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Tomographic Spectral Imaging with Multivariate
Statistical Analysis: Comprehensive 3D Microanalysis
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Abstract: A comprehensive three-dimensional (3D) microanalysis procedure using a combined scanning
electron microscope (SEM)/focused ion beam (FIB) system equipped with an energy-dispersive X-ray spectrom-
eter (EDS) has been developed. The FIB system was used first to prepare a site-specific region for X-ray
microanalysis followed by the acquisition of an electron-beam generated X-ray spectral image. A small section
of material was then removed by the FIB, followed by the acquisition of another X-ray spectral image. This
serial sectioning procedure was repeated 10-12 times to sample a volume of material. The series of two-spatial-
dimension spectral images were then concatenated into a single data set consisting of a series of volume
elements or voxels each with an entire X-ray spectrum. This four-dimensional (three real space and one spectral
dimension) spectral image was then comprehensively analyzed with Sandia’s automated X-ray spectral image
analysis software. This technique was applied to a simple Cu-Ag eutectic and a more complicated localized
corrosion study where the powerful site-specific comprehensive analysis capability of tomographic spectral
imaging (TSI) combined with multivariate statistical analysis is demonstrated.

Key words: tomography, spectral imaging, multivariate statistical analysis, multivariate curve resolution, 3D

chemical analysis, tomographic spectral imaging, serial sectioning, 3D microanalysis

INTRODUCTION

Chemical analysis is typically performed at points, lines, or
over areas in images. This would include single-spectrum
acquisitions, line profiles (or spectrum lines), chemical maps
(Cosslett & Duncumb, 1956), or spectral images (an image
where each pixel contains an entire spectrum) (Legge &
Hammond, 1979). Recently, however, interest has been grow-
ing in extending microanalysis to the third spatial dimen-
sion through three-dimensional (3D) atom probe techniques
(see, e.g., references in Miller, 1997) or various direct tomo-
graphic (Patkin & Morrison, 1982; Riidenauer, 1982, 1993;
Sharonov et al.,, 1994; Marschallinger, 1998; Saadi et al.,
1998; Dunn & Hull, 1999; Takanashi et al., 2000; Hull et al.,
2001; Dunn et al., 2002; Vekemans et al., 2004) or computed
tomographic approaches (Schofield & Lefevre, 1992;
Schofield, 1995; Mobus & Inkson, 2001; Midgley & Wey-
land, 2003; Mébus et al., 2003). Each of the techniques
referenced above has a combination of useful analytical
signal, specimen preparation requirements/limitations, and
relevant resolution/total volume sampled as well as vari-
ous degrees of experimental and computational complexity.
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Table 1 shows some of the direct tomographic methods and
their relevant resolutions. With the exception of atom-
probe techniques, in which each atom from the specimen is,
in principle, identified, and the more recent 3D confocal
X-ray fluorescence analysis (Vekemans et al., 2004), only
rudimentary acquisition and analysis techniques were ap-
plied. For example, elemental maps (spectroscopic images)
were acquired from known elements and then rendered in
3D images (Marschallinger, 1998). Spectral imaging ap-
proaches (full spectra from each spatial element) have tradi-
tionally been limited to smaller numbers of spectra and
covering lines or areas. This was due primarily to the lack of
the ability to acquire the data in three dimensions or the
lack of computational ability to analyze the data (e.g.,
reconstruct spectra from points/regions, map chemical sig-
nals, or perform more sophisticated data analyses). In actu-
ality, methods for the acquisition of extremely large spectral
images are commercially available and their comprehensive
and unbiased analysis, based on multivariate statistical analy-
sis (MSA), has been developed (Kotula & Keenan, 2003;
Kotula et al., 2003a) including for 3D spectral images (Kotula
et al., 2003b, 2004). In contrast, the method described by
Vekemans (Vekemans et al., 2004) for the analysis of 3D
confocal micro X-ray fluorescence spectral images presumes
all of the peak shapes are known a priori so that the
problem can be reduced from thousands of variables (chan-
nels) to 10 or fewer variables (now elements) prior to
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Table 1. Comparison of Some Direct Methods for 3D Chemical Analysis

Lateral/depth Total

resolution volume
Technique (nm) sampled Limitations References
3D atom probe 0.1/1 10° nm? Conducting sample Miller, 1997
LEAP 0.1/1 10° nm? Kelly et al., 2004
FIB-SIMS 20/20 10 um? Mapping only Dunn and Hull, 1999
FIB-EDS 100-1000/100-10002 10,000 pm? Volume limited by Kotula et al., 20035, 2004

FIB milling time

*Dependent on Z of material, electron accelerating voltage, and thickness of sections.

multivariate statistical analysis (principal components analy-
sis) and clustering (k-means).

In this work, we demonstrate an analytical geometry
for tomographic or three-spatial-dimension spectral imag-
ing using a combined focused ion beam (FIB)/scanning
electron microscope (SEM)—energy-dispersive X-ray spec-
trometer (EDS) system with the FIB for serial sectioning
and the SEM-EDS for X-ray spectral imaging. We further
demonstrate the use of MSA methods for rapid and
comprehensive analysis of the very large resultant four-
dimensional (4D) data sets. The techniques described herein
are more generally applicable to other tomographic methods
(e.g., metallography, microtomy, tilt-series reconstructions,
etc.) as well other analytical techniques (e.g., time-of-flight
secondary-ion mass spectrometry (TOF-SIMS), X-ray photo-
electron spectroscopy (XPS), X-ray fluorescence (XRF),
particle-induced X-ray emission (PIXE), etc.) where tomo-
graphic spectral imaging (TSI) data is or could be acquired,
and peak identities, shapes (including families of peaks),
positions, and relative intensities may not be known a priori.

MATERIALS AND METHODS

The method used here for sectioning the specimen is simi-
lar to that described by Sakamoto et al. (1998) and Dunn
and Hull (1999). Serial sectioning was performed with a FEI
DB-235, FIB/SEM, equipped with an ultrathin window EDS
controlled by a Thermo NORAN Vantage Digital Imaging
with Spectral Imaging system. The ion column is cofocal
with the field emission SEM and at an angle of 52° with
respect to the same. The EDS has a take-off angle of 35° and
is at a 45° azimuthal angle with respect to the plane of the
ion and electron columns. For the serial sectioning, the
sample, initially untilted with respect to the electron beam,
is tilted 52° toward the ion column. The ion beam is then
normal to the sample surface. It is possible to use other
geometries, but the one used facilitated FIB-cut to FIB-cut
alignment as will be described below. It is possible then, to
cut a cross section with the FIB, image the same surface
with the SEM, and detect the resultant X rays with the EDS,
all without tilting the specimen.

Prior to FIB cutting, a protective layer of Pt is depos-
ited, over the surface to be cut, with the DB-235’s ion-beam-
assisted deposition capability. This overlayer serves as a
sacrificial layer to prevent milling/Ga implantation of the
surface so the original sample surface is preserved, and this
overlayer can be used as a fiducial alignment reference.
Additionally, two fiducial markers are milled into the sur-
face with the FIB: one parallel to the analysis surface set
back several microns beyond anticipated milling and one
perpendicular to the first that acts as a lateral alignment
reference. In later experiments, a pattern was milled into the
sample surface with spacings of 0.5 um perpendicular to
the milling direction. This made measurements of the
amount of material removed for each slice unnecessary. To
image the initial analysis surface with electrons, however, a
FIB stair-step cut is made, shallow away from the analysis
surface and deeper near to it. Additionally, another FIB
stair-step cut is cut at right angles with respect to the
first, on the side of the analysis surface toward the EDS.
This ensures that there is no shadowing of the analysis
surface with respect to the EDS by any intervening speci-
men. The analytical geometry as seen from the point of
view of the EDS is shown in the secondary-electron image
of the analysis surface in Figure la and schematically in
Figure 1b.

A 50-um-wide analysis surface was milled of which
~33 um were analyzed via X-ray spectral imaging. Approx-
imately 1 um of material was removed from the sample for
each slice, exposing a new analysis surface, with a 5-nA ion
beam of approximately 50 nm diameter. The specific amount
of material removed was measured with an ion-beam image
of the specimen surface, making reference to the fiducial
markers. Electron-beam image shifting, using the fiducial
mark perpendicular to the analysis surface as well the origi-
nal specimen’s surface, was used to realign the analysis
region for successive X-ray spectral image acquisitions. For
the initial trenching, a relatively large high-current ion
beam was used, whereas finer cuts, made prior to the first
and subsequent spectral image acquisitions, are made with a
much smaller and therefore lower-current ion beam, result-
ing in a smoother analysis surface. It should be noted here
that the ion imaging step, for fiducial marker measurement,
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Figure 1. a: Secondary-electron image taken to approximate the
view of analysis surface seen by the X-ray spectrometer. b: Sche-
matic of the analysis geometry with (1) first stair-step trench,
(2) second stair-step trench, and (3) fiducial markers.

results in a small amount of sputtered material on the
analysis surface. This was experimentally found to eliminate
charging during electron imaging of nonconducting surfaces.

X-ray spectral images, 128 by 128 pixels by 512 or 1024
channels were acquired from each slice at electron-beam
excitations of 5 and 10 kV, respectively. For spectral image
acquisition, the electron column was operated at 3000X
magnification, resulting in a lateral field of view in the
spectral images of 40 wm (300 nm/pixel) and a vertical field
of view of 51 um (400 nm/pixel). The vertical field of view
is larger than the lateral field of view due to the specimen
tilt of 52° of the electron beam with respect to the plane of
the analysis surface. Of that available vertical field of view,
however, only about 28 um were utilized, as the rest were
either foreground or background, out of the plane of analy-
sis. The reduction was made off-line, after the data were
acquired and analyzed, by truncating groups of voxels away
from the analysis surface. For the first cuts, the stair-step

Figure 2. Schematic of the four-dimensional tomographic spec-
tral image data set. Each voxel or volume element has three spatial
coordinates and one energy dimension.

trench was shallower than for subsequent cuts, so that more
of the analysis surface was visible to the electron beam as
the acquisition went on. This resulted in a tapering of the
volume sampled by this technique. For the two examples
presented in this article, 10-12 slices were made with approx-
imately 1 um being removed per slice. Given the excitation
volumes expected, in the materials analyzed, the informa-
tion in the z direction was most likely undersampled whereas
that in the x and y directions was for the most part oversam-
pled. These dimensions could be increased at the expense of
the additional time needed to mill the analysis surface.

The TSI resulting from the above procedure was then
analyzed using the approach previously described (Keenan
& Kotula, 2003, 2004b; Kotula et al., 2003a) but will be
briefly described here. The tomographic spectral image is
shown schematically in Figure 2 as a series of spectra, each
from a voxel sampling a volume of material. The goal of the
MSA is to factor this raw spectral image, which can consist
of tens of thousands to millions of spectra, into a more
compact and readily interpreted form. The equation being
solved is

D = CS” (1)

where D is the raw X-ray spectral image data matrix un-
folded as m voxels by n channels, C is a matrix of abun-
dances of the components (m voxels by p components) or
the component images (suitably refolded), S is a matrix of
component spectral shapes (n channels by p components),
and the superscript T denotes the matrix transpose. The
determination of the number of components, p, to retain
for the linear model will be described below. The process of
generating spectral images from the serial sections and
unfolding the data from all the slices into the matrix D is
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Figure 3. Schematic of the procedure for generating the tomo-
graphic spectral image data set and unfolding it into a matrix for
the subsequent multivariate statistical analysis calculations.

shown schematically in Figure 3. There is no fundamental
difference, as far as the algorithms are concerned, with
respect to the dimensionality of the data. The data could be
a series of point analyses from different specimens and
therefore have no point-to-point spatial correlation. The
data could also be a one-dimensional spectral line, two-
dimensional spectral image (2D), 3D tomographic spectral
image, time resolved series of spectra, and so forth, and the
underlying data analysis algorithms are no different. The
only difference is how the output matrix C is displayed.
The first step in the MSA calculation is to normalize
the raw data for Poisson statistics (Keenan & Kotula, 2004a).
If this is not done, large variations in the raw data, due to
noise, are fit by the algorithms at the expense of smaller, but
chemically significant, spectral features. That is, in the ab-
sence of Poisson weighting, it is more profitable in a least-
squares sense to fit large magnitude differences due to noise
in high-intensity channels rather than smaller but chemi-
cally significant signals. Next, an eigenanalysis is performed
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on the weighted data to determine the number of signifi-
cant factors p to retain in the calculation. A semi-log plot of
the sorted eigenvalues consists of a baseline of eigenvalues
(straight line on the semi-log plot) that describes noise and
typically, several eigenvalues that rise above the noise base-
line, thus describing non-noise signals in the data. These
non-noise signals are typically chemical in nature but may
also describe artifacts in the data. The number of non-noise
eigenvalues is p, the number of linearly independent com-
ponents that will be used to model the raw data in the
model described in equation (1). The choice of the correct
number of components to retain, p, is automatically made
by fitting a straight line to a range of the eigenvalues that
describes noise. If an eigenvalue sits above the extrapolation
of this line by a sufficient amount, it is deemed significant,
and that value sets the cutoff point below which all compo-
nents describe noise. The solution will then be the most
compact possible given the rank-one approximation to the
noise (Keenan & Kotula, 2004a), describing the most chem-
ical information in the fewest chemical components, in a
computationally inexpensive and routine way.

After weighting the data and determining the correct
number of components or factors to retain in the model,
the next step is multivariate curve resolution implemented
via an alternating least squares approach (MCR-ALS) (Tauler
& de Juan, 2002; Keenan & Kotula, 2003, 2004b). MCR-ALS
is a constrained factor analysis approach where equation (1)
is solved in an iterative fashion. After making an initial
estimate of either C or S, conditional estimates of C and S
are obtained, alternately, given the preceding estimates of
the complementary factors. This process continues until a
convergence criterion is met. All estimates are made using
least squares procedures and are subject to physically appro-
priate constraints. In the present case, an initial guess for S
is derived from the eigenvectors above, and the spectral
shapes S and concentrations C are constrained to be non-
negative. Following the application of MCR-ALS the resul-
tant C and S matrices are inversely scaled back into the
space of real spectra and abundances. The result is a parsi-
monious representation of the data that uses the smallest
possible number of chemical components needed to com-
pletely describe the chemical information in the data in a
physically realistic and readily interpretable way. The calcu-
lations were performed with an optimized C++ code imple-
mented on Windows™-based personal computers with
Intel ™ processors (Keenan & Kotula, 2003, 2004b).

The data sets from the Cu-Ag eutectic and localized
corrosion specimens consisted of 10 slices each with 128 by
128 pixels by 1024 and 512 energy channels, or approxi-
mately 168 million (671 Mbytes) and 84 million (335 Mbytes)
data elements, respectively. On a dual 2.4-GHz Pentium IV
Xeon computer equipped with 2 Gbytes of RAM, the analy-
sis of the localized corrosion TSI took 51 s and required
only 435 Mbytes maximum of system memory. On a some-
what limited laptop (Single 1.1 GHz Pentium III, with 512
Mbytes RAM), the same analysis took 192 s and would have
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exceeded the free system memory if the calculation had not
been performed with out-of-core memory algorithms (Kotula
& Keenan, 2003). For comparison, the total number of data
elements (x, y, z, element) analyzed in Vekemans’ work
(Vekemans et al., 2004) was fewer than 300,000 (in an
unspecified time) compared with 80-160 million in the
present work with computational times less than 1 min. For
rendering, the component images were converted from the
matrix of concentrations, C, to a series of tif images corre-
sponding to the planes of the original slices with a Mat-
lab™ script. The 3D component images were all rendered
with the commercial software package Imaris™. Imaris
performed both linear interpolation and smoothing on
selected component images. When smoothing was applied,
a Gaussian filter with a width of approximately 1.5 X the
voxel X dimension was used, which corresponded to approx-
imately 400 nm. The Cu-Ag eutectic example was not
Gaussian smoothed, whereas all but the Ni component
image in the corrosion example was Gaussian smoothed.
Snapshots of different orientations are shown in the figures
with links in the figure captions, in selected cases, to full
animations.

RESULTS

Cu-Ag Braze Joint

The first example of a TSI analyzed with the MSA proce-
dure described above was from a Cu-Ag braze joint between

Figure 4. Secondary electron image of slice 12,
from the perspective of the electron column. The
box indicates the position of the spectral image
acquisition.

10 pm

Kovar (an Fe-Co-Ni alloy) and alumina. Data were only
acquired nominally from the Cu-Ag eutectic alloy region,
making this a chemically simple example with two expected
chemical phases. Although this example could have been
analyzed via electron images of the serial sections alone, it
represents a proof of concept of the TSI acquisition and
MCR techniques. The specimen was prepared as a metallo-
graphic cross section of the braze joint with the FIB being
used to cut sections perpendicular to the surface of the
metallographic section, parallel to the braze interfaces and
adjacent to the Kovar. Figure 4 is a secondary electron
image of the last section of the Cu-Ag eutectic (Cu is dark
and Ag is light) as seen from the perspective of the electron
column during spectral image acquisition. The resultant
component images and spectral shapes from the MCR
analysis of the data for this one slice are shown in Figure 5.
The Pt component results from the Pt deposited in the FIB
on the specimen prior to sectioning to protect the top
surface from sputtering, Ga implantation, and also so that
the surface can be used as a fiducial marker for alignment of
the specimen during TSI acquisition. It is clear from Fig-
ure 4 that significant topography has developed on the
unprotected specimen’s surface as seen by the relief in the
Ag in the background. The Ga component shown in Fig-
ure 5Se results from both implantation of Ga and resputter
of Ga, Cu, and Ag. This is particularly evident on the
sidewall of the trench in front of the analysis surface. As this
is the last section from the specimen, significant material
has deposited on the sidewall so that it becomes visible in
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Figure 5. Results of the automated X-ray spectral
image analysis of the region of slice 12 shown in
Figure 4. Respective component images (left) and
corresponding spectral shapes (right) for silver (a),
copper (b), platinum (c), Kovar (d), and carbon
and gallium (e). The component images are shown

with a spectral color scale with dark blue being

m
0O 02 04 06 OB 1 l(v

the analysis region. In subsequent work, a wider analysis
surface trench was cut and was periodically remilled to
prevent this buildup from becoming visible during TSI
acquisition. The Fe-Co-Ni component shown in Figure 5e
results from the adjacent Kovar in the foreground. Although
there is significant spectral overlap of the Ga-, Cu-, Fe-,
Co-, and Ni-L X-ray lines, as seen in Figure 5, the analysis
easily separates the overlaps of the spatially distinct chemi-
cal components. For the purposes of the analysis at hand,
the components from off of the analysis surface (i.e., Pt
Kovar, and C-Ga) can be disregarded. Additionally, the Cu
and Ag component images can be truncated to remove the
background regions of Cu and Ag. Results from the analysis
of the full (i.e., multislice) TSI shown below reflect this
(postacquisition and post-MSA data analysis) editing.

The MCR analysis of the full TSI from the eutectic
example resulted in a similar set of component spectral
shapes as shown in Figure 5 for the single slice. The compo-
nent images are now, however, three-dimensional. Several

zero abundance and dark red being maximum
abundance.

different viewpoints of both the Cu and Ag are shown with
a link® in the figure caption to animations of both in
Figure 6. Additionally, the connectivity of the Cu lamellae is
evident in Figure 7, where the regions that are connected
are shown in the same color. These connected regions either
grew from the same source or impinged (actually or appar-
ently due to the resolution of the measurement) upon an
adjacent region. In an effort to more realistically render the
3D component images on a 2D medium, red—cyan anag-
lyphs were rendered of the components in Figure 8 for two
different perspectives. Red (left-eye) and cyan or blue (right-
eye) glasses are required to effectively view the anaglyphs.
The component images were rendered in gray scale and
the stereo feature within Imaris was used to create the ana-

*Animations listed in the captions of the Figures 6, 8, and 11 can be
accessed at the Microscopy and Microanalysis website: http://www.journals.
cambridge.org/jid_MAM.
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Figure 6. Eutectic example, simultaneous views of Cu and Ag
(top), Cu (middle), and Ag (bottom) component images. Click on
the following links to see the animation: Kotula_Figure6_Ag.avi,
Kotula_Figure6_Cu.avi.

Figure 7. Cu component image color-coded by connectivity. Cu
lamellae of similar color are connected with the exception of the
small orange regions near the edges of the volume.

glyphs. Additionally, there is a link to several animations of
the anaglyphs in the figure caption.

Although the contrast alone in, for example, a series of
backscattered electron images, would probably be enough
for the reconstruction at hand, the chemistry revealed by  Figure 8. Red/cyan anaglyphs of both the Ag (top) and Cu
the TSI/MSA approach has even greater contrast (albeit at  (bottom) component images. Click on the following links to see
lower spatial resolution) and is furthermore unbiased. In  the animation: Kotula_Figure8_Ag_anaglyph.avi, Kotula_Figure8_
more chemically complex analyses, conventional image con- ~ Cu_anaglyph.avi.
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trast alone is insufficient to discriminate all of the possible
elemental combinations that might give equivalent contrast.
The same could be said of simple 3D chemical mapping
with X rays (Marschallinger, 1998) where pathological over-
laps of X-ray lines or other potential artifacts could lead to
erroneous interpretation of the contrast. Therefore, truly
comprehensive chemical analysis is essential—full tomo-
graphic spectral images analyzed in their entirety with no
preconceptions of the presence or absence of microchemi-
cal features. The above example illustrates the chemical
specificity of the combined TSI/MSA approach for compre-
hensive 3D microanalysis in a chemically simple system. Its
potential for more chemically complex analyses will be
made clear below.

Corrosion of Cu Substrate

In a more chemically complex 3D analysis problem, the
cause of a localized corrosion problem was examined. Ni
and Au were electroplated on a Cu substrate and exposed to
a standard accelerated industrial indoor corrosive environ-
ment consisting of H,S, NO,, Cl,(g), and H,O (70% humid-
ity), at 30°C. Micron-sized protuberances, expected to be a

one pixel of Cu (green). b: Spectral shapes from
the automated analysis of the TSI. Note the
significant spectral overlap between Ni/Cu

and Pt/Au/S.

corrosion product, were observed to form on the surface at
widely separated locations. EDS analysis confirmed that the
outgrowths contained Cu and S. The cause of the localized
corrosion was expected to be pinholes in the Ni and/or Au
films, but the actual cause was unknown. Because the local-
ized corrosion product was readily visible in the FIB/SEM
with the SEM, one outgrowth was located and a 50-um?
region including it was coated with electron-beam-assisted
Pt followed by ion-beam-assisted Pt to protect the top sur-
face from implantation and sputtering by the Ga ion beam.
The TSI had, on average, 140 counts per voxel and contained
23 million counts total. The Pt overlayer also serves to delin-
eate both the top surface of the surrounding region as well
as the corrosion product itself. As with the previous exam-
ple, for rendering of the 3D component images, the regions
away from the analysis surface were truncated.

Figure 9a shows both the mean spectrum and a typical
raw spectrum from one voxel of Cu, and Figure 9b shows
the component spectral shapes, S, from the automated
analysis of the TSI. Because the data were generated with an
incident electron-beam energy of 5 keV, all of the expected
elements in the analysis volume (Cu, Ni, Pt, Au, S) have
X-ray lines of reasonable intensity. Additionally, most other
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elements, with the exception of H through Be, also have
detectable X-ray lines that fall within this excitation limit,
although some possible ones might be expected to be diffi-
cult to distinguish (e.g., Cr-L and O-K). However, signifi-
cant spectral overlap is expected for spatially adjacent Ni/
Cu, Pt/Au, and Au/S, rendering conventional X-ray mapping
less than optimal for displaying the elemental distributions.
The advantages of MCR over conventional mapping is quite
clear from Figure 9, where Cu- and Ni-L as well as Pt-,
Au-M, and S-K X-ray lines, have successfully been decon-
volved in spite of significant spectral overlap. Additionally,
the respective 3D component images demonstrate this de-
convolution capability, resulting in high contrast, as will be
shown below. Although 5 chemical components were ex-
pected, based on prior knowledge (Cu, Ni, Au, Cu-S, and
Pt-Ga-C), the automated analysis found 10. One of the
extra components corresponded to a Si-O region and an-
other corresponded to a region that contained Ni, Cu, O,
and Cl. The remaining three components from the analysis,
which were not rendered, included a noise component
(large noise peak) that was not spatially correlated with the
microstructure, a carbon component from contamination

Figure 10. Comparison of respective
component images and optimized maps for Cu
and Ni on the same intensity scales for slice
number 5. a: Cu component image. b: Cu map
from 950 €V to 1030 eV. ¢: Ni component image.
d: Ni map from 750 eV to 830 eV.

away from the analysis surface, and a second Pt-Ga-C
component representing the e-beam-deposited Pt from the
FIB, differing only by the relative amounts of Ga and Pt.

As a direct comparison between conventional maps
extracted from the raw spectral image and the MCR ap-
proach, Figure 10 shows the pure components from the
MSA analysis as well as the optimized X-ray maps for Cu
and Ni for one section. The energy ranges for the maps were
chosen to minimize the known spectral overlap and the
component images were normalized so that the correspond-
ing spectral shapes had an intensity of one count. Therefore
the intensities in the component images represent the total
number of counts from the respective material-characteristic
peaks as well as bremsstrahlung spectral background. It is
clear that significant signal has been discarded by simply
mapping a small region of spectral intensity.

The component images from MSA, which show the
spatial distribution of the respective spectral shapes, are
rendered in Figure 11. With this high-contrast direct tomo-
graphic analysis, the various chemical components can be
visualized individually or together. For example, the starting
surface prior to electrodeposition must have looked very
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Figure 11. Selected view of the 3D component images from the corrosion example. Red is gold, green is Cu, blue is
Si-O, cyan is Cu-S, magenta is Pt, yellow is Ni. Click on the following link to see the animation: Kotula_Figurell
corrosion.avi.
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much like the rendering in Figure 11b, which shows the Cu
and Si-O component images rendered together. In contrast
the Cu surface can be examined by itself as in Figure 11a. In
sequence, the order of development of the microstructure
can be followed. Figure 11a is the Cu surface, which had
been intentionally roughened by grit blasting with silica
particles. The surface as seen by the plating bath consists
mostly of Cu but with some Si-O apparently embedded as
seen in Figure 11b. This has important consequences for the
electroplating process because nonconducting contami-
nants on the surface will only be plated slowly by deposition
starting at the edges. Figure 11c, which shows Cu, Si-O, and
Nij, illustrates this. The Ni has only partially overplated the
Si-O particle. The gold layer nearly covers the hole in the Ni
film, as seen in Figure 11d, but there is still a hole of several
square microns in area. This hole allows the environment to
reach the less noble metals below and therefore the corro-
sion process has a pathway to proceed. The spatial associa-
tion of the unexpected surface contaminant and the resulting
corrosion product is shown in Figure 11e. The center of the
hole in the gold film directly corresponds to the location of
both the Si-O contaminant and the corrosion and all of the
respective chemistry can be visualized from various render-
ings of the 3D component images from the MSA of the TSI
All of the components except the Pt-Ga-C are shown in Fig-
ure 11f, along with the dimensions of the rendered volume.

To better see the various layers and plating defect,
Figure 11g-1 shows the underside of the corroded region.
Figure 11g shows the underside of the Ni layer through a
translucent-rendered Cu. Figure 11h shows the underside of
the gold film and the pinhole that allowed corrosion to pro-
ceed and Figure 11i-1 shows other combinations of the vari-
ous materials from the underside. A link to an animation of
all the components can be found in the figure caption.

For additional aid in visualizing the three-dimensional
component images, they were rendered as red—cyan anag-
lyphs in stacked sequence in Figure 12. The interlocking
nature of the different materials is particularly evident. This
method of visualization also allows the topology of the
different surfaces to be made clear.

DiscussioN

The specific details of the tomographic methods described
in this article, namely the acquisition of electron-excited
X-rays from surfaces revealed by the FIB, should not over-
shadow the very general applicability of this TSI acquisition
and data analysis approach. Other direct TSI acquisition
methods would include removing layers of material from a
specimen via metallography (Marschallinger, 1998) or mi-
crotomy (Denk & Horstmann, 2004) followed by some sort
of spectral imaging of the exposed surface with the TSI
resulting from multiple iterations of sectioning and spectral
imaging. An example of this approach, which demonstrates

the power of the method and also the potential for generat-
ing extremely large resultant TSI data sets, is metallographic
sectioning, which results in a large flat surface for analysis.
With current commercially available X-ray spectral image
acquisition hardware, spectral images with 1024 X 1024 pix-
els (over 1 million spectra) each with 1024 or more channels
can easily be acquired. These data sets are 4 Gbytes uncom-
pressed and have already been analyzed with the MSA tech-
niques described above (Kotula & Keenan, 2002). If the TSI
had data from 10 sections it would be over 40 Gbytes, and at
50 sections the data set would be in excess of 200 Gbytes. To
collect such data sets in a reasonable time (less than 8 h
including sectioning time) with current X-ray detectors (e.g.,
Si-Li) they are by necessity very noisy. It should be noted
however that newer commercially available Si-drift detectors
could improve this situation by an order of magnitude of
more. In previous work, large spectral images with as few as
five counts per 1024-channel spectrum have been success-
fully analyzed with the same algorithms as above, augmented
by spectral and spatial compression (Kotula & Keenan, 2003).
The ability to analyze extremely noisy data would be useful,
as the acquisition times for such data sets could quickly
become a limiting factor. The MSA approach described here
does make full use of all the statistics and furthermore has
been shown to work on more than just X-ray spectral image
data: TOF-SIMS (Ohlhausen et al., 2004; Smentkowski et al.,
2004) and EELS (Keenan & Kotula, 2004c). Therefore one
could envision using a microtomy technique to reveal layers
of a biological material followed by surface or thin-section
analysis to extract not only elemental phase distributions
but also molecular signatures. Additionally, the data analysis
methods described here could be used to analyze spectral
image data acquired from tilt series.

CONCLUSIONS

The power of the MSA approach described here is in its
robust and unbiased depiction of the large amount of chem-
ical information contained in spectral series and tomo-
graphic spectral images. In the examples above, each data
element (channel) from each spectrum from over 160,000
voxels has been analyzed, resulting in a small number of
chemically relevant component spectra and respective im-
ages. The chemical contrast has been maximized and is un-
ambiguous, making this approach superior to conventional
rendering approaches such as simple X-ray mapping. The
combination of three-spatial-dimensional spectral imaging
with comprehensiveand unbiased multivariate statistical analy-
sis is a powerful new approach for materials characterization.
The data in the present case were acquired manually.
Spectral images from each slice were acquired followed
by manual cutting and alignment steps. This entire process
could be fully automated, resulting in the ability to cut
larger areas with greater efficiency and reproducibility.
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Figure 12. Red/cyan anaglyphs of two views of the 3D component images from the corrosion example.
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