will be described. It is the authors' intention to make the database easily accessible and provide a procedure for external users to add new lines and spectra from minerals and materials.

A number of minerals have distinguishing luminescence properties. These include: diamond, sulphides (chalcocite, sphalerite), oxides (periclase, corundum, cassiterite), halides (fluorite, halite), sulphates (anhydrite, alunite), wolframates (scheelite), phosphates (apatite), carbonates (calcite, dolomite, magnesite, witherite), or silicates (albite, feldspar, quartz, zeolites, kaolinite, forsterite, zircon, garnet, titanite, thorite, willemite). The presence of luminescence, in many cases, allows rapid identification of the different mineral constituents using cathodoluminescence microscopy. This is particularly important if samples consist of fine-grained material and/or of minerals with similar optical or crystallographic properties. These grains can then be further characterized by electron microprobe or optical microscopy.

Furthermore, many of the phases occurring in ceramics (Hagni & Karakus, 1989), glasses, refractory materials (Karakus, 2005), and biomaterials show distinct luminescence properties allowing a rapid identification of phase distribution and transformations. Luminescence spectroscopy is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases.

LUMINESCENCE FUNDAMENTALS

Characteristic X-ray lines result from core level transitions, while the generation mechanism for luminescence is more complex. Characteristic X-rays are largely unaffected by bonding as the core orbitals do not take part and therefore a particular elemental transition is independent of the host lattice. However, the luminescence emission is sensitive to material composition and structure of the host lattice, because it originates from effects such as conduction to valence transitions and phonon modes (Marfunin, 1979). This makes luminescence sensitive to subtle effects such as trace level dopants and their valence, the host lattice, and quenching ions. This sensitivity results in luminescence providing extremely useful characterization information, but its interpretation is more difficult than that of characteristic X-rays.

Dopant Ions

Minerals and materials often contain optically active dopants ions. Generally there are considered to be three types of dopant ions that influence and determine the net emission of a particular mineral. They are referred to as activators, sensitizers, or quenchers. Activators produce emission by releasing the absorbed energy as photons. The most common activators are transition metal ions such as Cr³⁺, Mn²⁺, Mn⁴⁺, Sn²⁺, Pb²⁺, Fe³⁺ (Gotze, 2002), and rare earth elements (Marfunin, 1979). Sensitizers are ions that work in combination with an activator by absorbing the energy and subsequently transferring the energy to the activator. Quenchers trap part or all of the absorbed energy resulting in nonradiative decay of the energy. As a result, quenchers tend to eliminate the emission of light from minerals. The presence of the quencher causes new closely spaced energy levels to be set up, and the electron can easily return to the ground state with the emission of a succession of lowenergy photons (IR) or by losing energy to the lattice as heat (Marshall, 1988). An example of a well-recognized quencher ion in minerals is Fe^{2+} .

Types of Emission

Luminescence emission is generally grouped into two types: intrinsic and extrinsic. Intrinsic luminescence is native to host materials and involves band-to-band recombination of electron and hole pairs. Intrinsic luminescence emission may also be associated with lattice defects (anion vacancies) within the minerals or material. This type of luminescence is also referred to as "defect center" luminescence. The second type of emission, referred to as extrinsic, is the most common form of luminescence. Extrinsic emission is attributed to the presence of trace element impurities, transition metal, and rare earth ions. This type of luminescence is referred to as an "impurity center."

The emission process involves an electronic transition from an excited state (E_e) to a lower energy level or ground state (E_g) . When an electron beam interacts with a surface and produces light, this process is known as cathodoluminescence (CL). Similarly, an ion beam interacting with a surface and producing light is often referred to as ion luminescence (IL). Emission occurring when a photon beam interacts with a surface is referred to as photoluminescence (PL), and for X-ray beams the process is referred to as roentgenoluminescence. Cathodo- and photo-luminescence are the most effective methods of observing the glow of minerals, roentgenoluminescence and ion luminescence playing a lesser role. The cathodoluminescence acquires additional importance in connection with the use of X-ray microanalyzer in which an electron probe induces the glow of luminescent minerals and synthetic materials (Pagel et al., 2000; MacRae & Miller, 2003).

Generation of Luminescence

Cathodoluminescence can be observed with a variety of electron beam instruments (Petrov, 1996). One simple type of instrument is the electron beam flood gun that mounts directly onto the optical stage of a petrographic microscope (Marshall, 1988). Another approach is to mount a spectrometer onto a scanning electron microscope. This typically collects light with a mirror that is usually on a retractable arm, and the light is measured using a grating-type spectrometer (Katona et al., 2004; Vernon-Parry et al., 2005). A more recent approach is to integrate cathodoluminescence capture into an electron probe microanalyzer using the existing collection optics and to employ an optic fiber coupled to a CCD spectrometer to measure the luminescence (MacRae et al., 2001, 2005; Edwards et al., 2003). All these collection systems measure cathodoluminescence with differing lateral and spectroscopic resolutions. They each have their own benefits and virtues.

Photoluminescence spectra can be induced by monochromatic light in the band of the ion absorption or by means of UV radiation with a spectrum necessary to excite the ion absorption bands. Ultraviolet radiation is necessary to excite the ion up to energy levels lying above the emission level, which is usually in the visible to near IR region (Marfunin, 1979).

Other Effects

Luminescence lifetime or decay time can provide information on the nature of the center and is a measure of the transition probability from the emitting state. The transition probability is unique for each center and therefore can be used to differentiate centers. Time-resolved luminescence spectra have been studied using pulsed or chopped electron or laser-induced excitation and lock in amplifiers coupled to spectrometers to measure the decay spectra (Gorton et al., 1997; Pagel et al., 2000; Edwards et al., 2003; Merano et al., 2005).

Polarized luminescence has been observed with cathodoluminescence, and this can enhance differentiation of minerals and materials and offers information about site symmetries of the luminescence centers (Gorz et al., 1970; Chandrasekhar & White, 1992). The database does not indicate whether minerals or materials have polarized emission. Only a few studies have considered this effect; for example, information on polarization has been studied in silicates (Bhalla & White, 1970, 1972; Gorz et al., 1970; Chandrasekhar & White, 1992; Remond et al., 2000), and diamonds (Kiflawi & Lang, 1974).

The intensity of luminescence varies as a function of sample temperature. Typically, temperature quenching of the luminescence arises at high temperature because of the increased probability of nonradiative transition from the excited to the ground state. Some samples will show an increase in intensity with decreasing temperature. While peaks shapes are narrower at lower temperatures, they can also shift with temperature (Lozykowski et al., 1999). The luminescence decay time can also alter at low temperatures; for example, in calcite the Mn^{2+} peak has a measurably shorter decay time at lower temperature (Mason et al., 2005).

Temperature is not the only mechanism that can affect positions and intensities of luminescent lines. Some cathodoluminescence measurements performed using intense electron beams can cause disruption within the mineral or material by such processes as heating, sputtering, or ion migration. These disruptions can lead to modified spectra and sometimes to rapid decreases in intensity with time of bombardment. Some spectra may have been collected with long dwell times leading to the recording of only the slow decay processes as the faster ones have been extinguished. Spectra collected on beam sensitive materials can be done routinely with automated collection systems (Lee et al., 2005; MacRae et al., 2005).

Scope of the Luminescence Database

The luminescence database encompasses an extensive range of lines from minerals and materials that have been reported in the literature. Previously, a number of smaller tables have been constructed but these usually focused on specific minerals or materials (Marshall, 1988; Yacobi & Holt, 1990; Stevens-Kalceff & Phillips, 1995; Pagel et al., 2000; Gaft et al., 2005). While the database presented here is not exhaustive, it nonetheless provides a powerful resource. The lines in the database are listed as given in the cited publications and, when reported, the full width at half maximum (FWHM) of the peak has also been listed in brackets after the line. In addition, for publications that did not report the FWHM but gave spectra, we have measured and included it where possible.

Effects not recorded in the database but that may modify the luminescence spectra include luminescent decay, polarization, and temperature. While these all provide additional information about the material, they are outside the scope of the database, which is aiming to provide only an initial identification of the line.

In general, the samples analyzed by cathodoluminescence in this database were carbon-coated polished sections. It is worth noting that these carbon films have the ability to change intensity of cathodoluminescence peaks. Further, the types of optical components such as mirrors, lenses, fibers, and optical spectrometers employed to measure many of the luminescence spectra were not necessarily corrected for their optical response, and this can lead to shifts in the maximum intensity of peaks and their shape. Errors in detection of luminescence for UV emitting materials may also have arisen in some measurements due to the use of glass in many older style spectrometer systems. Glass has strong absorption of UV, and emission lower than 350 nm is difficult to observe.

THE LUMINESCENCE DATABASE

The luminescence database is structured to provide luminescence information on an extensive list of minerals (Table 1) and nonminerals (Table 2). Information provided includes the particular elemental or molecular activator(s), ionic charge(s), experimental temperature, technique employed to measure the luminescence, and the associated reference. A determination of the line intensity, where possible, has also been made to aid in the interpretation of luminescence spectra, with major lines listed in bold. When available the FWHM of the line has been included; however, if the line is nonsymmetric, a measure of the bandwidth is recorded. In all cases the reference to the line or band is included, which in most cases contains original spectra and further interpretation. Wherever possible a number of luminescence techniques (photoluminescence, cathodoluminescence, ion-luminescence, thermal luminescence, and proton luminescence) have been included for each mineral and material to provide the researcher with a range of techniques offering differing sensitivities and resolutions. This should aid in the determination of crystal field information regarding the coordination of the activator and its ionic charge. This is particularly important where quantitative spectroscopic luminescence studies are being undertaken (Habermann, 2002). In addition, the instrumental technique used to excite the luminescence is recorded, where known. For example, cathodoluminescence has been categorized into scanning electron microscopy (SEM), optical microscope (OM), transmission electron microscope (TEM), while photoluminescence has been divided to UV, laser induced (L), photoluminescence (PL). Other methods recorded are thermal luminescence (TL), proton or ion luminescence (IL), and X-ray excited luminescence (XL). Where emission is known to be cathodoluminescence in origin but unknown instrumentally, it has been listed as OM cathodoluminescence; similarly where the photoluminescence is unknown in detail, it is listed simply as photoluminescence.

Where site specific information about the location of the ionic species is described, it has been included. For example, beryl can be activated by Cr^{3+} in two specific sites and these give rise to different lines Similarly Eu^{3+} in calcite can sit in one of two Ca sites referred to as Ca(I) and Ca(II), giving rise to different peak positions. Where the activator is not simply an ionic species but a form of intrinsic excitation, then additional information about the origin of the luminescence has been included where it is commonly employed, e.g., quartz activators. In the wide number of

Mineral	Identification/ Activation	Lines (nm)	Temperature (K)	Method
Albite	Dv ³⁺	480. ¹ 560. ¹ 660. ¹	Room	SEM
NaAlSi ₂ O ₂	Nd^{3+}	870, ¹ 880, ¹ 900 ¹	Room	SEM
	Sm ³⁺	600, ¹ 645, ¹ 650, ¹ 700, ¹ 800 ¹	Room	SEM
	Tb ³⁺	415, ¹ 420, ¹ 470, ¹ 490, ¹ 500 ¹	Room	SEM
Alforsite	Yb ²⁺	648 ²	Room	_
$Ba_5(PO_4)_3Cl$				
Alumina	Cr ³⁺	692, ³ 694 ³	_	—
Al_2O_3	Fe ³⁺	$760(130)^3$	873	
	Mn^{2+}	$515(70)^3$	873	
	Mn ⁴⁺	673, ³ 676 ³		
		4434	Room	SEM
Amazonite KAlSi ₃ O ₈	Pb ²⁺	300 ⁵	Room	
Anhydrite	Ce ³⁺	3196	Room	L
CaSO₄	Dy ³⁺	480,7 5707	Room	_
1	Dy^{3+}	481,6 5766	Room	L
	Eu ²⁺	385 ⁶	Room	L
	Eu ³⁺	575, ⁶ 591, ⁶ 617, ⁶ 703 ⁶	Room	L
	Gd^{3+}	3126	Room	L
	Mn ²⁺	500, ⁸ 460–610 ⁷	Room	_
	Nd ³⁺	892 ⁶	Room	L
	Pr ³⁺	228, ⁶ 239, ⁶ 258, ⁶ 268 ⁶	Room	L
	Sm^{2+}	632(50), ⁶ 732, ⁶ 744 ⁶	Room	L
	Sm ³⁺	595, ⁷ 640 ⁷	Room	_
	Tb ³⁺	380, ⁶ 414, ⁶ 436, ⁶ 483, ⁶ 543 ⁶	Room	L
	Tm ³⁺	452 ⁶	Room	L
	Yb^{2+}	377 ²	Room	
Anorthite	Fe ³⁺	700 ⁹	Room	_
CaAl ₂ Si ₂ O ₈	Mn ²⁺	570 ⁹	Room	_
	Mn^{2+}	550–565, ¹⁰ 550–560 ¹⁰	Room	OM
	Mn^{2+}	323, ⁵⁴ 339, ⁵⁴ 352, ⁵⁴ 403, ⁵⁴ 417 , ⁵⁴ 476 ⁵⁴	Room	OM
	Sm ³⁺	598, ¹⁰ 643 ¹⁰	Room	OM
	Ce ³⁺	490 ¹¹	Room	
	Eu ²⁺	470 ¹¹	Room	
	Eu ²⁺	420 ¹²	Room	OM
Apatite	Ce ³⁺	350–380, ¹³ 365, ¹⁴ 458 ¹³	Room	SEM
$Ca_5(PO_4)_3$	Ce ³⁺	365 ¹⁵	Room	L
	Ce^{3+}	365 ¹⁶	Room	
	$Ce^{3+} Ca(I)$ site	360°	Room	L
	Ce^{3+} Ca(II) site			
	Dy^{3+}	4/0, 480 , 482 , 508 , 5/0 , 5 /7, 6 0/15	Room	SEM
	Dy^{3+}	480 , 481 , 485 , 570 , 575 , 578 , 579 , 605 , 750	Room	L
	$Dy = Er^{3+}$	400, 575, 500 403(75) ¹³	Room	SEM
	E_{r}^{3+}	5 /1 ⁶ 5 /15 1 5/10 ¹⁵	Room	I
	F_{11}^{2+}	451 ¹³ 410–445 ¹⁴	Room	SFM
	Fu^{2+}	$450^{6} 430 - 450^{15}$	Room	I
	Eu ²⁺	$410(75)^{12}$	Room	ŌM
	Eu^{2+}	450 ¹⁷	Room	UV
	Eu ²⁺	410, ¹² 450 ^{7,12,16}	Room	_
	Eu ³⁺	585, ¹⁷ 615 , ¹⁷ 645, ¹⁷ 690 ¹⁷	Room	SEM
	Eu ³⁺	579 , ¹⁵ 590 , ¹⁵ 618 , ¹⁵ 653 , ¹⁵ 700 ¹⁵	Room	L
	Eu ³⁺	590, ⁷ 615 , ⁷ 695 ⁷	_	
	Eu^{3+} in Ca(I) site	589. ⁶ 617. ⁶ 651. ⁶ 695 ⁶	Room	L
		50, 01, 051, 055	1000111	1

Table 1. Luminescence Lines, Activators, Temperature and Technique for Minerals

	Identification/	Lines	Temperature	
Mineral	Activation	(nm)	(K)	Method
	Gd^{3+}	312 ¹³	Room	SEM
	Intrinsic	345, ¹³ 377, ¹³ 432 ¹³	Room	SEM
	Mn^{2+}	560 , ¹⁷ 565 , ¹⁴ 577 ¹³	Room	SEM
	Mn^{2+}	565 , ¹² 595 ¹²	Room	OM
	Mn^{2+}	565(80) ¹⁵	Room	L
	Mn^{2+}	590 ⁷ 562 ⁷ 570 ⁷ 576 ¹⁶ 600 ¹⁹	Room	AL
	Mn ⁵⁺	1170 ¹⁵ 1171 ⁶	Room	L
	Mn^{2+} in Ca(I) site	569(60) ⁶	Room	Ĺ
	Mn ²⁺ in Ca(II) site	583 (80) ⁶	Room	L
	Nd ³⁺	884, ⁶ 890, ¹⁵ 909, ⁶ 1066, ⁶ 1068, ⁶ 1070, ¹⁵ 1074, ⁶ 1340 ^{6,15}	Room	L
	Nd ³⁺	870 (10) ¹⁴	Room	OM
	Pr ³⁺	485, ⁶ 600 , ¹⁵ 607, ⁶ 650 ¹⁵	Room	L
	Sm^{2+}	734 ⁶	LN	L
	$Sm^{3+} Ca(I)$ site	565 , ¹⁵ 599 , ¹⁵ 645 ¹⁴	_	
	$\operatorname{Sm}^{3+}_{3+}$ Ca(II) site	$607, 10, 654^{14}$		
	Sm ³⁺	598, 604, 645, 652, 654, 654° , 654°	Room	L
	Sm	420, 500, 595, 595, 599, 600, 640, 645, 645, 649, 690, 14, 800, 14	Koom	SEM
	Sm ³⁺	560, ^{7,16} 600, ^{7,16} 645, ⁷ 648, ¹⁶ 710 ⁷	Room	
	Tb^{3+}	380, ^{6,15} 414 , ⁶ 415 , ¹⁴ 436, ⁶ 437 ¹⁴	Room	L
	Tb ³⁺	381, ¹⁵ 416, ¹⁵ 438, ¹⁵ 490, ¹⁵ 540, ¹⁷ 546 ¹⁵	Room	SEM
	$1b^{3+}$	5457	Room	
	with Dy	487°	Room	L
	Tb^{3+} in Ca(II) site	545 ⁶	Room	L
	Tm ³⁺	363, ⁶ 364 , ¹⁵ 452 , ^{6,15} 453 , ⁶ 700 ¹⁵	Room	L
	UO_2	467,° 486,° 505,° 526°	Room	L
	UO_2	508,° 524,° 546°	LN	L
	YDS	993.015	Room	L
Apophyllite	$(UO_2)^{2+}$	$530(50)^6$	Room	L
$KCa_4 (Si_4O_{10})_2 F.8H_2O$	Ce ³⁺	343,6 3656	Room	L
	Mn^{2+}	600(100) ⁶	Room	L
Aragonite	Mn ²⁺	630 ⁸	Room	TL
CaCO ₃	Mn ²⁺	540 ²⁰	Room	—
Baddeleyite	Anion-vacancy	500 ²¹	Room	OM
ZrO ₂	Dy ³⁺	490 ²²	Room	UV
	Dy ³⁺	579 ²²	LN	UV
	Eu ³⁺	$617(15)^6$	Room	L
	Sm ³⁺	549 ²²	Room	UV
	Tb ³⁺	546°	Room	L
Barite	Ag ⁺	$635(150)^6$	Room	L
BaSO ₄	Bi ²⁺	625 ⁶	Room	L
	Bi ³⁺	426 ⁶	Room	L
	Ce^{3+}	302,6 330,6 3606	Room	L
	Eu^{2+}	375°	Room	L
	Nd ³ + vt. 2+	446,° 589°	Room	L
	1D-	381-	Room	_
Benitoite	Ti ³⁺	650 ⁶	Room	L
BaTiSi ₃ O ₉	TiO ₆	419 ⁶	Room	L
Beryl	Cr ³⁺	680 ²³	Room	
BeAl ₂ Si ₆ O ₁₈	$Cr(1)^{3+}$	693, ¹⁵ 694 ¹⁵	Room	L
	$Cr(2)^{3+}$	680, ⁵ 682 ⁵	Room	
	Fe ³⁺	$720(110)^5$	Room	
	Mn^{2+}	480, ⁵ 570 ⁵	Room	
	VO_4	433 ¹⁵	Room	L

Mineral	Identification/ Activation	Lines (nm)	Temperature (K)	Method
Boehmite AlO•OH	Cr ³⁺	692 ¹⁵	Room	L
Calcite	Ce^{3+}	345 ²⁴ 380 ²⁴ 545 ²⁴ 700 ²⁴		
CaCOa	Ce^{3+}	$357(70)^6$	Room	T
Caelog	Ce^{3+}	345 ²⁴ 370 ²⁴	IN	SFM
	CO^{2-}	450 ²⁴	Room	SEM
	Dv^{3+}	500 ²⁵ 580 ²⁵ 680 ²⁵ 760 ²⁵	Room	SEM
	Dy^{3+}	485 ⁶ 576 ⁶	Room	I
	E_{11}^{3+}	405, 570 610 ⁶	Room	L
	Eu Eu^{3+} in $C_2(I)$ site	618 ⁶	Room	L
	Eu^{3+} in $Ca(II)$ site	5756	Room	I
	Ea^{3+}	695 ²⁴	Room	SEM
	Mn ²⁺	588 26 605 (100) 27 610 24 615(15) 28 667 ²⁶	Room	SEM
	Mn^{2+}	$560, 630^{15}, 620(100), 610, 613(13), 607$	Room	I
	Mn^{2+}	630^{29}	Room	
	Mn^{2+}	630 ¹⁸	Room	VI
	Mn^{2+}	610 ³⁰	Room	AL
	Nd ³⁺	8806	Room	т
	Db^{2+}	200 ²⁴	Room	L SEM
	PD Db^{2+}	2126	Room	J
	PU Intrinsia	512 $400(40)^{27}$	Room	L
	Sm ³⁺	400(40) E4E 25 E70 25 400 25 410 25 4E0 25 71025	Room	SEM
	5111 Th 3+	4006	Room	J
	10 Tm ³⁺	400	Room	L
	Im ⁻	452^{-1}	Room	
	Delect center	520(100), $500(150)$	Room	OM
	Intrinsic	420, 500	ROOIII	CEM
	_	545, ²⁴ 560, ²⁴ 648, ²⁷ 695 ²⁷	Room	SEM
	_	580	LIN D a a sec	SEM
	_	5/8	Room	SEM
	_	6/0°	Room	UV
	_	605	Room	
Cassiterite SnO ₂	Intrinsic Tb ³⁺	$475(160)^{6}$ $416,^{33}$ $440,^{33}$ $462,^{33}$ $472,^{33}$ 490 , ³³ 542 , ³³ 588 , ³³ 622 , ³³ 650 33 686 33	Room Room	L OM
01 <i>C</i>	xr1 2+	2012	D	
SrSO ₄	ID-	581-	Room	_
Chalcocite	Cd^{2+}	1020 (100) ³⁴	90	SEM
Cu ₂ S	Intrinsic	960 (50) ³⁴	90	SEM
Charoite	Ce^{3+}	335 ⁶ 360 ⁶	Room	T
$K_2NaCa_5(Si_1_2O_{20})E_3H_2O_{20}$	Eu^{2+}	408(80) ⁶	Room	L
Chlorapatite C_2 (PO) Cl	Yb^{2+}	435 ²	Room	_
	D 3+	400 35 577 35	D	014
Collophane	Dy^{3+}	480,5555	Room	OM
$Ca_5(PO_4)_3(OH, F, CI)$	Eu^2	41035	Room	OM
	Sm ³⁺	590, 55 645 55	Room	OM
	Tb ⁵⁺	55033	Room	OM
Chrysoberyl BeAl ₂ O ₄	Cr ³⁺	680 ³⁶	Room	ОМ
Colquirite CaLiAlF ₆	Yb ²⁺	393 ²	Room	—
Corundum	Cr ³⁺	694 ¹⁰	Room	OM
Al ₂ O ₂	Intrinsic	400-450.10 500-550.10 525-550.10	Room	OM
111203	1111111010	100 100, 000 000, 020-000	100111	0.01

Mineral	Identification/ Activation	Lines (nm)	Temperature (K)	Method
Cristobalite SiO-	Intrinsic	450 ¹⁰ 445 ³⁷	Room	OM
Danburite $CaB_2(SiO_4)_2$	$Ce^{3+}Ce^{3+}Eu^{2+}Eu^{3+}Sm^{3+}$	346, ⁶ 367 ⁶ 330, ¹⁸ 350 ¹⁸ 437 ⁶ 611 ⁶ 610 ¹⁸	Room Room Room Room Room	L XL L L XL
Datolite CaB(SiO ₄)(OH)	Ce ³⁺ Ce ³⁺ Eu ²⁺ Eu ³⁺ Mn ²⁺ Yb ²⁺	335, ⁶ 360 ⁶ 340, ¹⁸ 360 ¹⁸ 455 ⁶ 610, ⁶ 617 ⁶ 565(60) ⁶ 525 ²	Room Room Room Room Room Room	L XL L L
Diamond C	Band A Dislocation Dislocation N Neutral vacancy A center H3 center Intrinsic S3 center GR1 center	$\begin{array}{c} 443-517^{38} \\ 439.7^{38} \\ 425^{38} \\ 388.9^{38} \\ 740.2^{38} \\ 452^6 \\ 520(100)^6 \\ 380-600,^6507(100)^6 \\ 519^6 \\ 794^6 \end{array}$	Room Room 89 Room Room Room Room Room LN	SEM SEM SEM SEM L L L L L L
Diaspore AlO•OH	Cr ³⁺	693, ¹⁵ 694 ¹⁵	Room	L
Dickite Al ₂ Si ₂ O ₅ (OH) ₄	_	410 (70) ³⁹	Room	SEM
Diopside CaMgSi ₂ O ₆	Mn Ti	585, ⁴⁰ 670 ⁴⁰ 415 ^{19,40}	Room Room	
Dolomite CaMg(CO ₃) ₂	Mn^{2+} Mn^{2+} in Ca site Mn^{2+} in Mg site Fe^{3+}	650 ²⁴ 575 (25) ²⁵ 661 (50) ²⁵ 630–720 ²⁵ 640, ⁷ 670 ⁸	Room Room Room Room Room	SEM SEM SEM
Enstatite MgSiO ₃	Mn ²⁺	674 ¹⁹ 400, ⁴¹ 670 ⁴¹	Room Room	IL
Esperite Ca ₃ PbZn ₄ (SiO ₄) ₄	Ce^{3+} Mn^{2+}	400(40)° 545(50) ⁶	Room Room	L L
Feldspar (K, Na)AlSi ₃ O ₈	$\begin{array}{c} \text{Al-O}^{-}\text{-Al} \\ \text{Ce}^{3+} \\ \text{Co} \\ \text{Cr}^{3+} \\ \text{Dy}^{3+} \\ \text{Dy}^{3+} \\ \text{Er}^{3+} \\ \text{Er}^{3+} \\ \text{Eu}^{2+} \\ \text{Eu}^{3+} \\ \text{Eu}^{2+} \\ \text{Fe}^{3+} \\ \text{Fe}^{3+} \\ \text{Fe}^{3+} \\ \text{Fe}^{3+} \\ \text{Fe}^{3+} \\ \text{Gd}^{3+} \end{array}$	$\begin{array}{c} 380-500^{1} \\ 335(50)^{15} \\ 430^{7} \\ 405^{7} \\ 479,^{7}572,^{7}653^{7} \\ 576^{15} \\ 504,^{15}532^{15} \\ 404,^{7}472,^{7}526,^{7}540,^{7}549,^{7}559,^{7}668^{7} \\ 404(50)^{15} \\ 614^{15} \\ 420^{1} \\ 765(120)^{15} \\ 700,^{1}710(20)^{25} \\ 700^{7} \\ 316^{15} \end{array}$	Room Room Room Room Room Room Room Room	SEM L — L L L SEM L SEM — L

	Identification/	Lines	Temperature	
Mineral	Activation	(nm)	(K)	Method
	Intrinsic	430 ⁴²	120	SEM
	Mn^{2+}	560 , ¹ 570 ²⁵	Room	SEM
	Pb^{2+}	$296(40)^{15}$	Room	L
	Intrinsic	470–620 ¹	Room	SEM
	Sm ³⁺	603, ¹⁵ 640 ¹	Room	L
	Tb ³⁺	383, ¹⁵ 413, ¹⁵ 437, ¹⁵ 546 ¹⁵	Room	L
	—	450, ^{9,43} 559, ⁴³ 560, ⁹ 770 ⁹	Room	
Fluorite	Ce ³⁺	340 ⁴⁴	Room	SEM
CaF ₂	Ce ³⁺	320 ⁶	Room	L
	Dy ³⁺	480, ⁴⁴ 570, ⁴⁴ 666, ⁴⁴ 754 ⁴⁴	Room	SEM
	Dy ³⁺	477, ⁶ 480 , ¹⁵ 573, ⁶ 575 , ¹⁵ 588, ⁶ 663 , ¹⁵ 673, ⁶ 750 , ¹⁵ 765 ⁶	Room	L
	Er ³⁺	54244	Room	SEM
	Er ³⁺	545 , ¹⁵ 1540 ¹⁵	Room	L
	Eu ²⁺	424 ⁴⁵	_	SEM
	Eu ³⁺	588 ⁴⁵		SEM
	Eu ²⁺	42544	Room	SEM
	Eu ²⁺	423, ⁶ 430–450 ¹⁵	Room	L
	Eu ²⁺	430 ¹²	Room	OM
	$Eu^{3+}+Sm$	595 ⁶	Room	L
	Eu^{3+} in Ca(I) site	622 ⁶	Room	L
	Eu^{3+} in Ca(II) site	573, ⁶ 614 ⁶	Room	L
	Fe	4257	Room	
	Fe ³⁺	67844	Room	SEM
	Gd^{3+}	310 ⁶	Room	L
	Gd^{3+}	413,7 435,7 5437	Room	
	Ho ³⁺	546, ⁶ 657 ⁶	Room	L
	Ho ³⁺	5377	Room	
	Ir	4057	Room	
	M center	$725^{15}_{,15}730(70)^{6}_{,15}$	Room	L
	Mn^{2+}	510 ¹⁸	Room	XL
	Nd ³⁺	415,6 795,6 8666	Room	L
	Nd ³⁺	450,7 512,7 525,7 585,7 640,7 655,7 6877	Room	
	Pr ³⁺	405,7 428,7 488,7 525,7 537,7 606,7 6427	Room	
	Sm^{2+}	685 ⁶	Room	L
	Sm ³⁺	60044	Room	SEM
	Sm ³⁺	562, ⁶ 640 ⁶	Room	L
	Sm ³⁺	$564,^7584,^7602,^7650^7$	Room	_
	Sm	567, ¹⁹ 606, ¹⁹ 613 ¹⁹	Room	
	Tb ³⁺	380, ¹⁵ 414, ⁶ 486, ⁶ 544 ⁶	Room	L
	Tb ³⁺	385,7 416,7 436,7 470,7 487,7 542,7 544,7 581,7 6197	Room	
	Tm ³⁺	451 ⁶	Room	L
	Tm ³⁺	453,7 515,7 6607	Room	
	U ³⁺	4107	Room	
	U^{4+}	500 ⁷	Room	
	Yb ²⁺	500, ⁷ 575 ²	Room	
		407,7 410,7 4907	Room	_
Fluoroapatite	Eu^{2+}	$460(60)^{12}$	Room	OM
$Ca_5(PO_4)_3F$	Eu ³⁺	617(10), ¹² 700(10), ¹² 590(10) ¹²	Room	OM
	Mn ²⁺	565 (60) ⁷	Room	
Forstarita	C* ³⁺	72046	206	TTN 4
rorsterite	Cr^{3+}	/ 20	290 I NI	1EM
$1019_{2}510_{4}$	Ur J.f. t		LIN	IEM
	Lattice detect $M_{\rm m}^{2+}$	420, 432, 432, 400 °	Room	OM
	N_{12}^{2+}	030	Room	UM
	MIN ⁻	030 1260 47 145047	KOOM 20	IEM
	INI ²	1300, 1430	20	5EM

Mineral	Identification/ Activation	Lines (nm)	Temperature (K)	Method
	_	410, ⁴⁶ 420, ⁴⁶ 790 ⁴⁶ 693, ⁴⁶ 698, ⁴⁶ 708, ⁴⁶ 717, ⁴⁶ 721, ⁴⁶ 739, ⁴⁶ 790, ⁴⁶ 800 ⁴⁶	296 LN	TEM TEM
Francolite Ca ₅ (PO ₄ , CO ₃) ₃ F	Pr ³⁺ U ⁶⁺ UO ₂	611, ⁶ 619, ⁶ 634, ⁶ 645 ⁶ 522 ⁶ 530 ⁶	Room LN Room	L L L
Garnet	${{Mn}^{2+}} {{Nd}^{3+}} {{V}^{2+}}$	590(70) ¹⁵ 482 ¹⁵ 717 ¹⁵	Room Room Room	L L L
Halite NaCl	Ag Cu Yb ²⁺	249 ¹⁹ 358 ¹⁹ 434 ²	Room Room Room	
Hardystonite Ca ₂ ZnSi ₂ O ₇	Ce^{3+} Dy^{3+} Gd^{3+} Mn^{2+} Pb^{2+} Tm^{3+}	378, ⁶ 400 ⁶ 480, ⁶ 575 ⁶ 312 ⁶ 575(100) ⁶ 355(40) ⁶ 452 ⁶	Room Room Room Room Room Room	L L L L L L
Hibonite (Ca, Ce)(Al, Ti, Mg) ₁₂ O ₁₉	Dy ³⁺ Mn ²⁺ Sm ³⁺	486, ¹⁰ 570 ¹⁰ 521 ¹⁰ 560, ¹⁰ 603, ¹⁰ 642, ¹⁰ 705 ¹⁰	Room Room Room	OM OM OM
Hydroxylapatite $Ca_5(PO_4)_3(OH)$	Intrinsic Mn ²⁺	$\frac{420(60)^{48}}{600^{48}}$	Room Room	SEM SEM
Hydrozincite Zn ₅ (CO ₃) ₂ (OH) ₆	Mn ²⁺ Pb ²⁺	525 ⁶ 430 ⁶	Room Room	L L
Jadeite Na(Al, Fe)Si ₂ O ₆	Mn ²⁺	400,49 46049	Room	
Kaolinite Al ₂ Si ₂ O ₅ (OH) ₄	Fe ³⁺	400 (100) ³⁹ 650–800 ³⁹	Room Room	SEM SEM
Kunzite LiAlSi ₂ O ₆	Mn ²⁺	625 ⁵⁰	Room	L
Kyanite Al ₂ O(SiO ₄)	Cr ³⁺ Cr ³⁺	706, ¹⁵ $750(100)$, ¹⁵ $790(100)$ ¹⁵ 694^{21}	Room Room	L OM
Labradorite (Ca,Na)(Si,Al) ₄ O ₈	Eu ²⁺ Fe ³⁺ Mn ²⁺	$420(20)^1$ 710(40)^1 560(30)^1	Room Room Room	OM OM OM
Leucophane NaCaBe(Si ₂ O ₆)F	$\begin{array}{c} Ce^{3+} \\ Dy^{3+} \\ Eu^{2+} \\ Eu^{3+} \\ Mn^{2+} \\ Sm^{3+} \\ Tm^{3+} \end{array}$	411 ⁶ 478 ⁶ 466 ⁶ 573, ⁶ 620, ⁶ 701 ⁶ 600(65) ⁶ 603 ⁶ 806, ⁶ 879 ⁶	Room Room Room Room Room Room	L L L L L L L
Magnesite MgCO ₃	Intrinsic Mn ²⁺	425 ²¹ 650 , ²¹ 654 ³⁰ 640 , ⁷ 660–680 ⁸	Room Room Room	OM OM
Magnetite Fe ₃ O ₄	Intrinsic	387, ⁵¹ 477 ⁵¹	Room	ОМ
Monticellite CaMgSiO ₄ Mullite $Al_{(4+2x)}Si_{(2-2x)}O_{(10-x)}$	Sm ³⁺ — Cr ³⁺ Eu ²⁺	460, ¹⁰ 560, ¹⁰ 600, ¹⁰ 688 ¹⁰ 525 ⁵² 694 ²¹ 426 ¹⁰	Room Room Room Room	OM — OM OM

Mineral	Identification/ Activation	Lines (nm)	Temperature (K)	Method
	Intrinsic Sm ³⁺	$475(25)^{21}$ 600^{10}	Room Room	OM OM
Muscovite KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	—	680 ⁵³	Room	F
Nacrite Al ₂ Si ₂ O ₅ (OH) ₄	—	410 (70) ³⁹	Room	SEM
Neighborite NaMgF ₃	Yb ²⁺	419 ²	Room	—
Oldhamite (Ca, Mg, Fe)S	Ce ³⁺ Mn ²⁺	523 ¹⁰ 584 ¹⁰	Room Room	OM OM
Oligoclase (Na,Ca)(Si,Al) ₄ O ₈	Mn ²⁺ Fe ³⁺ Fe ³⁺	361, ⁵⁴ 384 , ⁵⁴ 490, ⁵⁴ 521 ⁵⁴ 700 ⁷ 382, ⁵⁴ 425, ⁵⁴ 441 , ⁵⁴ 450, ⁵⁴ 494, ⁵⁴ 508, ⁵⁴ 575, ⁵⁴ 615, ⁵⁴ 657 ⁵⁴	Room Room Room	ОМ — ОМ
Otavite CdCO ₃	Mn	595 ²⁰	Room	
Pectolite NaCa ₂ Si ₃ O ₈ (OH)	Mn ²⁺ Pb ²⁺	$580(60)^6$ $356(60)^6$	Room Room	L L
Pegmatite Apatite $Ca_5(PO_4)_3(OH, F, Cl)$	Mn ²⁺	565 (65) ⁷	Room	—
Periclase MgO Plagioclase	Cr^{3+} Fe^{3+} Fe^{3+} Fe^{3+} Intrinsic Intrinsic F center F^+ center Lattice defect Mn^{2+} Mn^{2+} Phonon assisted Zero phonon V^{2+} Cu^{2+}	750^{55} $750(80),^{48}$ 770, ⁵⁶ 800 ⁵⁶ $720,^{57}$ 735(15) ¹⁰ 704 , ⁵⁶ 720, ⁵⁶ 726 , ⁵⁶ 750 ⁵⁸ 685 ⁵⁹ $526,^{10}$ 535, ¹⁰ 720–750 ¹⁰ $450(100)^{48}$ 520^{57} 390^{57} $400-500^{55}$ 615^{55} $610,^{57}$ 615, ⁴⁸ 745 ⁵⁷ $790,^{56}$ 810, ⁵⁶ 830, ⁵⁶ 837, ⁵⁶ 857 ⁵⁶ 588^{10} 870^{56} 420^{60}	Room Room Room Room Room Room Room Room	OM SEM OM SEM UV OM SEM SEM OM SEM OM SEM
(Na,Ca)AlSi ₃ O ₈	Eu^{2+} 	420^{12} 420^{60} $550(80)^{60}$ 700^{60} $321,^{54} 340,^{54} 355,^{54} 404,^{54} 421,^{54} 487,^{54} 559^{54}$ 580^{18} $560,^{43} 570(90)^{60}$ $400-550^{60}$	Room Room Room Room Room Room	OM — — — — — — — — — — — — —
Pyrochlore (Ca,Na) ₂ Nb ₂ O ₆ (OH,F)	Dy ³⁺ Eu ³⁺	479 ⁶ 618 ⁶	Room Room	L L
Pyromorphite Pb ₅ (PO ₄) ₃ Cl	Ce ³⁺ Eu ³⁺ Sm ³⁺ Tb ³⁺	375 ⁶ 613 ⁶ 566, ⁶ 603, ⁶ 652, ⁶ 714 ⁶ 482 ⁶	Room Room Room Room	L L L

Mineral Id	lentification/ ctivation	Lines (nm)	Temperature (K)	Method
Pyrope C Mg ₃ Al ₂ (SiO ₄) ₃	r ³⁺	675, ⁶ 684, ⁶ 687, ⁶ 699, ⁶ 730 ⁶	Room	L
Pyrophyllite $-$ Al ₂ Si ₄ O ₁₀ (OH) ₂	_	400 ³⁹	Room	SEM
Ouartz D	efect	380(120). ⁶¹ $440(120)$. ⁶¹ 450 . ⁶² $510(200)$. ⁶¹	Room	SEM
SiO ₂ D	efect	$470(140)^{61} 570(200)^{61}$	Room	SEM
(See also Table 2, SiO_2) N	BOHC	620-650, ⁶³ 636, ⁶⁴ 649 ⁶⁴	Room	SEM
0	xvgen Vacancy	620(140), $65650(140)$	Room	SEM
0	exvgen π orbital	$420(100)^{65}$	Room	SEM
Ir	ntrinsic	$175,^{63},^{63},^{290},^{63},^{63},^{420},^{63},^{63},^{450},^{63},^{580},^{63},^{$		
Ir	ntrinsic	423 ⁶⁴	295	SEM
Ir	ntrinsic	477 ⁶¹		OM
Ir	npurity	387 ⁶¹		SEM
А	10_4 M ⁺ center	$385(10)$, ⁶³ 500^{63}		
N	onbridging oxygen	653 ⁶⁶	_	
А	ssociated with Al-O-Al bonds	620 ⁶⁷	—	TL
S	ГЕ	477 ⁶⁸	_	UV
S	ГЕ	477, ⁶⁶ 544 ⁶⁴		SEM
S	ГЕ	564 ⁶¹	80	OM
S	ГЕ	456, ⁶⁴ 461 ⁶⁴	80	SEM
(A	AlO ₄) ⁰ hole trap	468 ⁶⁹	—	
(H	$(H_3O_4)^0$ hole trap	381 ⁶⁹	—	
E	' center	290, ⁷⁰ 459 ⁷¹		SEM
А	l-M ⁺ center	397 ⁶⁴	295	SEM
E	xtrinsic	504 ⁶⁴	295	SEM
E	xtrinsic	496 ⁷²	—	—
_	_	400, ⁷³ 481, ⁷³ 605 ⁷³	—	SEM
-	_	450, ¹⁰ 625 ¹⁰	Room	SEM
—	_	$505^{62}, 585^{62}$	Room	OM
—	_	564 ⁶⁶	—	—
Rhodochrosite M MnCO ₃	In ²⁺	$620(100)^{15}$	Room	L
Rhodonite M CaMn ₄ Si ₅ O ₁₅	\ln^{2+}	$640(100)^{15}$	Room	L
Rorisite Y CaFCl	b ²⁺	394 ²	Room	—
Ruby C Al ₂ O ₃	r ³⁺	694 ¹⁵	Room	L
Sapphire C	r ³⁺	694 ⁷⁴	Room	SEM
Al ₂ O ₃ C	r ³⁺	692.9. ⁶³ 694.3 ⁶³	Room	
E	u ³⁺	598, ⁷⁵ 614, ⁷⁵ 690 ⁷⁵	Room	ОМ
E	u ³⁺	$622(12)^{74}$	Room	SEM
F·	-center	340 ⁷⁴	Room	SEM
F	-center	415 ⁶³	Room	
Fe	e ³⁺	710–950 ¹⁵	Room	L
Fe	e ³⁺	715 ⁷⁶	Room	SEM
Scheelite C	r	420-470 ¹⁹	Room	
CaWO ₄ D	v ³⁺	490 ¹² 576 ¹²	Room	OM
D	y ³⁺	480, ¹⁵ 575, ^{6,15} 663, ¹⁵ 750 ¹⁵	Room	L
Ē	r ³⁺	527, ⁶ 545, ¹⁵ 553, ⁶ 615, ⁶ 1540 ¹⁵	Room	L
E	r ³⁺	616, ¹² 703 ¹²	Room	OM
E				
1.	r^{2+}	442 ⁶	Room	L

	Identification/	Lines	Temperature	
Mineral	Activation	(nm)	(K)	Method
	MoO ₄ ²⁻	560 ¹⁵	Room	L
	Nd^{3+}	417, ⁶ 900, ⁶ 1070, ⁶ 1340 ⁶	Room	L
	Pr ³⁺	607 ⁶	Room	L
	Sm ³⁺	600, ¹² 649 ¹²	Room	OM
	Sm ³⁺	609, ⁶ 647 ⁶	Room	L
	Tb^{3+}	380, ¹⁵ 414, ⁶ 436, ⁶ 488, ⁶ 545 ⁶	Room	L
	Tb ³⁺	415, ³³ 436, ³³ 458, ³³ 475, ³³ 490 , ³³ 544 , ³³ 590, ³³ 625 , ³³ 655, ³³ 675 ³³	Room	OM
	Tm ³⁺	364, ¹⁵ 452, ¹⁵ 453, ⁶ 700 ¹⁵	Room	L
	WO_{1}^{2-}	$480(120)^{12}$	Room	OM
	WO_4^{4-}	460 (140). ¹⁵ 465 (150). ⁶ 505 (200) ⁶	Room	L
	WO_4^4 WO_4^{2-}	435 ⁷⁷	Room	2
	Yb^{3+}	10136	Room	L
Sollaita	vb2+	1822	Doom	_
MgF ₂	10-	462-	KOOIII	_
Smithsonite ZnCO ₃	—	650 ⁷⁸	Room	—
Sodalite Na ₈ (Al ₆ Si ₆ O ₂₄)Cl ₂	S_2^{1-}	633, ¹⁵ 655, ¹⁵ 678, ¹⁵ 708 ¹⁵	Room	L
Spinel	Cr^{3+}	698 ¹⁵	Room	T
MgAl ₂ O	Cr^{3+}	690 ⁵⁷	Room	OM
1vig/11204	Mn ²⁺	$521 6^{10} 525 (50)^{57}$	Room	OM
	10111	521.0, 525(50)	Room	Olvi
Spodumene	Mn ²⁺	417, 79 60279		SEM
LiAlSi ₂ O ₆	Mn ²⁺	596	Room	L
	Mn^{2+}	595 ¹⁸	Room	XL
Strontianite	Dy ³⁺	485, ⁵² 575, ⁵² 660 ⁵²	Room	OM
SrCO ₃	Dy ³⁺	477,7 5757	Room	_
	Eu ²⁺	$410(80)^{12}$	Room	OM
	Eu ²⁺	4177	Room	
	Mn^{2+}	625 ¹²	Room	OM
	Mn^{2+}	590 ²⁰	Room	
	Sm ³⁺	$600,^{52} 642,^{52} 700^{52}$	Room	OM
	Sm ³⁺	569, ⁷ 600, ⁷ 640, ⁷ 700 ⁷	Room	
	Tb ³⁺	545 ⁵²	Room	OM
Sylvite KCl	Yb ²⁺	432 ²	Room	_
Thorito	E3+	501 15 (15 15 70215	Doom	т
The	EU NJ ³⁺	591, 015, 702 972 ¹⁵	Room	L
115104	Nd ²	8/2	Room	L
	Sm	642^{-5}	Room	L
	00_2	550(60)	Room	L
Titanite	Cr ³⁺	$686,^6790(110)^6$	Room	L
CaTiSiO ₅	Er ³⁺	820, ⁶ 978 ⁶	Room	L
	Eu ³⁺	563, ⁶ 620, ⁶ 703 ⁶	Room	L
	Nd ³⁺	735, ⁶ 756, ⁶ 867, ⁶ 880, ⁶ 906, ⁶ 1089 ⁶	Room	L
	Pr ³⁺	4876	Room	L
	Sm ³⁺	562, ⁶ 600 ⁶	Room	L
	Tm ³⁺	805 ⁶	Room	L
Topaz	Cr ³⁺	684 ¹⁵ 711 ¹⁵ 734 ¹⁵	Room	L
Al ₂ SiO ₄ F ₂	Ti ⁴⁺	455(80) ¹⁵	Room	L
Willemite	Mn^{2+}	52580	Room	CEM
Zn ₂ SiO ₄	1111	323	NUUIII	3EM
Witherite BaCO ₃	_	525 , ⁷ 550 ⁷	Room	—

Table 1. Continued

Minanal	Identification/	Lines	Temperature	Matha d
Mineral	Activation	(nm)	(K)	Method
Wollastonite	Cr ³⁺	840^{6}	Room	L
CaSiO ₃	Fe ³⁺	700°	Room	L
	Mn^{2+}	6036	Room	L
	Mn ²⁺	$550(120)^{21}$	Room	SEM
	Mn ²⁺	560, ² 565, ⁵² 620 ²	Room	—
Zircon	Dy ³⁺	483 , ⁸¹ 580 ⁸¹	300	IL
$ZrSiO_4$	Dy ³⁺	485 , ⁸² 580 , ⁸² 665, ⁸² 755, ⁸² 840 ⁸²	205	SEM
	Dy ³⁺	480, ⁵² 575 ⁵²	Room	
	Er ³⁺	1530,6 15686	Room	L
	Er ³⁺	325 , ⁸² 405 , ⁸² 480 , ⁸² 530, ⁸² 550–560, ⁸² 620 ⁸²	205	SEM
	Eu ³⁺	560, ⁸² 595, ⁸² 620–635, ⁸² 710 ⁸²	205	SEM
	Fe ³⁺	783(120), ⁶ 790 ¹⁵	Room	L
	Gd^{3+}	314 ⁸¹	300	IL
	Gd^{3+}	315, ⁸² 630 ⁸²	205	SEM
	Ho ³⁺	550 , ⁸² 660–670 , ⁸² 760 ⁸²	205	SEM
	Ho ³⁺	$546(10),^{6} 660(10),^{6} 673^{6}$	Room	L
	Ho ³⁺	320, ⁸¹ 360, ⁸¹ 415 ⁸¹	300	IL
	Intrinsic	230, ⁸² 290, ⁸² 310, ⁸² 330, ⁸² 355, ⁸² 380 ⁸²	205	SEM
	Intrinsic	590 ⁵²	Room	_
	Intrinsic	590 ¹⁵	Room	L
	Pr ³⁺	490, ⁸¹ 530, ⁸¹ 595, ⁸¹ 618, ⁸¹ 719, ⁸¹ 742, ⁸¹ 791, ⁸¹ 837, ⁸¹ 870, ⁸¹ 903, ⁸¹ 923, ⁸¹ 986, ⁸¹ 1026 ⁸¹	300	IL
	Pr ³⁺	595, ⁸² 620 ⁸²	205	SEM
	SiO_m^{n-}	620 ⁸¹	300	IL
	SiO_m^{n-}	590 ¹⁵	Room	L
	Sm ³⁺	575, ⁸² 655–670, ⁸² 610–620, ⁸² 725 ⁸²	205	SEM
	Tb ³⁺	385, ⁸² 415, ⁸² 440, ⁸² 490 , ⁸² 550 , ⁸² 590, ⁸² 625, ⁸² 655–685, ⁸² 765, ⁸² 835 ⁸²	205	SEM
	Tm ³⁺	348,6 457,6 4836	Room	L
	Tm ³⁺	290, ⁸² 345–360 , ⁸² 380, ⁸² 455–480 , ⁸² 510–520, ⁸² 580, ⁸² 650–665, ⁸² 700, ⁸² 730, ⁸² 755, ⁸² 790–800 ⁸²	205	SEM
Zirconia ZrO ₂	TiO ₆	500(150) ⁵⁷	Room	SEM
Zoisite	Dy ³⁺	575 ¹⁵	Room	L
$Ca_2Al_3(SiO_4)_3(OH)$	Eu ²⁺	$440(80)^{15}$	Room	L
/	Tb ³⁺	544 ¹⁵	Room	L
	V ²⁺	718 ¹⁵	Room	L

¹ Gotze et al. (1999)	²² Eremenko and Khrenov (1982)	⁴³ Sippel and Spencer (1970)	⁶³ Richter et al. (2003)
² Dorenbos (2003)	²³ Burns et al. (1965)	⁴⁴ Kempe et al. (2002)	⁶⁴ Stevens-Kalceff and Phillips (1995)
³ Pott and McNicol (1971)	²⁴ Chapoulie et al. (1995)	⁴⁵ D'Almeida (1997)	⁶⁵ Grant and White (1978)
⁴ Guo et al. (2006)	²⁵ Habermann et al. (1999)	⁴⁶ Benstock et al. (1997)	⁶⁶ Remond et al. (1992)
⁵ Tarashchan (1978)	²⁶ Walker and Burley (1991)	⁴⁷ Walker et al. (1994)	⁶⁷ Hashimoto et al. (1994)
⁶ Gaft et al. (2005)	²⁷ Lee et al. (2005)	⁴⁸ Gotze (2000)	⁶⁸ Trukhin and Plaudis (1979)
⁷ Marshall (1988)	²⁸ Mason et al. (2005)	⁴⁹ Walker et al. (1989)	⁶⁹ Yang and McKeever (1990)
⁸ Medlin (1963)	²⁹ Medlin (1964)	⁵⁰ Chandrasekhar and White (1992)	⁷⁰ Jones and Embree (1976)
⁹ Geake et al. (1971)	³⁰ Habermann (2002)	⁵¹ Balberg and Pankove (1971)	⁷¹ McKnight and Palik (1980)
¹⁰ Moore and Karakus (1994)	³¹ Habermann et al. (2001)	⁵² Mariano (1978)	⁷² Itoh et al. (1988)
¹¹ Laud et al. (1971)	³² Schulman et al. (1947)	⁵³ Edgington and Blair (1970)	⁷³ Gritsenko and Lisitsyn (1985)
¹² Mariano and Ring (1975)	³³ Crabtree (1974)	⁵⁴ Telfer and Walker (1978)	⁷⁴ Can et al. (1995)
¹³ Barbarand and Pagel (2001)	³⁴ Loferski et al. (1979)	⁵⁵ Vu et al. (1998)	⁷⁵ Hirata et al. (2005)
¹⁴ Kempe and Gotze (2002)	³⁵ Karakus et al. (2001)	⁵⁶ Fernandez and Llopis (1988)	⁷⁶ Ponahlo (1999)
¹⁵ Gaft et al. (1998)	³⁶ Ponahlo (1993)	⁵⁷ Karakus et al. (2000)	⁷⁷ Randall (1939)
¹⁶ Portnov and Gorobets (1969)	³⁷ Hanusiak and White (1975)	⁵⁸ Karakus (2005)	⁷⁸ Hagni (1984)
¹⁷ Roeder et al. (1987)	³⁸ Yacobi and Holt (1990)	⁵⁹ Garcia et al. (1986)	⁷⁹ Walker et al. (1997)
¹⁸ Marfunin (1995)	³⁹ Gotze et al. (2002)	⁶⁰ Mariano et al. (1973)	⁸⁰ Bhalla and White (1972)
¹⁹ Leverenz (1968)	⁴⁰ Smith (1949)	⁶¹ Luff and Townsend (1990)	⁸¹ Finch et al. (2004)
²⁰ Sommer (1972)	⁴¹ Derham et al. (1964)	⁶² Holness and Watt (2001)	⁸² Cesborn et al. (1995)
²¹ Karakus and Moore (1988)	⁴² Finch and Klein (1999)		

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Identification/	Lines	Temperature	
$\begin{array}{ccccc} - & 288, ^{1}256, ^{1}387^{1} & Room & SEM \\ AlgO_{5} (\beta - Alumina) & Cr^{3+} & 689^{2} & Room & SEM \\ Mn^{5+} & 518^{2} & Room & SEM \\ Mn^{5+} & 518^{2} & Room & SEM \\ 800^{-1}100^{-1}100^{-1} & Room & SEM \\ 910^{-1}100^{-1} & Room & SEM \\ 910^{-1}100^{-1} & Room & SEM \\ 800^{-1} & - & 413^{+} & 905, ^{4}625, ^{5}670, ^{5}770, ^{5}810, ^{8}870, ^{8} Room & SEM \\ 800^{-1} & Th^{5+} & 505^{5} & Room & - \\ 800^{-1} & Th^{5+} & 505^{5} & Room & - \\ 800^{-1} & Th^{5+} & 455^{5} & Room & - \\ 800^{-1} & Th^{5+} & 455^{5} & Room & - \\ 800^{-1} & Th^{5+} & 455^{5} & Room & - \\ 800^{-1} & Th^{5+} & 455^{5} & Room & - \\ 800^{-1} & Th^{5+} & 455^{5} & Room & - \\ 800^{-1} & Th^{5+} & 455^{5} & Room & - \\ 800^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & 455^{5} & Room & - \\ 600^{-1} & Th^{5+} & Room & ROM & \\ 600^{-1} & Ch^{-1} & 430^{1} & Room & MO & \\ 600^{-1} & Ch^{-1} & 430^{1} & Room & MO & \\ 600^{-1} & Ch^{-1} & 430^{1} & Room & MO & \\ 600^{-1} & Ch^{-1} & 430^{1} & Room & SEM & \\ 600^{-1} & Ch^{-1} & 710^{10} & 910^{10} & IN & SEM & \\ 600^{-1} & Ch^{-1} & 710^{10} & 910^{10} & IN & SEM & \\ 600^{-1} & Ch^{-1} & 710^{10} & 910^{10} & IN & SEM & \\ 600^{-1} & Ch^{-1} & 710^{10} & 910^{10} & IN & SEM & \\ 600^{-1} & Ch^{-1} & 710^{10} & 910^{10} & IN & SEM & \\ 600^{-1} & Ch^{-1} & 710^{10} & 910^{10} & IN & SEM & \\ 600^{-1} & Ch^{-1} & 710$	Material	Activation	(nm)	(K)	Method
$ \begin{array}{cccc} Anion vacancies 517^1 & Room SEM \\ AlsO_3 (B-Alumina) & C^{+1} & 689^2 & Room SEM \\ Mn^{2+} & 518^3 & Room SEM \\ Mn^{2+} & 158^3 & Room SEM \\ Mn^{2+} & 158^3 & Room SEM \\ SPM & Room SEM \\ SPM & SPM & SPM SPM & SPM & SPM & SPM \\ SPM & SPM & SPM & SPM & SPM \\ SPM & SPM & SPM & SPM & SPM \\ SPM & SPM & SPM & SPM & SPM & SPM \\ SPM & SPM & SPM & SPM & SPM & SPM \\ SPM & SPM & SPM & SPM & SPM & SPM \\ SPM & SPM & SPM & SPM & SPM & SPM & SPM \\ SPM & SPM & SPM & SPM & SPM & SPM & SPM \\ SPM & SPM \\ SPM & SPM \\ SPM & SPM \\ SPM & SPM &$	Al ₂ O ₃ nanoceramic	_	288, ¹ 326, ¹ 387 ¹	Room	SEM
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Anion vacancies	517 ¹	Room	SEM
$ \begin{array}{cccc} \mathrm{Ma}^{-2} & \mathrm{Sh}^{2} & \mathrm{Sh}^{2} & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{AlN} & \mathrm{Er}^{1+} & \mathrm{405}^{2} 475,^{2} 500,^{2} 500,^{2} 770,^{2} 710,^{2} 810,^{2} 870,^{2} & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{ShM} (\mathrm{cubic}) & - & \mathrm{413}^{4} & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{Ba Flbr} & \mathrm{Yh}^{2+} & \mathrm{500}^{5} & \mathrm{Room} & - \\ \mathrm{Ba Flbr} & \mathrm{Yh}^{2+} & \mathrm{500}^{5} & \mathrm{Room} & - \\ \mathrm{Ba Lif}_{5} & \mathrm{Yh}^{2+} & \mathrm{457}^{5} & \mathrm{450}^{5} & \mathrm{Room} & - \\ \mathrm{Ba Lif}_{5} & \mathrm{Yh}^{2+} & \mathrm{457}^{5} & \mathrm{Acom} & \mathrm{Room} & - \\ \mathrm{Ba Lif}_{5} & \mathrm{Yh}^{2+} & \mathrm{457}^{5} & \mathrm{Acom} & \mathrm{Room} & - \\ \mathrm{Ba (FO_1)} & \mathrm{Intrinsic} & \mathrm{465}(120)^{6} & \mathrm{Room} & - \\ \mathrm{Ba (FO_2)} & \mathrm{Hr}^{1+} & \mathrm{457}^{5} & \mathrm{Room} & - \\ \mathrm{CaB (ShO_2)} & \mathrm{Yh}^{2+} & \mathrm{455}^{5} & \mathrm{Room} & - \\ \mathrm{CaB (ShO_2)} & \mathrm{Yh}^{2+} & \mathrm{457}^{5} & \mathrm{Room} & - \\ \mathrm{CaC Ba (ShO_2)} & \mathrm{Yh}^{2+} & \mathrm{457}^{5} & \mathrm{Room} & - \\ \mathrm{CaC Ba (ShO_2)} & \mathrm{Yh}^{2+} & \mathrm{457}^{5} & \mathrm{Room} & - \\ \mathrm{CaS (ShO_2)} & \mathrm{Hr}^{2+} & \mathrm{475}^{6} & \mathrm{Room} & - \\ \mathrm{CaS (ShO_2)} & \mathrm{Li}^{3+} & \mathrm{477}^{5} & \mathrm{Room} & - \\ \mathrm{CaS (ShO_2)} & \mathrm{Li}^{3+} & \mathrm{477}^{5} & \mathrm{Room} & - \\ \mathrm{CaS (ShO_2)} & \mathrm{Li}^{3+} & \mathrm{477}^{5} & \mathrm{Room} & - \\ \mathrm{CaS (ShO_2)} & \mathrm{Li}^{3+} & \mathrm{477}^{5} & \mathrm{Room} & - \\ \mathrm{CaS (ShO_2)} & \mathrm{Li}^{3+} & \mathrm{477}^{5} & \mathrm{Room} & - \\ \mathrm{CaS (ShO_2)} & \mathrm{Li} & \mathrm{ShM} & \mathrm{Room} & \mathrm{CM} \\ \mathrm{CaS (ShO_2)} & \mathrm{Li} & \mathrm{Cu}^{4} & \mathrm{420}^{9} & \mathrm{Room} & \mathrm{CM} \\ \mathrm{CaS (ShO_2)} & \mathrm{Cu}^{4} & \mathrm{420}^{9} & \mathrm{Room} & \mathrm{CM} \\ \mathrm{CaS (ShO_2)} & \mathrm{Li} & \mathrm{ShM} & \mathrm{Room} & \mathrm{CM} \\ \mathrm{CaS (ShO_2)} & - & \mathrm{488}_{1}^{10} \mathrm{514}_{1}^{10} \mathrm{521}_{1}^{10} \mathrm{520}^{10} & \mathrm{Li} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & - & \mathrm{Room} & \mathrm{ShM} \\ \mathrm{CdS (ShO_2)} & \mathrm{Room} & \mathrm{ShM} $	Al_2O_3 (β -Alumina)	Cr ³⁺	689 ²	Room	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/	Mn^{2+}	518 ²	Room	SEM
$ \begin{split} & \text{BN} (\operatorname{cubic}) & & 413^4 & \text{Room} & \text{SEM} \\ & \text{BaFBr} & Yb^{2+} & 505^5 & \text{Room} & \\ & \text{BaUC} & Yb^{2+} & 457^5 & \text{Room} & \\ & \text{BaUC} & Yb^{2+} & 457^5 & \text{Room} & \\ & \text{BaUC} & \text{Room} & \\ & \text{CaPSr} & Yb^{2+} & 455^2 & \text{Room} & \\ & \text{CaPSr} & Yb^{2+} & 538^3 & \text{Room} & \\ & \text{CaPSr} & Yb^{2+} & 538^3 & \text{Room} & \\ & \text{CaPSr} & Yb^{2+} & 538^3 & \text{Room} & \\ & \text{CaPSr} & Yb^{2+} & 4775(50)^7 & \text{Room} & \\ & \text{CaCay,SG} & Yb^{2+} & 4775(50)^7 & \text{Room} & \\ & \text{CaCay,SG} & Yb^{2+} & 4775(50)^7 & \text{Room} & \\ & \text{CaSA} & Yb^{2+} & 4755(50)^7 & \text{Room} & \\ & \text{CaSA} & & 615^8 & \text{Room} & \\ & \text{CaSA} & & 615^8 & \text{Room} & \\ & \text{CaSA} & & 615^8 & \text{Room} & \\ & \text{CaSA} & & 615^8 & \text{Room} & \\ & \text{CaSA} & & 615^8 & \text{Room} & \\ & \text{CaSA} & & 615^8 & \text{Room} & \\ & \text{CaSA} & & 615^8 & \text{Room} & \\ & \text{CaSA} & & 615^8 & \text{Room} & \\ & \text{CaSA} & & 615^8 & \text{Room} & \\ & \text{CaSA} & & 683^{-0} 688^{-0} & \text{Room} & \\ & \text{CaSA} & & 683^{-0} 688^{-0} & \\ & & 683^{-0} 688^{-0} & \\ & & 683^{-0} 688^{-0} & \\ & & 789,^{-0} 808^{+0} & \\ & & - & 789,^{-0} 803^{+0} & \\ & & - & 789,^{-0} 803^{+0} & \\ $	AlN	Er ³⁺	405, ³ 475, ³ 540, ³ 560, ³ 625, ³ 670, ³ 770, ³ 810, ³ 870, ³ 910, ³ 1000 ³	Room	SEM
BaFBa Yb ²⁺ 500 ³ Room — BaIC1 Yb ²⁺ 555 ³ Room — BaIF2 Yb ²⁺ 455 ⁵ Room — BaIT00, Intrinsic 465 (120 ⁶) Room — BaT00, Intrinsic 465 (120 ⁶) Room — CaBpC (550 ²), Yb ²⁺ 538 ² Room — CaGa ₂ S ₄ Yb ²⁺ 540 ⁵ Room — CaGa ₂ S ₄ Yb ²⁺ 475 ⁵ Room — CaSibp, Cal Wb ²⁺ 475 ⁵ Room — CaSibp, Cal Cu ¹ 420 ⁹ Room OM CaSibp, Cal Cu ¹ 420 ⁹ Room OM CaSibp, Cal Cu ¹ 430 ⁹ Room OM M CaSibp, Cal Cu ¹ 430 ⁹ Room OM M CaSibp, Cal Cu ¹ 430 ⁹ Room SM SM CaSibp, Cal Cu ¹ <td< td=""><td>BN (cubic)</td><td>_</td><td>413⁴</td><td>Room</td><td>SEM</td></td<>	BN (cubic)	_	413 ⁴	Room	SEM
$ \begin{split} & \text{BaFCl} & \text{Yb}^{2+} & 325^{-} & \text{Room} &\\ & \text{BaLFp} & \text{Yb}^{2+} & 435^{-} & \text{Room} &\\ & \text{Ba}_{A}(\text{PO}_{A})_{2} & \text{Yb}^{2+} & 435^{-} & \text{Room} &\\ & \text{CaFBr} & \text{Yb}^{2+} & 435^{-} & \text{Room} &\\ & \text{CaFBr} & \text{Yb}^{2+} & 410^{-} & \text{Room} &\\ & \text{CaFBr} & \text{Yb}^{2+} & 410^{-} & \text{Room} &\\ & \text{CaFBr} & \text{Yb}^{2+} & 475^{-} & 580^{-} & \text{Room} &\\ & \text{CaFBr} & \text{Yb}^{2+} & 475^{-} & 800^{-} & \text{Room} &\\ & \text{CaPO}_{A}(\text{CaPO}_{A}) & \text{Fu}^{2+} & 475^{-} & 380^{-} & \text{Room} &\\ & \text{CaPO}_{A}(\text{Si})_{1}^{CO}, & \text{Fu}^{2+} & 475^{-} & 380^{-} & \text{Room} &\\ & \text{CaPO}_{A}(\text{CaPO}_{A}) & \text{Room} &\\ & \text{CaSA} & \text{Yb}^{2+} & 475^{-} & 380^{-} & \text{Room} &\\ & \text{CaSA} & \text{Yb}^{2+} & 475^{-} & 380^{-} & \text{Room} &\\ & \text{CaSA} & -& 415^{-} & 430^{-} & \text{Room} &\\ & \text{CaSA} & -& 415^{-} & 430^{-} & \text{Room} & 0M\\ & \text{CaSPb}, \text{Cu} & \text{Cu}^{+} & 420^{-} & 30^{-} & \text{Room} & 0M\\ & \text{CaSPb}, \text{Cu} & \text{Cu}^{+} & 430^{-} & 391^{+} 521^{+0} 538^{+0} 591^{+0} 920^{+0} & \text{IN} & \text{SEM}\\ & \text{CaSA} & -& 481^{+} 492^{+0} & \text{IN} & \text{SEM}\\ & \text{CaSA} & -& 481^{+} 492^{+0} & \text{IN} & \text{SEM}\\ & \text{CaS} & -& 683^{+0} 684^{+0} & \text{IN} & \text{SEM}\\ & \text{CaS} & -& 683^{+0} 684^{+0} & \text{IN} & \text{SEM}\\ & \text{CaS} & \text{CaS} & -& 789^{+0} 880^{+0} & \text{IN} & \text{SEM}\\ & \text{CaTe} & & \text{IN} & \text{SEM}\\ & \text{CaTe} & & 1033^{+1} & \text{Room} & \text{SEM}\\ & -& 789^{+0} 880^{+0} & \text{IN} & \text{SEM}\\ & \text{CaTe} & & 1003^{+1} & \text{Room} & \text{SEM}\\ & & -& 425^{+1} 520^{+1} 544^{+1} 544^{+0} 545^{+0} 547^{+0} 551^{+1} 551^{+0} 554^{+1} & \text{IN} & \text{SEM}\\ & \text{CaTe} & & 1003^{+1} & \text{Room} & \text{SEM}\\ & & \text{CaTe} & & 100^{-1} & \text{CaS} & \text{SEM}\\ & & & \text{CaTe} & & 100^{-1} & \text{CaS} & \text{SS} & \text{SEM}\\ & & & & & & & & & & & & & & & & & & &$	BaFBr	Yb ²⁺	500 ⁵	Room	_
BaLIF, Yb ²⁺ 467 ⁵ Room — BaTIO, Intrinsic 465(120) ⁶ Room — BaTIO, Hb ²⁺⁺ 538 ⁵ Room — CaB,OS(5,O) Yb ²⁺⁺ 538 ⁵ Room — CaGa,Sy Yb ²⁺⁺ 540 ⁵ Room — CaGa,Sy,O Eu ²⁺⁺ 475(50) ⁷ Room — Ca,MQSi,O,O Yb ²⁺⁺ 747 ⁵ Room — CaSA,O — 615 ⁸ Room OM — CaSA,O — 615 ⁸ Room OM	BaFCl	Yb ²⁺	525 ⁵	Room	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BaLiF ₃	Yb ²⁺	467 ⁵	Room	_
$ \begin{array}{cccc} BaTiO_{3} & Intrinsic & 465(120)^{6} & Room & SEM \\ CaBy O(SyC)^{7} & Yb^{2+} & 538^{5} & Room & \\ CaFBr & Yb^{2+} & 410^{3} & Room & \\ CaGa_{2}S_{4} & Yb^{2+} & 580^{5} & Room & \\ Ca,PGL & Yb^{2+} & 475(50)^{7} & Room & \\ Ca,PGL & Yb^{2+} & 7475 & Room & \\ CaSCa & Yb^{2+} & 7475 & Room & \\ CaSCa & & 615^{8} & Room & OM \\ CaSCb & & 475^{8} & Room & OM \\ CaSCb & & 475^{8} & Room & OM \\ CaSCb & & 475^{8} & Room & OM \\ CaSCb & & 481^{10} 521^{10} 538^{10} 591^{10} 920^{10} & IN & SEM \\ CdS & & 488^{10} 420^{10} & IN & SEM \\ CdS & & 488^{10} 420^{10} & IN & SEM \\ CdS & & 488^{10} 420^{10} & IN & SEM \\ CdS & & 488^{10} 420^{10} & IN & SEM \\ CdS & & 488^{10} 688^{10} & IN & SEM \\ CdS & & 685^{10} 688^{10} & IN & SEM \\ CdS & & 719^{10} 940^{10} 90^{10} & IN & SEM \\ CdS & & 719^{10} 940^{10} 90^{10} & IN & SEM \\ CdS & & 789^{10} 880^{10} & IN & SEM \\ CdTe & & 789^{10} 880^{10} & IN & SEM \\ CdTe & & 789^{10} 880^{10} & IN & SEM \\ CdTe & & 789^{10} 880^{10} & IN & SEM \\ CdTe (Si doped) & & 789^{10} 880^{10} & IN & SEM \\ CdTe (Si doped) & & 789^{10} 880^{10} & IN & SEM \\ CdTe (Si doped) & & 789^{10} 880^{10} & IN & SEM \\ CdTe (Si doped) & & 789^{10} 880^{10} & IN & SEM \\ CdTe (Si doped) & & 789^{10} 880^{10} & IN & SEM \\ CaP & Intrinsic & 827^{13} & Room & SEM \\ Rand & & 789^{10} 880^{10} & IN & SEM \\ CaP & Intrinsic & 827^{13} & Room & SEM \\ Rand & & 789^{10} 880^{11} & Room & SEM \\ Ca^{2+} & 694^{10} & 11 & OM \\ Tb^{3+} (major lines) & 383^{14} 419^{14} 423^{16} 487^{15} 543^{15} 547^{15} 551^{16} 547^{15} 551^{16} 547^{15} 551^{16} 547^{15} 551^{16} 751^{16} 551^{16} 551^{16} 551^{16} 751^{16} 551^{16} 551^{16} 551^{16} 751^{16} 551^{16} 551^{16} 551^{16} 751^{16} 551^{16} 551^{16} 551^{16} 751^{16} 551^{16} 551^{16}$	$Ba_3(PO_4)_2$	Yb ²⁺	435 ⁵	Room	_
$ \begin{array}{cccc} CaB_{5}C(s_{5}C_{7}) & Yb^{2+} & 538^{3} & Room & \\ CaG_{5}Fr & Yb^{2+} & 410^{5} & Room & \\ Ca_{5}Ag_{5}(s_{0}) & Eu^{2+} & 475(50)^{7} & Room & \\ Ca_{5}PO_{4}C(1) & Yb^{2+} & 475(50)^{7} & Room & \\ CaS_{4}C(1) & Yb^{2+} & 475^{5} & Room & \\ CaS & Yb^{2+} & 475^{5} & Room & \\ CaS & Yb^{2+} & 475^{6} & Room & OM \\ CaSCu & & 475^{8} & Room & OM \\ CaSCu & & 475^{8} & Room & OM \\ CaSCu & & 475^{8} & Room & OM \\ CaSCu & & 481^{10} 514^{10} 521^{10} 538^{10} 591^{10} 920^{10} & LN & SEM \\ CaS(3) & & 481^{10} 514^{10} 521^{10} 538^{10} 591^{10} 920^{10} & LN & SEM \\ CdS & & 488^{10} 492^{10} & LN & SEM \\ CdS & & 488^{10} 492^{10} & LN & SEM \\ CdS & & 488^{10} 492^{10} & LN & SEM \\ CdS & & 488^{10} 688^{10} & LN & SEM \\ CdS & (3i doped) & & 685^{10} 668^{10} & LN & SEM \\ CdS & (3i doped) & & 786^{10} 880^{10} & LN & SEM \\ CdFe & & 886^{11} & Room & SEM \\ & 789^{10} 808^{10} & LN & SEM \\ CdTe & & 886^{11} & Room & SEM \\ & 789^{10} 808^{10} & LN & SEM \\ CdTe & & 786^{10} 880^{10} & LN & SEM \\ CdTe & & 786^{10} 880^{10} & LN & SEM \\ CdTe & & 786^{10} 880^{10} & LN & SEM \\ CdTe & & 786^{10} 880^{10} & LN & SEM \\ & 789^{10} 808^{10} & LN & SEM \\ CaSH & & 789^{10} 808^{10} & LN & SEM \\ & 789^{10} 808^{10} & LN & SEM \\ CaSH & & 786^{10} 880^{10} & LN & SEM \\ & 789^{10} 808^{10} & Room & SEM \\ & 789^{10} 355^{14} 357^{14} & 85 & SEM \\ Nar band edge & 355^{14} 357^{14} & 85 & SEM \\ Nar band edge & 355^{14} 357^{14} & 85 & SEM \\ Nar band edge & 356^{15} & 779, 179, 97, 179, 97, 179, 97, 179, 10 & OM \\ & & 425^{14} 556^{14} 57, 179, 57, 179, 77, 97, 179, 179, 17, 10 & OM \\ & & 425^{14} 556^{14} 545^{14} 548^{14} 85, 1856^{16} 560^{16} 57, 187, 18 & 87, 1852 \\ & 425^{14} 556^{14} 556^{14} 556^{16} 625^{16} 57, 1774, 18 & 411 & SEM \\ & 74^{10} 73, 179, 179, 179, 179, 179$	BaTiO ₃	Intrinsic	$465(120)^6$	Room	SEM
$ \begin{array}{cccc} CaFbr & Yb^{5^+} & 410^5 & Room & \\ CaSGa_5A & Yb^{5^+} & 580^5 & Room & \\ CayAgGA & Ea^{2^+} & 475(50)^7 & Room & \\ CayPO_4C1 & Yb^{5^+} & 455^5 & Room & \\ CayPO_4C1 & Yb^{5^+} & 747^5 & Room & \\ CaSCa & Yb^{2^+} & 747^5 & Room & OM \\ CaSCh & & 475^8 & Room & OM \\ CaSCh & & 475^8 & Room & OM \\ CaSPb, Cu & Cu^4 & 420^9 & Room & OM \\ CaSPb, Cu & Cu^4 & 430^9 & Room & OW \\ Cd_SSG_ & & 481,^{10} 514,^{10} 521,^{10} 538,^{10} 591,^{10} 920,^{10} & IN & SEM \\ CdS & & 488,^{10} 492,^{10} 44,^{10} 520,^{10} & IN & SEM \\ CdS & & 488,^{10} 492,^{10} 44,^{10} 520,^{10} & IN & SEM \\ CdS & & 488,^{10} 492,^{10} 44,^{10} 520,^{10} & IN & SEM \\ CdS & & 488,^{10} 492,^{10} 44,^{10} 590,^{10} & IN & SEM \\ CdS & & 488,^{10} 492,^{10} 44,^{10} 590,^{10} & IN & SEM \\ CdS & & 685,^{10} 688,^{10} & IN & SEM \\ CdS & & 886,^{11} & Room & SEM \\ Defect & 1033^{11} & Room & SEM \\ Defect & 1033^{11} & Room & SEM \\ CdTe & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe & Sid dped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & IN & SEM \\ CdTe (Si doped) & & 786,^{10} 880,^{10} & I$	$CaB_2O(Si_2O_7)$	Yb ²⁺	5385	Room	—
$ \begin{array}{c} {\rm CaGa}_{5,4} & {\rm Yb}^{5+} & 580^{\circ} & {\rm Room} &\\ {\rm Ca,}{\rm M}{\rm S5},{\rm C}_{0,6} & {\rm Eu}^{2+} & 475^{\circ}{\rm (50)}^{7} & {\rm Room} &\\ {\rm Ca,}{\rm PO}_{4,{\rm Cl}} & {\rm Yb}^{2+} & 455^{\circ} & {\rm Room} &\\ {\rm CaS}^{-} & {\rm CaS}^{-} & {\rm CaS}^{-} & {\rm CaS}^{-} & {\rm Room} & {\rm OM} \\ {\rm CaS},{\rm CaS} & & 615^{\circ} & {\rm Room} & {\rm OM} \\ {\rm CaS,{\rm Pb},{\rm Cu}} & & 475^{\circ} & {\rm Room} & {\rm OM} \\ {\rm CaS,{\rm Pb},{\rm Cu}} & {\rm Cu}^{+} & 420^{\circ} & {\rm Room} & {\rm OM} \\ {\rm CaS,{\rm Pb},{\rm Cu}} & {\rm Cu}^{+} & 430^{\circ} & {\rm Room}^{-} & {\rm UV} \\ {\rm Cd}_{3},{\rm S5}_{6} & & 481^{+},{}^{0}514^{+0}521^{+0}538^{+0}591^{+0}920^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CdS} & & 488^{+0}492^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CdS} & & 488^{+0}492^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CdS} & & 488^{+0}492^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CdS} & & 685^{+1}688^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CdS} & & 685^{+1}688^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CdS} & & 685^{+1}688^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CdS} & {\rm Cd} & & 886^{+1} & {\rm Room} & {\rm SEM} \\ {\rm CdS} & & 789^{+0}880^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CdTe} & & 789^{+0}880^{+0} & {\rm LN} & {\rm SEM} \\ & 789^{+0}880^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CdT} & {\rm Si} \ doped & & 789^{+0}880^{+0} & {\rm LN} & {\rm SEM} \\ {\rm CaBr} & {\rm LN} & {\rm SEM} \\ {\rm CaBr} & {\rm Eu}^{2+} & 440^{+2}50^{+2} & {\rm Ca}^{-1} & {\rm Room} & {\rm SEM} \\ {\rm CaBr} & {\rm Eu}^{2+} & 440^{+2}50^{+2} & {\rm Ca}^{-1} & {\rm Room} & {\rm SEM} \\ {\rm Rav} \ {\rm bonor-acceptor pail} & 35,^{+1}357^{+1} & {\rm S5} & {\rm SEM} \\ {\rm Ca}^{-1} & {\rm Ca}^{+1} & 694^{+1} & {\rm Ca}^{+1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} \\ {\rm Ca}^{-1} & {\rm Ca}^{+1} & {\rm Ca}^{+1} & {\rm Ca}^{+1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} \\ {\rm Ca}^{-1} & {\rm Ca}^{+1} & {\rm Ca}^{+1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} \\ {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} \\ {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm Ca}^{-1} \\ {\rm Ca}^{-1} & {\rm Ca}^{-1} \\ {\rm Ca}^{-1} & {\rm Ca}^{-1} & {\rm C$	CaFBr	Yb ²⁺	4105	Room	—
$ \begin{array}{cccc} Ca_3 MgS_Oa_{a} & Eu^{a^{a^{a^{a^{a^{a^{a^{a^{a^{a^{a^{a^{a^$	CaGa ₂ S ₄	Yb^{2+}	5805	Room	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Ca_3MgSi_2O_8$	Eu^{2+}	475(50)	Room	—
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca_2PO_4Cl	Yb^{2+}	455'	Room	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cas	Yb ²	/4/5	Room	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CaS:As	_	615°	Room	OM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CaS:Cu	 Cu ⁺	4/5°	Room	OM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cas:Pb, Cu	Cu Cu ⁺	420° 430 ⁹	Room	
$ \begin{array}{cccc} GdS & & 488, ^{10} 492^{10} & I.N & SEM \\ GdS & & 488, ^{10} 492^{10} & I.N & SEM \\ GdS & & 685, ^{10} 688^{10} & I.N & SEM \\ GdS & & 685, ^{10} 688^{10} & I.N & SEM \\ GdS & (5i doped) & & 719, ^{10} 940, ^{10} 990^{10} & I.N & SEM \\ CdTe & & 886^{11} & Room & SEM \\ & 789, ^{10} 808^{10} & I.N & SEM \\ CdTe & & 786, ^{10} 880^{10} & I.N & SEM \\ CdTe & & 786, ^{10} 880^{10} & I.N & SEM \\ CdTe & & 789, ^{10} 808^{10} & I.N & SEM \\ CdTe & & 789, ^{10} 808^{10} & I.N & SEM \\ CdTe & & 789, ^{10} 808^{10} & I.N & SEM \\ CdTe & & 789, ^{10} 880^{10} & I.N & SEM \\ CdTe & & 789, ^{10} 880^{10} & I.N & SEM \\ CdTe & & 789, ^{10} 880^{10} & I.N & SEM \\ CdTe & & 789, ^{10} 880^{10} & I.N & SEM \\ GaN & Eu^{2+} & 440, ^{12} 520^{12} & 290 & OM \\ GaP & Intrinsic & 227^{13} & Room & SEM \\ San & Exciton & 355, ^{14} 357^{14} & 85 & SEM \\ Near band edge & 365^{15} & Room & SEM \\ Cr^{3+} & 694^{16} & 11 & OM \\ 786^{16} & Yb^{3+} & 932, ^{17} 945, ^{17} 979, ^{17} 979, ^{17} 980, ^{17} 993, ^{17} & 11 & OM \\ 786^{16} & Yb^{3+} & 932, ^{17} 945, ^{17} 975, ^{17} 979, ^{17} 980, ^{17} 993, ^{17} & 11 & OM \\ 742, ^{18} 755, ^{18} 564^{15} & Room & SEM \\ & 420, ^{15} 564^{15} & Room & SEM \\ & 420, ^{15} 564^{15} & Room & SEM \\ 742, ^{18} 755, ^{18} 561, ^{18} 602, ^{18} 660, ^{18} 670, ^{18} & 411 & SEM \\ 742, ^{18} 755, ^{16} 564^{15} & Room & SEM \\ & 420, ^{15} 564^{15} & Room & SEM \\ & 420, ^{15} 564^{15} & Room & SEM \\ 742, ^{18} 875, ^{18} 843, ^{18} 80, ^{18} 800, ^{18} 602, ^{18} 660, ^{18} 670, ^{18} & 411 & SEM \\ 742, ^{18} 811, ^{18} 842, ^{18} 848, ^{18} 564, ^{18} 80, ^{18} 602, ^{18} 660, ^{18} 670, ^{18} & 411 & SEM \\ 768, ^{18} 811, ^{18} 822, ^{18} 887, ^{18} 1000^{18} & Room & SEM \\ 768, ^{18} 811, ^{18} 804, ^{18} 841^{18} & Room & SEM \\ 768, ^{18} 811, ^{18} 804, ^{18} 81, ^{18} 804, ^{18} 8100^{18} & Room & SEM \\ 763, ^{18} 811, ^{18} 804, ^{18} 841^{18} & Room & SEM \\ 764, ^{18} 811, ^{18} 804, ^{18} 841, ^{18} & Room & SEM \\ 764, ^{18} 811, ^{18}$	Cd.SiS.		450	I N	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CdS	_	488 ¹⁰ 492 ¹⁰	IN	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CdS (Si doped)	_	494. ¹⁰ 509. ¹⁰ 514. ¹⁰ 520 ¹⁰	LN	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CdSe		685, ¹⁰ 688 ¹⁰	LN	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CdSe (Si doped)	_	719, ¹⁰ 940, ¹⁰ 990 ¹⁰	LN	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CdTe	_	886 ¹¹	Room	SEM
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	oune	Defect	1033 ¹¹	Room	SEM
$ \begin{array}{cccccc} CdTe (Si doped) & -& 786,^{10} 880^{10} & I.N & SEM \\ CsBr & Eu^{2+} & 440,^{12}520^{12} & 290 & OM \\ GaP & Intrinsic & 827^{13} & Room & SEM \\ GaN (hexagonal) & Donor-acceptor pair & 365,^{14} 387^{14} & 85 & SEM \\ Exciton & 355,^{14} 357^{14} & 85 & SEM \\ Exciton & 355,^{14} 357^{14} & 85 & SEM \\ Cr^{3+} & 694^{16} & I1 & OM \\ Tb^{3+} (major lines) & 383,^{16} 419,^{16} 423,^{16} 487,^{16} 545,^{16} 547,^{16} 551,^{16} 558,^{16} & 11 & OM \\ & 586^{16} & 11 & OM \\ & & 586^{16} & \\ Yb^{3+} & 932,^{17} 945,^{17} 975,^{17} 979,^{17} 980,^{17} 987,^{17} 993,^{17} & 11 & OM \\ & & & 586^{16} & \\ & & & & & & & & \\ - & & & & & & & &$		_	789, ¹⁰ 808 ¹⁰	LN	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CdTe (Si doped)		786 10 880 10	IN	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CsBr	$\overline{F_{11}}^{2+}$	440 ¹² 520 ¹²	290	OM
$ \begin{array}{cccc} GaN \ (hexagonal) & Donor-acceptor pair 365, ^{14} 387^{14} & 85 & SEM \\ Exciton & 355, ^{14} 357^{14} & 85 & SEM \\ Rear band edge & 365^{15} & Room & SEM \\ Cr^{3+} & 694^{16} & 11 & OM \\ Tb^{3+} \ (major lines) & 383, ^{16} 419, ^{16} 423, ^{16} 487, ^{16} 545, ^{16} 547, ^{16} 558, ^{16} & 11 & OM \\ & 586^{16} & Yb^{3+} & 932, ^{17} 945, ^{17} 973, ^{17} 979, ^{17} 980, ^{17} 987, ^{17} 993, ^{17} & 11 & OM \\ & 586^{16} & Yb^{3+} & 932, ^{17} 945, ^{17} 975, ^{17} 979, ^{17} 980, ^{17} 987, ^{17} 993, ^{17} & 11 & OM \\ & & 586^{16} & Yb^{3+} & 932, ^{17} 945, ^{17} 953, ^{17} 975, ^{17} 979, ^{17} 980, ^{17} 987, ^{17} 993, ^{17} & 11 & OM \\ & & & 586^{16} & Yb^{3+} & 932, ^{17} 945, ^{17} 953, ^{17} 975, ^{17} 979, ^{17} 980, ^{17} 987, ^{17} 993, ^{17} & 11 & OM \\ & & & & & & & & & & & & & & & & & & $	GaP	Intrinsic	827 ¹³	Room	SEM
	CaN (hovegonal)	Donor acceptor pair	365 14 38714	85	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Galv (llexagolial)	Exciton	355 ¹⁴ 357 ¹⁴	85	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Near band edge	365 ¹⁵	Room	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cr ³⁺	694 ¹⁶	11	OM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Tb ³⁺ (major lines)	383, ¹⁶ 419, ¹⁶ 423, ¹⁶ 487, ¹⁶ 545, ¹⁶ 547, ¹⁶ 551, ¹⁶ 558, ¹⁶ 586 ¹⁶	11	OM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Yb ³⁺	932, ¹⁷ 945, ¹⁷ 953, ¹⁷ 975, ¹⁷ 979, ¹⁷ 980, ¹⁷ 987, ¹⁷ 993, ¹⁷ 994, ¹⁷ 1001, ¹⁷ 1006, ¹⁷ 1015, ¹⁷ 1022, ¹⁷ 1033, ¹⁷ 1038 ¹⁷	11	ОМ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_	420, ¹⁵ 564 ¹⁵	Room	SEM
GaN(Si) (hexagonal) Dy^{3+} $456,^{18}482,^{18}482,^{18}488,^{18}564,^{18}580,^{18}602,^{18}660,^{18}670,^{18}411SEM742,^{18}755,^{18}767,^{18}827,^{18}843,^{18}Er^{3+}768,^{18}811,^{18}822,^{18}878,^{18}987,^{18}1000,^{18}Tm^{3+}768,^{18}511,^{18}536,^{18}560,^{18}592,^{18}648,^{18}655,^{18}774,^{18}1nPIntrinsic886^{13}InGaN 430-490^{19}RoomSEM(InN)_x(InGaN)Intrinsic360-480 (x = 0-0.23)^{20}RoomContinued)$		_	425, ¹⁴ 556, ¹⁴ 614, ¹⁴ 678 ¹⁴	87	SEM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GaN(Si) (hexagonal)	Dy ³⁺	456, ¹⁸ 482, ¹⁸ 488, ¹⁸ 564, ¹⁸ 580, ¹⁸ 602, ¹⁸ 660, ¹⁸ 670, ¹⁸ 742 ¹⁸ 755 ¹⁸ 767 ¹⁸ 827 ¹⁸ 843 ¹⁸	411	SEM
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		Er ³⁺	383, ¹⁸ 409, ¹⁸ 478, ¹⁸ 488, ¹⁸ 539, ¹⁸ 560, ¹⁸ 625, ¹⁸ 757, ¹⁸ 768, ¹⁸ 811, ¹⁸ 822, ¹⁸ 878, ¹⁸ 987, ¹⁸ 1000, ¹⁸	411	SEM
InPIntrinsic 886^{13} RoomSEMInGaN— $430-490^{19}$ RoomSEM(InN)_x(InGaN)Intrinsic $360-480 (x = 0-0.23)^{20}$ RoomSEM(continued)		Tm ³⁺	478, ¹⁸ 511, ¹⁸ 536, ¹⁸ 560, ¹⁸ 592, ¹⁸ 648, ¹⁸ 655, ¹⁸ 774, ¹⁸ 781, ¹⁸ 804, ¹⁸ 841 ¹⁸	411	SEM
IncludeIncludeCoolIncludeOtherInGaN— $430-490^{19}$ RoomSEM(InN)_x(InGaN)Intrinsic $360-480 (x = 0-0.23)^{20}$ RoomSEM(continued)	InP	Intrinsic	886 ¹³	Room	SEM
$(InN)_x(InGaN) Intrinsic $	InGaN		430-490 ¹⁹	Room	SEM
(continued)	$(InN)_{r}(InGaN)$	Intrinsic	$360-480 \ (x = 0-0.23)^{20}$	Room	SEM
				(continued)

Table 2. Luminescence Lines, Activators, Temperature, and Technique for Materials

	Identification/	Lines	Temperature	Temperature	
Material	Activation	(nm)	(K)	Method	
KBr	Yb ²⁺	442 ⁵	Room		
KI	Yb^{2+}	431 ⁵	Room	_	
KMgF ₃	Yb^{2+}	408^{5}	Room		
LiSrAlF ₆	Yb ²⁺	440^{5}	Room	_	
MgTiO.	O defect	410 ²¹	Room	IW	
Wig1103	Eu ³⁺	615 ²¹	Room	UV	
M- TO	Eu 3+	(F0 ²]	Deem		
$Mg_2 HO_4$ $M_{\tilde{a}}$ T: O	Eu^{3+}	6152	Room		
	EU	515^{-1}	Room	UV	
PbCl	$\overline{Vh^{2+}}$	340(40), 020(00)	Room	L	
	10	420	Room		
SiC-6H (polytype)	Al	$500(100)^{25}$	Room	SEM	
	В	$700(100)^{23}$	Room	SEM	
	Be	$600(100)^{23}$	Room	SEM	
	Defect	$520(120)^{23}$	Room	SEM	
	Sc	570(100)25	Room	SEM	
SiO ₂	Intrinsic	460^{24}	300	UV	
(See also Table 1, Quartz)	Si related center	460^{25}	—	UV	
	Defect	636 ²⁶	—	UV	
	Intrinsic	451, ²⁷ 561 ²⁸	—	OM	
	Intrinsic	288, ²⁹ 400, ³⁰ 468 ²⁹	—	UV	
	Intrinsic	(Low OH) 590, ³¹ (high OH)620 ³¹	—	—	
	Eu ³⁺	622 ³²	Room	SEM	
	Fe ³⁺	695 ³³	873	—	
	Ge	400^{25}	293	UV	
	Mn^{2+}	51033	873	—	
	E' center	459 ³⁴	—	SEM	
	Impurity	415 ²⁸	—		
	Interstitial oxygen	1273, ³⁵ 1281 ³⁵		UV	
	Interstitial oxygen	1278,36 128137	290	SEM	
	Oxygen defect	282, 36 459 36, 37	290	SEM	
	O vacancy $O(1D) = O(3D)$	45938	Room	L	
	$O(^{1}D) - O(^{3}P)$	653 ³³	—	UV	
	NBOHC	620, ¹⁰ 653, ^{30, 10, 11} 670 ²⁰	—	_	
	NBO defect	653 ⁺²	—		
	STE	47020	—	UV	
	SIE	53956	— D		
	_	400-800 ³²	Room	SEM	
	_	649^{20}	—	SEM	
	_	$558,^{-7}, 636^{-7}$	—	OM LIV	
		310-620,** 460,** 468**	_	UV	
SrAlF ₅	Yb ²⁺	4055	Room	—	
SrB ₄ O ₇	Yb ²⁺	3615	Room	—	
Sr ₂ B ₅ O ₉ Cl	Yb^{2+}	4215	Room	—	
Sr ₂ B ₅ O ₉ Cl	Yb ²⁺	4205	Room	—	
SrCl ₂ (cubic)	Yb ²⁺	4085	Room	—	
SrF ₂	Yb^{2+}	8005	Room	—	
SrFBr	Yb ²⁺	416'	Room	_	
SrFCl	Yb^{2+}	401 5	Room		
$Sr_2MgSi_2O_7$:Eu, Dy	Eu^{2+}	450-55045	Room	PL	
$Sr_3(PO_4)_2$	Yb^{2+}	442	Room	—	
$Sr_5(PO_4)_3Cl$	Yb ² -	450, 560	Room		
α -Sr ₂ P ₂ O ₇	Yb²⊤	45 <i>3</i> °	Room		
SrS:Cu		530°	Room	OM	

	Identification/	Lines			Temperature	
Material	Activation	(nm)			(K)	Method
Y ₂ SiO ₅ on nano SiO ₂	Ce ³⁺	443^{44}			Room	UV
	Eu ³⁺	320, ⁴⁴ 364, ⁴⁴ 384, ⁴⁴ 397, ⁴⁴ 468, ⁴⁴ 612 ⁴⁴		2 ⁴⁴	Room	UV
	Tb ³⁺	247, ⁴⁴	489, ⁴⁴ 543, ⁴⁴ 585, ⁴⁴ 625 ⁴⁴		Room	UV
ZnO	_	387, ⁴⁵ 620 ⁴⁵			Room	SEM
ZnS (thin film Sn doped)	—	405 ⁴⁶			Room	SEM
ZnS (thin film Al doped)	Al ³⁺	490^{46}			Room	SEM
	Defect	430 ⁴⁶			Room	SEM
	Self-activated center	399 ⁴⁶			Room	SEM
		600 ⁴⁶			Room	SEM
ZnS (bulk)	Bandgan	346^{47}			Room	PL.
ZIIS (Duik)	Mn ²⁺	59947			Room	PI
	Mn ²⁺	578 ⁴⁸			Room	SEM
ZnS (nanocrystal)	Cu	460(60	$))^{49} 507(60)^{49}$		Room	T
	Cu^{2+}	480(12	$(30)^{50}$		Room	L
	Cu^{2+}	470(12	30) ⁵¹		4	SEM
	Cu^{2+}	600 ⁵¹			Room	SEM
	Defect	426(35) ⁵²			40	PI
	Defect	$420(35)^{52}$			275	PI
	Defect	520 ⁴⁷ 518(120) ⁴⁹			Room	PL
	Eu				Room	L
	Mn^{2+}	$590(60)^{49}$			Room	Ē
	Mn ²⁺	$435(25)^{52}$			275	PL.
	Mn ²⁺	$600(20)^{52}$			40	PL
	Mn^{2+}	$585^{47} 610^{47}$			Room	PI
	Mn-Mn pair	700^{47}	720 ⁴⁷			
ZnSe		477 53	585 53 660 53		_	SEM
	_	459 ⁵³			_	UV
¹ Gorbunov et al. (2005)	¹⁵ Sun et al. (2002)		²⁸ Koyama (1980)	⁴¹ Skuja et al. (1984	4a)	
² Karakus (2005)	¹⁶ Gruber et al. (2002)		²⁹ Skuja et al. (1984 <i>b</i>)	⁴² Sigel and Marron	ne (1981)	
³ Gurumurugan et al. (1999)	¹⁷ Jadwisienczak and Lozykowsk	ci (2003)	³⁰ Nishikawa et al. (1992) ⁴³ Lin et al. (2001) ³¹ Friebele et al. (1985) ⁴⁴ Lin et al. (2006) ³² O ⁴⁵ Lin et al. (2006))	
⁴ Manfredotti et al. (2006)	¹⁸ Lozykowski et al. (1999)					
³ Dorenbos (2003)	¹⁹ Choi et al. (2003)		³² Can et al. (1995)	⁴⁵ Mei et al. (2006)		
^o Kobayashi et al. (1998) 7 Lin et al. (2001 c)	²⁰ Martin et al. (2002)		³⁴ York and McNicol (1971)	⁴⁷ Transa at al. (20	104)	
⁸ Singh at al. $(2001a)$	²² Apicoto Soptos et al. (2007)		⁴⁷ McKnight and Palik (1980) ⁴⁷ Toyama et al. (2)		JUU) JUU)	
Singh et al. (1981)	Afficete-Santos et al. (2007)		36 Stovene Valeeff et al. (2002)	49 Vu et cl. (1002)	105)	
10 Odin et al. (2004)	$^{24}Cuzzi \text{ at al.} (1996)$		³⁷ Stevens Kalceff (2000)	50 B b a g wat at al. (1998)	995)	
¹¹ Petrov (1996)	25 Skuja and Trukhin (1980)		38 Tohmon et al. (1080)	51 Bol et al. (2002)	,,,,	
12 Zorenko et al. (2006)	²⁶ Griscom (1985)		³⁹ Awazu and Kawazoe (1990)	⁵² Chen et al. (2002)	2)	

⁴⁰Munekuni et al. (1990)

Table 2.Continued

quartz and SiO₂ studies, a range of terms such as Defect, Non-Bridging Oxygen Hole (NBOHC), Oxygen π , Self-Trapped Exciton (STE), and AlO₄|M⁺ have all been used to describe the intrinsic luminescence and are recorded in the database. Historically, where a mineral has had significant interest and study, such as diamond, then other terms have been introduced to describe the luminescence origin. In diamond the usual designation of center in the infrared spectra is labeled A, while the usual designations of the luminescence and absorption centers are labeled H3, S3,

²⁷Wang et al. (1988)

¹³Tiginyanu et al. (2004)

¹⁴Díaz-Guerra et al. (2003)

and GR1. These have all been recorded within the luminescence database.

⁵³Godlewski et al. (2003)

One of the key points that luminescence database demonstrates is that many activators change their emission wavelength or energy depending upon the structure type, symmetry, and associated atom, thus reflecting the local crystal field information. For example, the activator Yb²⁺ has been studied in a range of materials, and peak shifting has been attributed to local crystal symmetry (Dorenbos, 2003). This illustrates the importance of knowing the local chemistry and crystal information when trying to determine the activator present by observing the luminescence emission spectra.

CONCLUSIONS

The analysis of luminescence spectra of ionic species in minerals and materials can be enhanced by the ability to inspect major and minor lines in the luminescence database. Understanding of the factors that control luminescence activation and quenching in minerals and materials is also possible by studying shifts in peak position and intensity with structural variation. This is important where new minerals or materials are being analyzed. Continuing developments in the understanding of the origin of lines and spectral features will aid in the quantification of luminescence spectroscopy. Through the use of the luminescence database, additional insight into the chemistry can be gained and by combining with other traditional X-ray measurements collected on the same region, will result in faster understanding of minerals and materials. The wealth of information presented in this luminescence database indicates that a large number of research groups routinely employ luminescence analysis as a key macro- and microcharacterization technique in the study of minerals and materials.

A subsequent article will describe software tools and Web access to the database. It is the author's intention to make the database easily accessible and provide a procedure for external users to add new lines and spectra from minerals and materials.

Acknowledgments

The authors wish to thank Mark Pownceby and Graham Sparrow for their internal reviewing of the manuscript.

References

- ANICETE-SANTOS, M., ORHAN, E., DE MAURERA, M.A.M.A., SI-MOES, L.G.P., SOUZA, A.G., PIZANI, P.S., LEITE, E.R., VARELA, J.A., JUAN, A., BELTRAN, A. & LONGO, E. (2007). Contribution of structural order-disorder to the green photoluminescence of PbWO₄. *Phys Rev B* **75**, 165105.
- AWAZU, K. & KAWAZOE, H. (1990). O₂ molecules dissolved in synthetic silica glasses and their photochemical reactions induced by ArF excimer laser radiation. J Appl Phys 68, 3584–3591.
- BALBERG, I. & PANKOVE, J.I. (1971). Cathodoluminescence of magnetite. *Phys Rev Lett* 27, 1371–1374.
- BARBARAND, J. & PAGEL, M. (2001). Cathodoluminescence study of apatite crystals. *Am Mineral* **86**, 473–484.

- BENSTOCK, E.J., BUSECK, P.R. & STEELE, I.M. (1997). Cathodoluminescence of meteoritic and synthetic forsterite at 296 and 77 K using TEM. Am Mineral 82, 310–315.
- BHAGWAT, U.A., SASTRY, M. & KULKARNI, S.K. (1995). Green luminescence from copper doped zinc sulphide quantum particles. *Appl Phys Lett* 67, 2702–2704.
- BHALLA, R.J.R.S.B. & WHITE, E.W. (1970). Polarized cathodoluminescence emission from Willemite [Zn₂SiO₄(Mn)] single crystals. J Appl Phys 41, 2267–2268.
- BHALLA, R.J.R.S.B. & WHITE, E.W. (1972). Cathodoluminescence characteristics of Mn²⁺-activated willemite (Zn₂SiO₄) single crystals. J Electrochem Soc 119, 740–743.
- BOL, A.A., FERWERDA, J., BERGWERFF, J.A. & MEIJERINK, A. (2002). Luminescence of nanocrystalline ZnS:Cu²⁺. J Lumin **99**, 325–334.
- BULANYI, M.F., KLIMENKO, V.I., KOVALENKO, A.V. & POLEZHAEV, B.A. (2003). Defect structure and luminescence behaviour of ZnS:Mn²⁺ crystals. *Inorg Mater* **39**, 436–439.
- BURNS, G., GEISS, E.A., JENKINS, B.A. & NATHAN, M.I. (1965). Cr³⁺ fluorescence in garnets and other crystals. *Phys Rev* 139, A1687.
- CAN, N., TOWNSEND, P.D., HOLE, D.E., SNELLING, H.V., BALLE-STEROS, J.M. & AFONSO, C.N. (1995). Enhancement of luminescence by pulse laser annealing of ion-implanted europium in sapphire and silica. *J Appl Phys* **78**, 6737–6744.
- CESBORN, F., BLANC, P., OHNENSTETTER, D. & REMOND, G. (1995). Cathodoluminescence of rare earth doped zircons. I. Their possible use as reference materials. *Scanning Microsc Suppl* 9, 35–36.
- CHANDRASEKHAR, B.K. & WHITE, W.B. (1992). Polarized luminescence spectra of kunzite. *Phys Chem Miner* 18, 433–440.
- CHAPOULIE, R., BECHTEL, F., BORSCHNECK, D., SCHVOERER, M. & REMOND, G. (1995). Cathodoluminescence of some synthetic calcite crystals. Investigation of the role played by cerium. *Scanning Microsc Suppl* **9**, 225–232.
- CHEN, W., SU, F.H., LI, G.H., JOLY, A.G., MALM, J.O. & BOVIN, J.O. (2002). Temperature and pressure dependencies of the Mn^{2+} and donor-acceptor emissions in ZnS: Mn^{2+} nanoparticles. *J Appl Phys* **92**, 1950–1955.
- CHOI, H.W., JEON, C.W., DAWSON, M.D., EDWARDS, P.R., MARTIN, R.W. & TRIPATHY, S. (2003). Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes. *J Appl Phys* **93**, 5978–5982.
- CHOI, S.H., PARK, C.O., PARK, H.S., PARK, S.H.K. & YUNC, S.J. (2004). Cathodoluminescence and photoluminescence properties of CaS thin film codoped with Pb and Cu. *J Electrochem Soc* 151, H184–H187.
- CRABTREE, D.F. (1974). Cathodoluminescence of tin oxide doped with terbium. *J Phys D: Appl Phys* 7, 22–26.
- D'ALMEIDA, T. (1997). Cathodoluminescence des ions de terras rares dans les fluorures alcalinoterreux: utilisation comme sonde locale detemperature et applications. These de doctorat de l'Universite de Reims Champagne-Ardenne. Unpublished.
- DERHAM, C.J., GEAKE, J.E. & WALKER, G. (1964). Luminescence of enstatite achondrite meteorites. *Nature* **203**, 134–136.
- DÍAZ-GUERRA, C., PIQUERAS, J. & CAVALLINI, A. (2003). Timeresolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN. *Appl Phys Lett* 82, 2050–2052.
- DORENBOS, P. (2003). Anomalous luminescence of Eu²⁺ and Yb²⁺ in inorganic compounds. *J Phys Condens Matter* **15**, 2645–2665.

- EDGINGTON, J.A. & BLAIR, I.M. (1970). Luminescence and thermoluminescence induced by bombardment with protons of 159 million electron volts. *Science* **167**, 715–717.
- EDWARDS, P.R., MARTIN, R.W., O'DONNELL, K.P. & WATSON, I.M. (2003). Simultaneous composition mapping and hyperspectral cathodoluminescence imaging of InGaN epilayers. *Physica Status Solidi* **7**, 2474–2477.
- EREMENKO, G. & KHRENOV, A. (1982). Luminescence of baddeleyite. *Mineral Zh* **4**, 93–95.
- FERNANDEZ, I. & LLOPIS, J. (1988). Reducing effects on the CL red emission of MgO doped crystals. *Phys Stat Sol (a)* **108**, K163–K167.
- FINCH, A.A., GARCIA-GUINEA, J., HOLE, D.E., TOWNSEND, P.D. & HANCHAR, J.M. (2004). Ionoluminescence of zircon: Rare earth emissions and radiation damage. *J Phys D: Appl Phys* **37**, 2795–2803.
- FINCH, A.A. & KLEIN, J. (1999). The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. *Contrib Mineral Petrol* 135, 234–243.
- FRIEBELE, E.J., GRISCOM, D.L. & MARRONE, M.J. (1985). The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica. *J Non-Cryst Solids* **71**, 133–144.
- GAFT, M., REISFELD, R. & PANCZER, G. (2005). Luminescence Spectroscopy of Minerals and Materials. Berlin Heidelberg: Springer.
- GAFT, M., REISFELD, R., PANCZER, G., BLANK, P. & BOULON, G. (1998). Laser-induced time-resolved luminescence of minerals. *Spectrochim Acta Part A* 54, 2163–2175.
- GARCIA, J.A., REMON, A. & PIQUERAS, J. (1986). Red luminescence from quenched MgO crystals. *Solid State Commun* 58, 555–558.
- GEAKE, J.E., WALKER, G., MILLS, A.A. & GARLICK, G.F.J. (1971). Luminescence of Apollo lunar samples. In *Proceedings of the Second Lunar Conference*, Levinson, A.A. (Ed.), *Geochimica et Cosmochimica Acta*, Suppl. 2, pp. 2265–2275. Cambridge MA: MIT.
- GODLEWSKI, M., GUZIEWICZ, E., KOPALKO, K., LUSAKOWSKA, E., DYNOWSKA, E., GODLEWSKI, M.M., GOLDYS, E.M. & PHILLIPS, M.R. (2003). Origin of white color light emission in ALEgrown ZnSe. J Lumin 102, 455–459.
- GORBUNOV, S.V., ZATSEPIN, A.F., PUSTOVAROV, V.A., CHOLAKH, S.O. & YAKOVLEV, V.Y. (2005). Electronic excitations and defects in nanostructural Al₂O₃. *Phys Solid State* **47**, 733–737.
- GORTON, N.T., WALKER, G. & BURLEY, S.D. (1997). Experimental analysis of the composite blue cathodoluminescence emission in guartz. *J Lumin* **72-4**, 669–671.
- GORZ, H., BHALLA, R.J.R.S.B. & WHITE, E.W. (1970). Detailed cathodoluminescence characterisation of common silicates. *Proceeding of a Workshop on Solid State Luminescent Phenomena*, pp. 1–12.
- GOTZE, J. (2000). Materials characterisation by cathodoluminescence microscopy and spectroscopy. In *Proceedings of the Sixth International Congress on Applied Mineralogy in Research, Economy, Technology, Ecology and Culture*, pp. 783–786. Gottingen, Germany: Balkema, Rotterdam.
- GOTZE, J. (2002). Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. *Anal Bioanal Chem* **374**, 703–708.
- GOTZE, J., HABERMANN, D., NEUSER, R.D. & RICHTER, D.K. (1999). High-resolution spectrometric analysis of rare earth elements— Activated cathodoluminescence in feldspar minerals. *Chem Geol* **153**, 81–91.
- GOTZE, J., PLOTZE, M., GOTTE, T., NEUSER, R.D. & RICHTER, D.K. (2002). Cathodoluminescence (CL) and electron paramagnetic

resonance (EPR) studies of clay minerals. *Mineral Petrol* 76, 195–212.

- GRANT, P.R. & WHITE, S.H. (1978). Cathodoluminescence and microstructure of quartz overgrowths on quartz. Scan Electr Microsc 1, 789–794.
- GRISCOM, D.L. (1985). Defect structure of glasses: Some outstanding questions in regard to vitreous silica. *J Non-Cryst Solids* **73**, 51–77.
- GRITSENKO, B.P. & LISITSYN, V.M. (1985). Sov Phys Solid State 27, 1330.
- GRUBER, J.B., ZANDI, B., LOZYKOWSKI, H.J. & JADWISIENCZAK, W.M. (2002). Spectra and energy levels of Tb^{3+} (4 f^8) in GaN. *J Appl Phys* **92**, 5127–5132.
- GUO, Q.X., HACHIYA, Y., TANAKA, T., NISHIO, M. & OGAWA, H. (2006). Cathodoluminescence study of anodic nanochannel alumina. *J Lumin* **119**, 253–257.
- GURUMURUGAN, K., HONG, C., HARP, G.R., JADWISIENCZAK, W.M. & LOZYKOWSKI, H.J. (1999). Visible cathodoluminescence of Er-doped amorphous AlN thin films. *Appl Phys Lett* **74**, 3008–3010.
- GUZZI, M., MARTINI, M., MATTAINI, M., PIO, F. & SPINOLO, G. (1987). Luminescence of fused silica: Observation of the O_2^- emission band. *Phys Rev B* **35**, 9407.
- HABERMANN, D. (2002). Quantitative cathodoluminescence (CL) spectroscopy of minerals: Possibilities and limitations. *Mineral Petrol* **76**, 247–259.
- HABERMANN, D., MEIJER, J., NEUSER, R.D., RICHTER, D.K., ROLFS, C. & STEPHAN, A. (1999). Micro-PIXE and quantitative cathodoluminescence spectroscopy: Combined high resolution trace element analyses in minerals. *Nucl Instrum Methods Phys Res, Sect B* 150, 470–477.
- HABERMANN, D., NIKLAS, J.R., MEIJER, J., STEPHAN, A. & GOTTE, T. (2001). Structural point defects in "Iceland spar" calcite. *Nucl Instrum Methods Phys Res, Sect B* 181, 563–569.
- HAGNI, R. (1984). Cathodoluminescence microscopy applied to mineral exploration and beneficiation. In *Second International Congress on Applied Mineralogy*, Park, W.C., Hausen, D.M. & Hagni, R.D. (Eds.), pp. 41–66. New York: American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.
- HAGNI, R. & KARAKUS, M. (1989). Cathodoluminescence microscopy: A valuable technique for studying ceramic materials. *Materials Research Society Bulletin* 14, 11, 54–59.
- HANUSIAK, W.M. & WHITE, E.W. (1975). SEM cathodoluminescence for characterization of damaged and undamaged alphaquartz in respirable dusts. In *8th Annual Scanning Electron Microscope Symposium*, Johari, O. & Corvin, I. (Eds.), pp. 125– 132. Chicago: IIT Research Institute.
- HASHIMOTO, T., SAKAUE, S., AOKI, H. & ICHINO, M. (1994). Dependence of TL-property changes of natural quartzes on aluminium contents accompanied by thermal annealing treatment. *Radiat Meas* 23, 293–299.
- HICHOU, A.E., ADDOU, M., BUBENDORFF, J.L., EBOTHE, J., IDRISSI, B.E. & TROYON, M. (2004). Microstructure and cathodoluminescence study of sprayed Al and Sn doped ZnS thin films. *Semicond Sci Technol* **19**, 230–235.
- HIRATA, G., PEREA, N., TEJEDA, M., GONZALEZ-ORTEGA, J.A. & MCKITTRICK, J. (2005). Luminescence study in Eu-doped aluminium oxide phosphors. *Opt Mater* 27, 1311–1315.
- HOLNESS, M.B. & WATT, G.R. (2001). Quartz recrystallisation and fluid flow during contact metamorphism: A cathodoluminescence study. *Geofluids* 1, 215–218.

- ITOH, C., TANIMURA, K. & ITOH, N. (1988). Optical studies of self-trapped excitons in SiO₂. *J Phys C: Solid State Phys* **21**, 4693–4702.
- JADWISIENCZAK, W.M. & LOZYKOWSKI, H.J. (2003). Optical properties of Yb ions in GaN epilayer. *Opt Mater* 23, 175–181.
- JONES, C.E. & EMBREE, D. (1976). Correlations of the 4.77–4.28 eV luminescence band in silicon dioxide with the oxygen vacancy. *J Appl Phys* 47, 5365–5371.
- KARAKUS, M. (2005). Cathodoluminescence microscopy and spectroscopy characterisation of refractory and advanced structural ceramics. In UNITECR '05: Proceedings of the Unified International Technical Conference on Refractories: 9th Biennial Worldwide Congress on Refractories, Smith, J.D. (Ed.), pp. 330–334. Orlando, FL: American Ceramic Society.
- KARAKUS, M., CRITES, M.D. & SCHLESINGER, M.E. (2000). Cathodoluminescence microscopy characterization of chrome-free refractories for copper smelting and converting furnaces. J Microsc Oxford 200, 50–58.
- KARAKUS, M., HAGNI, R.D. & SPRENG, A.C. (2001). Cathodoluminescence petrography and chemistry of the phosphate grains in the lower Jurassic (Aalenian) ironstones of Lorraine, France. In Studies on Ore Deposits, Mineral Economics, and Applied Mineralogy: With Emphasis on Missippi Valley-Type Base Metals and Carbonate-Related Ore Deposits, Hagni, R.D. (Ed.), pp. 335–363. Rolla, MO: University of Missouri-Rolla Press.
- KARAKUS, M. & MOORE, R.E. (1988). CLM—A new technique for refractories. *Ceram Bull* 77, 55–61.
- KATONA, T.M., CRAVEN, M.D., SPECK, J.S. & DENBARNS, S.P. (2004). Cathodoluminescence study of deep ultraviolet quantum wells grown on maskless laterally epitaxial overgrown AlGaN. Appl Phys Lett 85, 1350–1352.
- KEMPE, U. & GOTZE, J. (2002). Cathodoluminescence (CL) behaviour and crystal chemistry from rare-metal deposits. *Mineral Mag* 66, 151–172.
- KEMPE, U., PLOTZE, M., BRACHMANN, A. & BOTTCHER, R. (2002). Stabilisation of divalent rare earth elements in natural fluorite. *Mineral Petrol* 76, 213–234.
- KIFLAWI, I. & LANG, A.R. (1974). Linearly polarized luminescence from linear defects in natural and synthetic diamond. *Philos Mag* 30, 219–223.
- KOBAYASHI, Y., SATO, S., HITOMI, A., ISSHIKI, T., SAIJO, H., NO-MURA, T. & SHIOJIRI, M. (1998). Cathodoluminescence scanning electron microscopy observations of (SrBaCa)TiO₃ ceramic varistors. J Electron Microsc 47, 29–37.
- KOMINAMI, H., TANKA, M., HARA, K., NAKANISHI, Y. & HATANAKA, Y. (2006). Synthesis and luminescence properties of Mg-Ti-O:Eu red-emitting phosphors. *Phys Stat Sol (c)* 3, 2758–2761.
- Коуама, H. (1980). Cathodoluminescence study of SiO₂. J Appl Phys **51**, 2228–2235.
- LAUD, K.R., GIBBONS, E.F., TIEN, T.Y. & STADLER, H.L. (1971). Cathodoluminescence of Ce^{3+} and Eu^{2+} activated alkaline earth feldspars. *J Electrochem Soc* **118**, 918–923.
- LEE, M.R., MARTIN, R.W., TRAGER-COWAN, C. & EDWARDS, P.R. (2005). Imaging of cathodoluminescence zoning in calcite by scanning electron microscopy and hyperspectral mapping. J Sedim Res 75, 313–322.
- LEVERENZ, H.W. (1968). An Introduction to Luminescence of Solids. New York: Dover.
- LIN, C., WANG, H., KONG, D., YU, M., LIU, X., WANG, Z. & LIN, J. (2006). Silica supported submicron SiO₂@Y₂SiO₅:Eu³⁺ and SiO₂@Y₂SiO₅:Ce³⁺/Tb³⁺ spherical particles with a core-shell

structure: Sol-gel synthesis and characterisation. *Eur J Inorg Chem* **2006**, 3667–3675.

- LIN, Y., TANG, Z., ZHANG, Z., WANG, X. & ZHANG, J. (2001*a*). Preparation of a new long afterglow blue-emitting Sr₂MgSi₂O₇-based photoluminescent phosphor. *J Mater Sci Lett* **20**, 1505–1506.
- LIN, Y., ZHANG, Z., TANG, Z., WANG, X., ZHANG, J. & ZHENG, Z. (2001*b*). Luminescent properties of a new long afterglow Eu^{2+} and Dy^{3+} activated $Ca_3MgSi_2O_8$ phosphor. *J Eur Ceram Soc* **21**, 683–685.
- LOFERSKI, J.J., SCHEWCHUN, J., MITTLEMAN, S.D., DEMEO, E.A., ARNOTT, R., HWANG, H.L., BEAULIEU, R. & CHAPMAN, G. (1979). Cathodoluminescence characteristics of Cu_xS films produced by different methods. *Solar Energy Mater* 1, 157–169.
- LOZYKOWSKI, H.J., JADWISIENCZAK, W.M. & BROWN, I. (1999). Visible cathodoluminescence of GaN doped with Dy, Er, and Tm. *Appl Phys Lett* **74**, 1129–1131.
- LUFF, B.J. & TOWNSEND, P.D. (1990). Cathodoluminescence of synthetic quartz. J Phys Condens Matter 2, 8089–8097.
- MACRAE, C.M. & MILLER, P.R. (2003). Electron microscopy in mineral processing. In *Industrial Applications of Electron Microscopy*, Zhigang, R.L. (Ed.), pp. 187–212. New York: Marcel Dekker.
- MACRAE, C.M., WILSON, N.C., JOHNSON, S.A., PHILLIPS, P.L. & OTSUKI, M. (2005). Hyperspectral mapping—combining cathodoluminescence and X-ray collection in an electron microprobe. *Microsc Res Tech* 67, 271–277.
- MACRAE, C.M., WILSON, N.C. & OTSUKI, M. (2001). Holistic mapping in an electron microprobe. In *Microscopy and Microanalysis*, Vol. 7, Suppl. 2, Bailey, G.W. (Ed.), pp. 146–147. New York: Springer.
- MANFREDOTTI, C., COSSIO, R., LO GIUDICE, A., VITTONE, E. & FIZZOTTI, F. (2006). Vibronic spectrum of c-BN with cathodoluminescence. *Phys Rev B* 74, 1–7.
- MARFUNIN, A.S. (1979). Spectroscopy, Luminescence and Radiation Centers in Minerals. Berlin, Heidelberg, New York: Springer-Verlag.
- MARFUNIN, A.S. (1995). Advanced Mineralogy. Berlin: Springer-Verlag.
- MARIANO, A.N. (1978). The application of cathodoluminescence for carbonatite exploration and characterization. In *International Symposium on Carbonatites*, 1st ed., Pocos de Caldas, Minas Gerais, Brazil, Braga, C.J. (Ed.), pp. 39–57.
- MARIANO, A.N., ITO, J. & RING, P.J. (1973). Cathodoluminescence of plagioclase feldspars. In *Geological Society of America*, Vol. 5, p. 726. Boulder, CO: Geological Society of America.
- MARIANO, A.N. & RING, P.J. (1975). Europium-activated cathodoluminescence in minerals. *Geochim Cosmochim Acta* 39, 649–660.
- MARSHALL, D.J. (1988). Cathodoluminescence of Geological Materials. London, UK: Unwin Hyman Ltd.
- MARTIN, R.W., EDWARDS, P.R., O'DONNELL, K.P., MACKAY, E.G. & WATSON, I.M. (2002). Microcomposition and luminescence of InGaN emitters. *Phys Status Solidi A* 192, 117–123.
- MASON, R., CLOUTER, M. & GOULDING, R. (2005). The luminescence decay-time of Mn²⁺ activated calcite. *Phys Chem Miner* **32**, 451–459.
- MCKNIGHT, S.W. & PALIK, E.D. (1980). Cathodoluminescence of SiO₂ films. J Non-Cryst Solids **40**, 595–603.
- MEDLIN, W.L. (1963). Emission centers in thermoluminescent calcite, dolomite, magnesite, aragonite, and anhydrite. *J Opt Soc Am* 53, 1276–1285.
- MEDLIN, W.L. (1964). Trapping centers in thermoluminescent calcite. *Phys Rev* 135, 1770–1779.

- MEI, Y.F., FU, R.K.Y., SIU, G.G., WONG, K.W., CHU, P.K., WANG, R.S. & ONG, H.C. (2006). Nitrogen binding behaviour in ZnO films with time-resolved cathodoluminescence. *Appl Surf Sci* 252, 8131–8134.
- MERANO, M., SONDEREGGER, S., CROTTINI, A., COLLIN, S., RE-NUCCI, P., PELUCCHI, E., MALKO, A., BAIER, M.H., KAPON, E., DEVEAUD, B. & GANIERE, J.D. (2005). Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. *Nature* 438, 479–482.
- MOORE, R.E. & KARAKUS, M. (1994). Cathodoluminescence microscopy: A technique uniquely suited to the solution of refractory wear problems. *Int Ceram Mono* 1, 925–940.
- MUNEKUNI, S., YAMANAKA, T., SHIMOGAICHI, Y., TOHMON, R., OHKI, Y., NAGASAWA, K. & HAMA, Y. (1990). Various types of nonbridging oxygen hole center in high-purity silica glass. J Appl Phys 68, 1212–1217.
- NISHIKAWA, H., SHIROYAMA, T., NAKAMURA, R., OHKI, Y., NA-GASAWA, K. & HAMA, Y. (1992). Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation. *Phys Rev B* 45, 586.
- ODIN, I.N., CHUKICHEV, M.V., IVANOV, V.A. & RUBINA, M.E. (2001). Cathodoluminescence of Cd₄SiS₆, Cd₄SiSe₆, and S-doped CdS, CdSe and CdTe crystals. *Inorg Mater* **37**, 445–448.
- PAGEL, M., BARBIN, V., BLANC, P. & OHNESTETTER, D. (2000). *Cathodoluminescence in Geosciences*. Berlin, New York: Springer.
- PETROV, V.I. (1996). Cathodoluminescence microscopy. *Physics—Uspekhi* 39, 807–818.
- PONAHLO, J. (1993). Kathodolumineszenz (KL) und KL-spektren von edelsteinen. Z Dt Gemmol Ges 42, 101–113.
- PONAHLO, J. (1999). Kathodolumineszenz- und absorptionsspektren gelber saphire. Z Dt. Gemmol Ges 39, 225–228.
- PORTNOV, A.M. & GOROBETS, B.S. (1969). Luminescence of apatite from different rock types. *Doklady Akademii Nauk SSSR* 184, 110–13.
- POTT, G.T. & MCNICOL, B.D. (1971). Spectroscopic study of the coordination and valence of Fe and Mn ions in and on the surface of aluminas and silicas. *Disc Faraday Soc* **52**, 121–131.
- RANDALL, J.T. (1939). Some recent experiments in luminescence. *Trans Faraday Soc* **35**, 2–14.
- REMOND, G., CESBORN, F., CHAPOULIE, R., OHNENSTETTER, D., ROQUE-CARMES, C. & SCHVOERER, M. (1992). Cathodoluminescence applied to the microcharacterization on mineral materials: A present status in experimentation and interpretation. *Scan Microsc* 6, 23–68.
- REMOND, G., PHILLIPS, M.R. & ROQUE-CARMES, C. (2000). Importance of instrumental and experimental factors on the interpretation of cathodoluminescence data from wide band gap materials. In *Cathodoluminescence in Geosciences*, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 108–113. Heidelberg: Springer Verlag.
- RICHTER, D.K., GOTTE, T., GOTZE, J. & NEUSER, R.D. (2003). Progress in application of cathodoluminescence (CL) in sedimentary petrology. *Mineral Petrol* 79, 127–166.
- ROEDER, P.L., MACARTHUR, D., MA, X., PALMER, G.R. & MARIANO, A.N. (1987). Cathodoluminescence and microprobe study of rare-earth elements in apatite. *Am Mineral* 72, 801–811.
- SAPARIN, G.V., MOKHOV, E.N., OBYDEN, S.K. & ROENKOV, A.D. (1996). Real color cathodoluminescence scanning electron microscopy—A new effective method for study of SiC materials and devices. *Scanning* 18, 25–34.

- SCHULMAN, J.H., EVANS, L.W., GINTHER, R.J. & MURATA, K.J. (1947). The sensitized luminescence of manganese-activated calcite. J Appl Phys 18, 732–739.
- SIGEL, G.H. & MARRONE, M.J. (1981). Photoluminescence in asdrawn and irradiated silica optical fibers: An assessment of the role of non-bridging oxygen defect centers. J Non-Cryst Solids 45, 235–247.
- SINGH, N., MARWAHA, G.L. & MATHUR, V.K. (1981). Luminescence centres and charge compensation in CaS phosphors. *Phys Stat Sol (a)* 66, 761–765.
- SIPPEL, R.F. & SPENCER, A.B. (1970). Luminescence petrography and properties of lunar crystalline rocks and breccias. In *Proceedings of the Apollo 11 Lunar Science Conference*, Levinson, A.A. (Ed.), pp. 2413–2426. *Geochim et Cosmochim Acta*, Suppl. 1.
- SKUJA, L.N., GUTTLER, B., SCHIEL, D. & SILIN, A.R. (1998). Infrared photoluminescence of preexisting or irradiation-induced interstitial oxygen molecules in glassy SiO₂ and alpha-quartz. *Phys Rev B* 58, 14296–14304.
- SKUJA, L.N., SILIN, A.R. & BOGANOV, A.G. (1984a). On the nature of the 1.9 eV luminescence centers in amorphous SiO₂. J Non-Cryst Solids 63, 431–436.
- SKUJA, L.N., STRELETSKY, A.N. & PAKOVICH, A.B. (1984b). A new intrinsic defect in amorphous SiO₂—Twofold coordinated silicon. *Solid State Commun* **50**, 1069.
- SKUJA, L.N. & TRUKHIN, A.N. (1989). Comment on "Luminescence of fused silica: Observation of the O_2^- emission band." *Phys Rev B* **39**, 3909.
- SMITH, A.L. (1949). New complex silicate phosphors containing calcium, magnesium, and beryllium. J Electrochem Soc 96, 287–296.
- SOMMER, S.E. (1972). Cathodoluminescence of carbonates, 1. Characterization of cathodoluminescence from carbonate solid solutions. *Chem Geol* 9, 257–273.
- STEVENS-KALCEFF, M.A. (2000). Electro-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs. *Phys Rev Lett* 84, 3137–3140.
- STEVENS-KALCEFF, M.A. & PHILLIPS, M.R. (1995). Cathodoluminescence microcharacterization of the defect structure of quartz. *Phys Rev B* 52, 3122–3134.
- STEVENS-KALCEFF, M.A., STESMANS, A. & WONG, J. (2002). Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm. Appl Phys Lett 80, 758–760.
- SUN, X.L., GOSS, S.H., BRILLSON, L.J., LOOK, D.C. & MOLNAR, R.J. (2002). Depth-dependent investigation of defects and impurity doping in GaN/sapphire using scanning electron microscopy and cathodoluminescence spectroscopy. J Appl Phys 91, 6729–6738.
- TARASHCHAN, A.N. (1978). *Luminescence of Minerals*. Kiev: Naukova Dumka.
- TELFER, D.J. & WALKER, G. (1978). Ligand field bands of Mn²⁺ and Fe³⁺ luminescence centres and their site occupancy in plagioclase feldpsars. *Mod Geol* **6**, 199–210.
- TIGINYANU, I.M., LANGA, S., SIRBU, L., MONAICO, E., STEVENS-KALCEFF, M.A. & FOLL, H. (2004). Cathodoluminescence microanalysis of porous GaP and InP structures. *Eur Phys J Appl Phys* 27, 81–84.
- TOHMON, R., SHIMOGAICHI, Y., MIZUNO, H., OHKI, Y., NAGASAWA, K. & HAMA, Y. (1989). 2.7-eV luminescence in as-manufactured high-purity silica glass. *Phys Rev Lett* **62**, 1388.
- Тоуама, Т., ADACHI, D. & Окамото, H. (2000). Electroluminescent devices with nanostructured ZnS:Mn emission layer operated at 20 V_{0-D}. *Mater Res Soc Symp Proc* **621**, Q4.4.1–Q4.4.6.

- TRUKHIN, A.N. & PLAUDIS, A.E. (1979). Investigation of intrinsic luminescence of SiO₂. Sov Phys Solid State 21, 644–646.
- VERNON-PARRY, K.D., DAVIES, G. & GALLOWAY, S. (2005). Electronic and structural properties of grain boundaries in electronirradiated edge-defined film-fed growth silicon. *Semicond Sci Technol* 20, 171–174.
- VU, T.A., GOTZE, J., BURKHARDT, J., ULBRICHT, J. & HABERMANN, D. (1998). Application of optical and spectral cathodoluminescence in the study of MgO refractories. *Int Ceram* 47, 164–167.
- WALKER, G., ABUMERE, O.E. & KAMALUDDIN, B. (1989). Luminescence spectroscopy of Mn²⁺ centres in rock-forming carbonates. *Mineral Mag* **53**, 201–211.
- WALKER, G. & BURLEY, S.D. (1991). Luminescence petrology and spectroscopic studies in diagentic minerals. In *Luminescence Microscopy: Qualitative and Quantitative Applications. SPEM Short Course 25*, Barker, C.E. & Kopp, O.C. (Eds.), pp. 83–96. Tulsa, OK: SPEM (Society for Sedimentary Geology).
- WALKER, G., EL JAER, A., SHERLOCK, R., GLYNN, T.J., CZAJA, M. & MAZURAK, Z. (1997). Luminescence spectroscopy of Cr³⁺ and Mn²⁺ in spodumene (LiAlSi₂O₆). J Lumin **72–74**, 278–280.

- WALKER, G., KAMALUDDIN, B., GLYNN, T.J. & SHERLOCK, R. (1994). Luminescence of Ni²⁺ centres in forsterite (MgSiO₄). J Lumin 60–61, 123–126.
- WANG, P.W., HAGLUND, R.F., KINSER, D.L., MENDENHALL, M.H., TOLK, N.H. & WEEKS, R.A. (1988). Luminescence induced by low energy electron deposition in Suprasil[®] and Spectrosil[®] glasses. J Non-Cryst Solids **102**, 288–294.
- XU, S.J., CHUA, S.J., LIU, B., GAN, L.M., CHEW, C.H. & XU, G.Q. (1998). Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment. *Appl Phys Lett* **73**, 478–480.
- YACOBI, B.G. & HOLT, D.B. (1990). Cathodoluminescence Microscopy of Inorganic Solids. New York, London: Plenum Press.
- YANG, X.H. & MCKEEVER, S.W.S. (1990). The predose effect in crystalline quartz. J Phys D: Appl Phys 23, 237–244.
- ZORENKO, Y.V., TURCHAK, R.M., VOZNYAK, T.I. & LUCHECHKO, A.P. (2006). Luminescence of CsBr:Eu films grown by liquid-phase epitaxy. J Appl Phys 73, 211–215.