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Abstract: Spectral imaging in the scanning electron microscope ~SEM! equipped with an energy-dispersive

X-ray ~EDX! analyzer has the potential to be a powerful tool for chemical phase identification, but the large data

sets have, in the past, proved too large to efficiently analyze. In the present work, we describe the application of

a new automated, unbiased, multivariate statistical analysis technique to very large X-ray spectral image data

sets. The method, based in part on principal components analysis, returns physically accurate ~all positive!

component spectra and images in a few minutes on a standard personal computer. The efficacy of the technique

for microanalysis is illustrated by the analysis of complex multi-phase materials, particulates, a diffusion couple,

and a single-pixel-detection problem.
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INTRODUCTION

It is a conundrum that faces microanalysts every day: How

do you perform a complete and comprehensive survey of

the chemistry of a microstructure in a reasonable time?

Traditional solutions in the scanning electron microscope

~SEM! would include taking an image and then collecting

X-ray spectra from a series of points. This method relies

heavily on the operator’s ability to identify chemically dis-

tinct regions. In addition, for a complex microstructure, this

could take a considerable amount of time to do correctly.

On the positive side, if care is taken, these “point spectra”

can be quantified. An alternative method that has been used

widely is X-ray mapping ~Goldstein et al., 1992!, where a

window about a range of X-ray energies is integrated and

displayed as an image. This has the advantage that qualita-

tive elemental distributions from an area of a microstruc-

ture can be visualized. The disadvantages are that maps are

generally not quantitative, can be susceptible to artifacts

~Newbury, 1997; Newbury and Bright, 1999!, rely on fore-

knowledge of the elements to map, and cannot discern

elemental correlations ~e.g., Al versus Al2O3!. More recently,

with increases in computer CPU speed, memory, and stor-

age space, X-ray spectrum-imaging systems have become

available. A spectral image is a two-dimensional array of

points in the microstructure with a complete X-ray spec-

trum from each point ~Legge and Hammond, 1979; Jeanguil-

laume and Colliex, 1989; Mott et al., 1995; Anderson, 1998!.

Spectral images potentially overcome the shortcomings of

point analyses ~e.g., how to pick the points! by being an

imaging technique that allows the analyst to qualitatively

analyze and perhaps quantify the spectra. It should be noted

that for the spectral image to have as much spatially re-
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solved chemical information as possible, the pixel size should

be somewhat finer than the X-ray generation volume ~Ly-

man, 1986; Goldstein et al., 1992!. In addition, spectral

images have potential to overcome the problems with map-

ping ~e.g., choosing the elements to map! because there is a

complete spectrum from each pixel. The problems with

spectrum imaging up until recently were that there were no

tools for extracting the chemically relevant information

from the massive amount of data ~.65 million individual

data points for a 256 3 256-pixel 3 1024-channel spectral

image!. The tools that have been available for analyzing

spectral images amount to ones that map after the fact and

then allow summing of spectra that have been thresholded

from maps ~Mott et al., 1995; Mott and Friel, 1999!. Addi-

tionally, it can take a considerable amount of time to collect

spectral images with individual spectra containing sufficient

counts to perform even a qualitative, let alone quantitative,

analysis of a given spectrum. It is for these reasons that new

analysis methods are needed to objectively analyze spectral

images ~Anderson, 1999, 2000; Kotula et al., 1999; Kotula

and Keenan, 2000!.

One inherent problem with spectrum imaging is that

the data sets cannot readily be visualized in their entirety.

This point can be appreciated by looking at the three-

dimensional representation of the spectrum image data set

in Figure 1. Each element of the cube has associated with it

three dimensions: x-position, y-position, and X-ray energy

channel. Further complicating the complete analysis is the

fact that much of the spectrum image is redundant. This

would include regions of the spectra where no peaks are

found as well as pixels from the same chemical phase.

Redundancy is, in fact, absolutely necessary for the analysis

method described below to work. The single greatest prob-

lem is that for a robust unbiased analysis, no assumptions

can be made as to what may or may not be present. In other

words, you cannot blindly ignore parts of the spectra just in

case there really is a peak there.

The key requirements of a robust system for the auto-

mated analysis of spectral image data sets are: no assump-

tions about the absence or presence of any constituent; the

ability to handle noisy data; the ability to handle significant

spectral overlap; spectral image processing times of the

same order or much less than the acquisition time for the

data; and quantitative agreement between raw and recon-

structed data. The system developed in the present work

meets all of the above requirements.

MATERIALS AND METHODS

Multivariate Statistical Analysis

Multivariate statistical analysis ~MSA! describes a general

set of techniques that are utilized for analyzing data sets

such as opinion polls, new-drug trials, and series of spectra

~Harman, 1976; Malinowski, 1991; Geladi and Grahn, 1996!.

For all of these applications of MSA there are from several

to thousands of variables in the data sets, and the goal is to

explore the variation in multiple dependent variables simul-

taneously. For X-ray spectral image data, the variables are

the energy channels and will typically number from 1000 to

4000. The end product of MSA is a transformation from the

raw data, with all its inherent complexity, to a simple

solution that captures the important features of the original

data in a more compact way. This is equivalent to perform-

ing a dimensional reduction on a data set where the original

spectral image could contain 65,536 spectra ~i.e., 256 3 256

pixels! when in reality there are only a few spectral shapes

that describe the relevant information in the spectral image.

This has the advantage that redundancy can be exploited by

combining all the like spectra. In fact, redundancy is used to

advantage in multivariate methods, so that a collection of

similar noisy spectra can, with suitable algorithms, be com-

bined to form a superspectrum with the composite count-

ing statistics of the individuals.

The goal of MSA in the present context is to extract the

relevant information from the raw X-ray spectrum image. A

spectral image will typically contain from several thousand

to tens of thousands of X-ray spectra, each with 1000 or

more energy channels. The desired result from MSA of a

Figure 1. Schematic of the spectral image data cube.
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spectral image such as this is a spectrum from each distinct

chemical component present and a set of images describing

where and to what extent in the microstructure the chemi-

cal components are. Any one of a number of MSA methods

can be applied to a problem such as this but one key

assumption was made in this work to simplify the necessary

computations. We assume that any raw spectrum can be

reconstructed by a linear combination of the product of the

MSA-determined component spectra and their respective

amplitudes or weighting ~the pixel intensity in the compo-

nent image!. This can be written as an equation where si is

the ith raw spectrum from the original spectrum image:

si 5 C~i,1! S1 1 C~i,2! S2 1 C~i,3! S3 1 . . .1 C~i, n! Sn 1 Ei . ~1!

The C~i, n! terms are the amplitudes or weighting of the

component spectra Sn where n describes the number of

nonnoise components found. The C terms can be used to

construct component images that then describe the spatial

distribution of the signal described by the component spec-

tra. The last term, Ei , describes the residuals due to Poisson

noise. Equivalently, we could describe the raw spectral im-

age data matrix, D, as the product of two new matrices, C

and S:

D 5 C{ST . ~2!

C is a matrix of concentrations or component images of

dimension ~x{y!{n, and ST ~where T denotes the matrix

transpose! is a matrix of spectral shapes of dimension p{n,

where p is the number of channels per spectrum. The

relationship between the original data cube and the MSA

solution is shown schematically in Figure 2 for a hypotheti-

cal microstructure with three chemical components.

Typically, the first step in MSA calculations is to

perform orthogonal factorization of the data into the prod-

uct C{ST by, for example, a singular value decomposition

~SVD; Malinowski, 1991!. SVD is simply one method for

computing a principal components analysis ~PCA!. Trebbia

and Bonnet ~1990! have described the details of PCA

performed on the raw spectral image data and the impor-

tance of suitable normalization. From a geometric point of

view, PCA begins by finding the single direction in the

p-dimensional space that best describes the location of the

Figure 2. Relationship between the data cube and pure-component images and spectra for a hypothetical case where n,

the number of components automatically determined by the software, is 3, x and y are real-space pixel coordinates, and

p is the number of energy channels per spectrum.
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data within the space. The vector describing that is the first

principal component. Once found, a second direction or-

thogonal to the first is determined that best accounts for the

variation in the data that is orthogonal to the first direction.

This is the second principal component. The process con-

tinues with each new principal component maximally ac-

counting for the variation in the data orthogonal to all

preceding components. The first few principal components

will typically contain the chemical information of interest,

while the rest will describe noise or error. In practice, PCA

will return an answer of the same dimension, p, as the

original spectral image that can then be manually reduced

by inspection ~or automatically as in this work!. The result

of orthogonal factorization ~i.e., PCA! is the imposition of

orthogonality on the estimated principal components. The

drawback of PCA, by itself, is that the answer it gives is

abstract and not readily interpretable or even physical as

principal component spectra and images will have negative

intensities. Real spectra are not orthogonal as PCA assumes

they are. There will therefore be mixing of signals from

chemically distinct chemical constituents in a single princi-

pal component. To further complicate interpretation of

PCA results, information about different chemical constit-

uents will be convolved not only in the principal compo-

nent spectra but in the images as well. Given the complexity

of the principal components, the utility of spending a large

amount of time analyzing PCA results for the typical

analyst is questionable.

It is for these reasons that a new method for converting

from abstract principal components to physically meaning-

ful pure components has been developed, based in part

upon multivariate curve resolution techniques ~Andrew and

Hancewicz, 1998; Tauler and deJuan, 2002!. The first appli-

cation of the present method has been presented elsewhere

~Kotula and Keenan, 2000!. The terminology of pure com-

ponents implies that the components are no longer mixed

as the principal components were. This is achieved by

relaxing the orthogonality constraint imposed by PCA and

applying constrained alternating least squares algorithms to

equation ~2! above. Although orthogonality has been re-

laxed, linearity has not and this will result in nonintuitive

results under some circumstances as will be described. This

typically manifests itself as extra components that are linear

approximations to nonlinear effects such as absorption and

can be extremely useful for understanding geometrical ef-

fects in microanalysis. This novel approach to the analysis of

spectral image data sets will be demonstrated for a metal-

ceramic braze joint with seven chemical phases, a Cu-Ni

~continuous solid solution! diffusion couple, particle analy-

sis, and detection of a single pixel of Pt in a Si matrix. For

several of these examples, a quantitative comparison be-

tween raw and processed data will be made to demonstrate

the effectiveness of the current spectral image data-analysis

approach.

RESULTS AND DISCUSSION

Analysis of a Metal-Ceramic Braze

Braze joints between metals and ceramics are typically rich

in complex but technologically important chemical inter-

actions. It is for this reason that the first example of auto-

mated X-ray spectral image analysis is of a braze between

copper and alumina in which seven distinct chemical com-

ponents were detected with the automated spectral image

analysis technique described above. The spectral image was

acquired with a JEOL 840 SEM with W-filament, operated

at 20 kV with a 10 mm2, 138-eV-resolution Si ~Li! X-ray

detector. The spectral image was collected with the NORAN

Vantage Digital Imaging with Spectral Imaging ~DSI! with a

resolution of 128 3 128 pixels ~16,384 spectra! at 1024

channels per spectrum, a pulse processor shaping time of

9 ms, and 50% dead time. To build the spectral image, 36

frames were collected at 1 ms/pixel/frame for a total acqui-

sition time of 10 min or 36 ms/pixel. This resulted in an

average of 300 total counts per spectrum. Figure 3 shows

the results of PCA of this spectral image data set. The

principal components are abstract and difficult to interpret.

Sn, for example, is present to some degree in every principal

component. Additionally, all of the principal component

images and spectra are mixed and contain both positive and

negative intensities. It is for these reasons that the present

algorithms were developed to automatically convert ab-

stract principal components into physically meaningful and

more readily interpreted pure components. The automated

spectral image analysis in this case took approximately

1 min on a dual 500-MHz Pentium III PC with 1 Gbyte

RAM. This included both the PCA and new algorithms. The

matrix size was 134 Mbyte and the maximum amount of

memory utilized by the analysis software was 170 Mbyte of

RAM ~i.e., 36 Mbyte memory overhead!. Figure 4 is a RGB

composite of all the chemical components found. Associ-

ated with each of the pure component images used to

construct the RGB image is a pure component spectrum
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Figure 3. Results of a principal components analysis of the spectral image from a braze illustrating the difficulty of

interpreting the abstract principal components.
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from which the qualitative chemical composition of the

component was determined. The pure component spectra

and respective images from the analysis are shown in Fig-

ure 5. The pure component or concentration images in

Figure 5 ~and elsewhere in this article! are based on a color

scale with dark-blue being zero absolute concentration and

dark-red being maximum absolute concentration or ampli-

tude of the respective pure-component spectrum. The ac-

tual numbers corresponding to a given color are shown

below each image. The pure-component spectral intensities

are normalized counts. Therefore, to get back to actual

counts for a given pixel, simply multiply the number corre-

sponding to the color of a pixel by the normalized counts in

the pure-component spectrum. To form the RGB image in

Figure 4, the real-number-intensity pure-component im-

ages were converted into 8-bit TIFF format by scaling the

minimum and maximum values to 0 and 255 respectively.

Ultimately a direct comparison between raw and recon-

structed data is required to judge the effectiveness of the

automated analysis. Figure 6 compares one raw pixel from

each of the Sn and Pb-Mo phases with the respective

reconstructed spectra from the same pixels. To reconstruct

the spectrum for a given pixel of a distinct chemical compo-

nent we simply multiply, using Sn as an example, the

vectors CSn{SSn
T , which returns a matrix the same size as the

raw spectral image. We can then directly compare the same

raw versus reconstructed pixel.

The braze-analysis example shown above demonstrates

the power of the present automated X-ray spectral image

analysis technique. The solution, as shown in Figures 4

and 5, was produced with no operator intervention in

approximately 1 min. While Figure 4 is useful for displaying

the interpreted solution, it is only part of the answer to the

microanalysis problem at hand. Figure 5 illustrates the

two-orders-of-magnitude reduction in the amount of data

needed to describe the relevant information contained in

the raw spectral image. The concentration matrix C in this

case has dimensions of 128 3 128 pixels 3 7 pure compo-

nents and displays the spatial variations ~i.e., as images! of

the respective pure-component spectra. The respective

spectral-shape matrix S has dimensions of 1024 energy

channels 3 7 pure components and consists of the pure-

component spectra. Therefore, the original 16.8 million

data points ~16,384 spectra 3 1024 energy channels! has

been reduced to 122 thousand data points in 1 min with no

loss of nonnoise information. This dimensional reduction

allows the analyst to concentrate on interpreting the results

without spending much time on either acquisition or analy-

sis and with less fear of missing something important

within the limits of sampling ~i.e., pixel density! and count-

ing statistics. The comprehensive solution in Figures 4 and 5

also illustrates another significant advantage to using MSA

over more manual analysis methods—the ability to perform

analysis on noisy data. For traditional X-ray mapping, acqui-

sition times are typically quite long, as the goal is to visual-

ize differences in X-ray image intensity. In addition to the

long acquisition times and potential artifacts involved with

X-ray mapping, it is also a time-intensive analysis method,

as correlations between regions in different maps must be

made manually. MSA methods, on the other hand, make

full use of the redundancy inherent to spectral image data,

and have, in this work, been fully automated and made

computationally efficient. The spectral image of the braze

above was collected in 10 min, resulting in an average of 300

counts in each spectrum, and was comprehensively ana-

lyzed in 1 min. The typical raw spectrum has a full scale of

10 to 20 counts, making manual analysis of such noisy data

impractical. In part because of the redundancy embodied

by a large number of noisy spectra, such data pose no great

difficulty for MSA techniques.

Direct comparison between raw and reconstructed pix-

els for the case of Sn, in Figure 6A, shows that the entire

Figure 4. RGB composite of the results of an automated analysis

of a spectral image from a braze in a thermoelectric cooler. Cu is

red, Ni-P is green, Al2O3 is blue, Bi is magenta, Sn is yellow, Mo/Pb

is cyan, and silicate glass is white.
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Figure 5. Pure components from the automated analysis of a spectral image from a braze in a thermoelectric cooler.

The vertical units on the spectra are normalized counts. The pure-component images were used to construct the RGB

image in Figure 4.
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family of peaks for a given element is preserved. Even

though the software makes no assumptions about the shapes

and relative intensities of X-ray lines for a given element,

the information is maintained through the analysis. The

primary difference between the raw and reconstructed spec-

tra for Sn is the relative level of noise. The reconstructed

spectrum is a statistical aggregation of all the Sn in the

spectral image. The residual, from the subtraction of the

raw and processed spectra ~not shown!, is quite small except

where there are a large number of counts, as under the large

peaks. This is a direct outcome of Poisson statistics, where

the noise level of a measurement is equal to the square root

of the number of counts. There will be more noise, in an

absolute sense, under a large peak as there are more counts

there. The same phenomenon is observed for the linear-least-

square ~LLSQ! fitting of any spectroscopic data whose acqui-

sition is governed by counting discrete events. In fact, the

way in which the automated analysis software works can be

thought of as LLSQ fitting of internally determined “refer-

ence” spectra to all the raw pixels. The reference spectra

however bear statistical aggregation and filtering, and there-

fore have a larger number of counts than the individual raw

spectra.

Close examination of the pure-component images ~con-

centration maps! from Figure 5 shows that the boundaries

between chemical components are not abrupt, but span

several pixels. For example, the Sn pure-component spec-

trum derives from regions of the spectral image where Sn is

by itself and also from mixed regions where it is not

spatially resolved, for example, at chemical phase bound-

aries. At a boundary between two compounds where signals

from both are mixed, the software quantitates the propor-

tion of the spectral shapes in each. The mixed pixel is then

composed of a linear combination of the spectral signals

from the adjacent phases as far as the software is concerned.

This is equivalent to subpixel spectral demixing. Perhaps

the best example of this in Figure 5 is the glass component.

There are no pure glass pixels ~spectra! in the raw data

because the signal from the glass is always mixed with that

of the alumina and Pb/Mo components. In spite of this, the

automated analysis software identifies the glass as a chemi-

cally distinct component of the microstructure. There are

analysis methods that look for the pixels that most represent

the chemical phases in a raw data set and then categorize

the raw spectra from this basis of “pure” ~or purest! spectra.

Such methods fail when there are not pure ~unmixed!

spectra for every chemical component. It is important to

note that the MSA method employed here does not catego-

rize pixels as belonging to a class. Classification methods

such as pattern recognition will typically describe “fuzzy”

boundaries as separate “boundary” components or as one

or other of the components adjacent to the boundary. If, for

example, Sn were adjacent to Pb, then all along the bound-

ary between the two either a second component correspond-

ing to Sn-Pb would be identified or the pixels would be

classified as either Sn or Pb.

Examination of the Pb/Mo component spectrum in

Figure 6B illustrates again the lack of assumptions about the

generation and detection of X rays in the automated analy-

sis software. In this case, Pb ~Ma1,2 2.342 kV! and Mo ~La1

Figure 6. A: Comparison of raw spectrum from one pixel in the

Sn phase ~blue! and the spectrum from the same pixel recon-

structed ~green! from the braze spectral image data set. B: Compar-

ison of raw spectrum from one pixel in the Pb/Mo phase ~blue!

and the spectrum from the same pixel reconstructed ~green!.
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at 2.293 kV and Lb1 at 2.394 kV! are present in the same

component and appear to be one set of peaks. It is by closer

inspection of the pure-component spectrum that it is clear

that two elements are present although not spectrally sepa-

rated. In fact it is one of the great strengths of MSA

techniques that these correlations are maintained, with data

that is noisy. The typical Sn spectrum has about 10 counts

full-scale while the typical Pb-Mo spectrum has about 15. It

is clear from examination of Figure 5 that the individual

elemental spectral correlations ~i.e., families of X-ray lines!

as well as correlations between different elements ~e.g., as in

the Pb-Mo and Al-O cases! are maintained. There are,

however, several circumstances when this may not be the

case and some of these will be illustrated in the following

examples.

While the braze example is particularly straightforward

to interpret, this is not always the case, as will be illustrated

in the following examples. One should note that the present

automated analysis software does just that; analyze spectral

image data sets in an objective way. It does not however

interpret the solutions. There are a number of circum-

stances when the solution may seem nonintuitive. First, it is

important to note that the software makes no assumptions

about the nature of X-ray generation and detection. The

software does not know that for a given element there may

be a family of X-ray lines present. This can be illustrated

quite dramatically by scrambling all the pixels in the spec-

tral image. Analysis of the scrambled spectral image will

produce the same pure component spectra as that of the

original spectral image. The pure-component images will,

however, carry the same scrambling as the original spectral

image. Precisely the same argument can be made for the

energy channels. Therefore, physical proximity of pixels or

channels is meaningless for the analysis itself, but still

essential for the interpretation of the results.

Analysis of a Cu-Ni Diffusion Couple

Diffusion processes occur in virtually every class of materi-

als. The frequent observation of diffusion phenomena in

materials is the primary reason for analyzing a spectral

image from a Cu-Ni diffusion couple. Cu-Ni is a simple

binary system with complete solid solubility across the

entire compositional range and is well understood. Discs of

high-purity Cu and Ni were carefully polished flat and

smooth, cleaned, and assembled in a clamp. The entire

assembly was then heated under inert gas for 24 h at 9008C.

A cross section was then prepared by conventional metallog-

raphy. It should be noted that this specimen is not perfectly

smooth and contains Kirkendall voids resulting from the

interdiffusion process. Spectral image data sets were ac-

quired from the diffusion zone at accelerating voltages of 7

and 20 kV in a JEOL 5900LV using a NORAN Vantage-

Digital Imaging with Spectral Imaging. At 7 kV, only the

L-lines for Cu and Ni are excited, so this case should pose

the greatest challenge for the automated spectral image

analysis due to spectral overlap. The La peaks for Cu and Ni

differ in energy by only 79 eV. The data sets were all

acquired with a pulse processor shaping time of 9 ms and a

dwell time per pixel per frame of 40 ms with 2000 frames to

build the spectral image. The total acquisition time was

22 min or 80 ms total dwell time per pixel. For the 7-kV

data set, the dead time was 25% with 1.2M counts in the

spectral image and an average of 70 counts per spectrum.

The 20-kV spectral image was acquired with 25% dead time

and had 5.5M counts total with an average of 337 counts

per spectrum. The data analysis times for both spectral

image data sets were between 1 and 3 min. Figure 7 is the

result of the analysis of the 7-kV spectral image data set. In

this case, the automated analysis returned two pure compo-

nents to describe the diffusion couple—pure Ni and pure

Cu. The results of the analysis of the spectral image data set

collected at 20 kV are shown in Figure 8. In this case, the

software has identified three components.

In the case of a simple diffusion couple, the results of

the automated analysis may at first seem nonintuitive. In

fact, however, the result is a natural outcome of the linearity

assumption present in the MSA calculations and will have

implications for a whole range of related microanalysis

problems. Without a priori knowledge of the nature of the

problem, the automated analysis software has provided a

solution that can readily be interpreted. The two compo-

nents identified in the analysis, pure Cu and pure Ni, were

separated at 7 kV even though there is considerable spectral

overlap between the L-lines of the two ~Fig. 7!. The results

of the analysis of the 20-kV spectral image, shown in

Figure 8, yielded three components, two of which are simi-

lar to those from the 7-kV analysis, pure Ni and pure Cu.

The third can readily be explained due to nonlinearities

induced by absorption and fluorescence of X rays.

In virtually every X-ray spectral image acquired, there

will be adjacent chemical constituents that may or may not

be mixed in reality but will appear mixed due to the size of

the X-ray generation volume. In the braze example, in

which there was no apparent chemical interaction between

adjacent components, there is still mixing of signals, and to

Automated Spectral Image Analysis 9



a first-order approximation, the mixed signal can be said to

be a linear combination of the signals from the adjacent

components. If the two components happened to be chem-

ically reactive, then interdiffusion might occur under the

right processing conditions and there would now be a

chemical gradient present in the materials. The automated

analysis can make no distinction between these two cases, so

for a binary diffusion problem, two pure components will

describe the spectral image data set. It is important to note

that analysis methods that use thresholding or pattern rec-

ognition would turn the continuous diffusion profile into a

step function: either Cu or Ni but not both. The problem is,

in fact, more complicated as, in reality, the signals from

mixed elements are not a linear combination of the pure

signals from the elements. This can readily be explained due

to absorption and fluorescence of X rays. If we take a pure

Ni spectrum and a pure Cu spectrum and mathematically

sum the two in equal parts, it is not equivalent to acquiring

a spectrum from a 50–50 mixture of Cu-Ni. However, if a

series of spectral image data sets are acquired for different

times, several different analysis regimes will occur. For ex-

tremely short acquisition times resulting in less than ;50

total counts per spectrum, the automated analysis solution

will typically contain one component which is an average of

all the pixels with no distinction of the fine details. In this

case, the individual spectra are so noisy that no difference

between pixels can be determined. For short to intermediate

acquisition times ~;50–500 total counts per spectrum!, the

solution will begin to take on more detail, but the linearity

approximation will hold. This is, in fact, the most appropri-

ate and convenient regime to work in. The solutions are

typically intuitive and the acquisition times might range

from 5 to 30 min. For long acquisition times, nonlinearity

effects will become apparent as extra pure components that

approximate the nonlinearity. This is essentially a signal-to-

noise ~S/N! issue. As S/N increases, more spectral features

will be distinguishable from noise. Ideally, the acquisition

should be tailored to answer the question desired. Identify-

Figure 7. Results of the automated

analysis of a spectral image acquired

at 7 kV from the Cu-Ni diffusion

couple. The vertical units on the

spectrum are normalized counts.
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ing several major components in a microstructure from

spectral image data is easier, from an acquisition stand-

point, than finding minor ones. An analyst looking for a

minor component ~the so-called needle in the haystack!

and acquiring high S/N data should be prepared to have the

MSA techniques return not only information about minor

chemical components but also ones due to nonlinearity and

varying X-ray generation/detection geometries.

Bulk microanalytical characterization may not always

be performed on flat, polished specimens, and in the case of

analysis of rough surfaces, the collected X-ray spectra may

change depending upon geometrical conditions. This can

readily be seen by examination of the results of the analyses

of the 7- and 20-kV spectral image data sets ~Figs. 7 and 8!.

It was noted above that this diffusion couple is not perfectly

flat and contains Kirkendall voids. The voids add topogra-

phy to the surface that changes the X-ray collection geom-

etry. Where there is an opened void, L X rays will be

detected only from the part of the void directly facing the

detector. The L X rays generated on the other side of the

void ~well below the surface! will be absorbed and not

detected. For the present analysis, the detector looks to-

wards the lower right-hand quadrant of the images ~to-

wards 4 or 5 o’clock!. For the 7-kV spectral image analysis,

where only the L-lines are excited, there will be an X-ray

“shadow” facing the detector, and this can be seen as indi-

Figure 8. Results of the automated analysis of a spectral image acquired at 20 kV from the Cu-Ni diffusion couple. Note

the extra component resulting from geometrical effects. The vertical units on the spectra are normalized counts.
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cated by the arrow in the Cu pure-component image in

Figure 7. For the 20-kV spectral image analysis, three com-

ponents were found as seen in Figure 8. In addition to pure

Cu and pure Ni, there is a component showing mostly

Cu-L. This component shows up most strongly in the lower

right-hand side of the voids that face the detector. The voids

are also farther into the Cu as the Cu diffuses faster than Ni.

The arrow in the “void” component points to the same void

as indicated by the arrow in Figure 7. The reason that for

20-kV there is an additional component from the analysis is

that the K X rays are not similarly absorbed as the L X rays

are. As stated above, there is no a priori knowledge in the

analysis. So there is no expectation that the Cu K and L

intensities should be related. In much the same way as the

software recognizes the independence of the variations of L

X rays from Cu and Ni, it also recognizes the same indepen-

dence in this case for the Cu-K and Cu-L X rays. It is an

important point that absorption can have much the same

effect as variable composition, resulting in unexpected com-

ponents from the analysis. This phenomenon is not limited

to rough samples, as illustrated in Figure 9, which is a

schematic of a sample with a smooth surface that showed

much the same effect as the voids in the diffusion couple.

The sample contained both Ni and C in a complex geom-

etry. The Ni in some of the regions analyzed was at the

surface and in others was below a layer of C thick enough to

absorb most of the Ni-L X rays. This resulted in two “Ni”

components that vary independently of each other, one

showing almost no L X rays coming from the regions of

buried Ni and the other looking more typical of a bulk Ni

spectrum with both K- and L-lines in the proportion ex-

pected for analysis at 15 kV.

Particle Analysis

The analysis of particles is a topic of critical importance for

the semiconductor industry as well as atmospheric science.

For both groups, a rapid and unbiased analysis of particu-

lates is desired ~Anderson and Small, 1998!. In the present

example, a particulate specimen was fabricated from known

powders of FeCo and alumina that were dispersed on a

carbon support. A spectral image data set was acquired with

a JEOL 5900LV ~W-filament! operating at 15 kV using the

NORAN Vantage-Digital Imaging with Spectral Imaging.

The spectral image was acquired with a pulse processor

shaping time of 9 ms and a dwell time per pixel per frame of

40 ms with 158 frames to build the spectral image. The pixel

sampling density ~i.e., the spacing between pixels in both x

and y directions! was ;4 mm. The total acquisition time

was 2 min or 6 ms total dwell time per pixel. The dead time

was 30% with 1.8M counts in the spectral image and an

average of 108 counts per spectrum. The computation time

for the automated analysis was 2 min and six pure compo-

nents were found. The computer memory overhead for the

calculation was the same as for the braze example above. In

addition to the carbon support, three types of particles were

found: alumina, FeCo, and, unexpectedly, Ca-S-Si-O. The

FeCo particles were described by two components, one

containing Fe and Co K-lines and one containing Fe and Co

L-lines. One additional component was found for the re-

gions of the carbon support shadowed by the particles. This

component consisted of a weak C peak but no O as was

found elsewhere mixed with C on the unshadowed support.

Figure 10 is a RGB composite of the pure-component

images shown in Figure 11. For the purpose of forming the

Figure 9. Pure-component spectra

from a specimen with Ni on the

surface and buried below carbon.

The dashed spectrum shows almost

no L X-ray intensity ~Ni buried, for

example! while the solid spectrum

shows a much-reduced K X-ray

intensity. The schematic shows the

electron beam in two positions

corresponding to the solid and

dashed spectra, and the resultant

X-ray generation volumes.
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RGB image in Figure 10, the two FeCo component images

were summed. As before, the real-numbered pure-component

images were rescaled to 8-bit TIFF images in order to form

the RGB image. The pure-component images and corre-

sponding pure-component spectra are shown in Figure 11.

The problem of identifying unknown particles can be

particularly challenging and time consuming if done manu-

ally. In the present automated particle analysis, over 50

particles were characterized with the spectral image ac-

quired in 2 min and analyzed in another 2 min. In addition

to finding the expected FeCo and alumina particles, a third

type of particle was unexpectedly found to contain Ca-S-

Si-O. Only one particle of this type was found and it was

probably from atmospheric contamination, as no special

precautions were taken in the preparation of the sample.

The Ca-S-Si-O particle was found in a noisy data set even

though it covers only ;40 pixels out of 16,384 ~128 3 128!.

Finding this particle is essentially equivalent to finding the

proverbial needle in the haystack. In fact, close examination

of both Figures 10 and 11 reveal that particles one pixel or

smaller in size were identified as either alumina or FeCo.

Geometrical factors will become important in the analy-

sis of particles as they typically have rough, irregular sur-

faces. It is the irregular geometry of the present sample that

has resulted in the two extra pure components. Of the six

pure components, our interpretation indicated that two

were seemingly redundant. The first was the carbon support

shadowed from the detector. The X-ray detector faces the

lower right-hand quadrant of the images and the particles

sit out on the surface, thus shadowing some of the support.

Comparison of Figure 11A and B shows that the primary

difference between shadowed and unshadowed support is

the intensities of carbon and oxygen. The relative intensities

of the carbon signals differ by a factor of 5 due to the

absorption of these soft X rays by the particles. In addition

to absorption of C and O K X rays, the background ~not

shown! also exhibits the effect of absorption by the parti-

cles. Spectrally then, there is a significant difference between

the shadowed and unshadowed support which is identified

as significant by the software. The analyst can, however,

ignore the extra C component or add it back manually into

the primary C component. The second seemingly redun-

dant component was from the FeCo. In this case, two com-

ponents were identified consisting of either K or L X rays

only. The reason for this is entirely analogous to the exam-

ple shown in Figure 9 and discussed in the Cu-Ni diffusion-

couple section above. In short, for geometrical reasons, the

K-to-L X-ray ratios vary depending upon whether the spec-

tra come from the side of the particle facing the detector or

not. Pixels towards the detector have a lower K-to-L inten-

sity ratio than ones away from the detector. As the software

makes no a priori assumptions about relative intensities of

families of X-ray lines, it sees two signals that vary indepen-

dently from one another. As was the case with the Cu and

Ni components in the Cu-Ni diffusion couple, the FeCo K

component and FeCo L component share a number of the

same pixels. This implies that there are regions of intensity

~in the pure-component images! common to both K and L

components. To reconstruct the actual spectrum from a

given location, it would be necessary to take a linear combi-

nation of the two. In reality, if we wanted to quantify the

composition of the FeCo, we would use the K component

and disregard the L component.

The spectral image in the present example undersam-

pled the microstructure. Data sets with 256 3 256 pixel

spectral images have been acquired for comparable pixel

dwell times as above and analyzed on the same PC. In this

case, the computer memory required to perform the calcu-

lation was 700 Mbytes, still comfortably within the 1 Gbyte

of RAM present on the computer used for this work and

readily available on new computers. This opens up the

possibility, for the purposes of particle analysis, of fully

Figure 10. Example of automated particle analysis. In addition to

the carbon support ~red!, three types of particles were found: FeCo

~blue!, alumina ~green!, and Ca-S-Si-O ~cyan!. The black regions

are carbon support shadowed from the X-ray detector.
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sampling large areas. At 5003 magnification on the present

system, the field of view for a spectral image is ;200 mm. At

256 3 256 pixel resolution, this allows comprehensive sam-

pling of a surface at submicron resolution. The factor of

4-times-longer ~43 total pixels! time necessary to match

the acquisition shown above results only in a 10-min acqui-

sition and approximately 5 min for the automated analysis.

Single-Pixel Detection

The question of detection limits and sampling is often

posed in microanalysis ~Goldstein et al., 1992! and is of

particular relevance to multivariate statistical analysis meth-

ods ~Anderson and Small, 1998!. In an effort to understand

the limitations of noisy spectral image data and the present

automated analysis technique, a specimen was fabricated to

approximate a single-pixel detection problem. The specific

question would be at what point could one pixel of Pt be

detected in Si. The specimen was a single crystal of silicon

with a “pixel” of Pt, 1 3 1 mm in lateral dimension 3 2 mm

deep. The specimen was fabricated in a FEI DB-235 Focused

Ion Beam ~FIB!/SEM. The hole was drilled into the surface

of the silicon and then filled with Pt using the Ga ion-beam-

assisted Pt deposition source in the FIB. The entire surface

to be analyzed was then scanned several times with the ion

beam to clean it of Pt incidentally deposited around the

edge of the hole. Nine spectral image data sets were ac-

quired with a range of per pixel total dwell times from 1 to

500 ms. The data were acquired on a JEOL 5900LV operated

at 20 kV as described in the previous examples. The dwell

time per pixel per frame was 1000 ms with between 1 and

500 frames to build each spectral image and a pulse proces-

sor shaping time of 50 ms. The dead time for all acquisitions

was 30%, which resulted in between ;3 and 1400 total

Figure 11. Pure components ~images and spectra! for the particle-analysis spectral image. A: Carbon support. B:

Carbon shadowed from detector by alumina particles. C: FeCo K-component. D: FeCo L component, towards detector.

E: Alumina particles. F: Ca-S-Si-O particle. The vertical units on the spectra are normalized counts.
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counts per 1024 channel ~10 eV/channel! spectrum, respec-

tively. All spectral image data sets were acquired with a

resolution of 128 3 128 pixels with a pixel sampling density

of ;0.8 mm. This sampling density was slightly finer than

the size of the target feature ~the Pt “pixel”! in order to fully

sample it. It was impractical to position the center of a given

pixel over the center of the Pt. This and the fact the

interaction volume is relatively large for Si at 20 kV means

that the true number of pixels showing Pt could be nine or

more. Calculation times for all data sets were less than

3 min each. Figures 12 and 13 show the results for spectral

image data sets acquired with per pixel total dwell times of

10 and 20 ms. The pure component images have all been

zoomed to the location of the Pt. The analysis software

automatically found only one component, namely Si, for

the 10-ms spectral image, while it found two, Si and Pt, for

the 20-ms spectral image.

One motivation for trying to resolve the one-pixel-

detection problem is equivalent to asking what is the real

advantage of using MSA techniques to analyze large data

sets. Alternatively we might wish to ask how long we should

acquire data to be sure that small, localized contaminants

are not present. MSA techniques, as implemented in this

work, clearly provide a robust and objective way to analyze

large spectral image data sets. In the present example, a

particularly difficult problem was posed to the software,

namely to find one pixel of something other than Si in Si. In

fact, for experimental reasons, it was not possible to achieve

exactly one pixel but rather one to two total pixels. Given

the experimental limitations, there was a clear crossover

from one to two pure components, corresponding to the

detection of Pt, between per pixel total dwell times of 10

and 20 ms, as shown in Figures 12 and 13, respectively. This

corresponded to 28 and 56 total counts per pixel, or ;3.5

Figure 12. Pure components ~image and spectrum! for the analy-

sis of the single-pixel-detection spectral image with 10 ms total

dwell time per pixel. The silicon pure component image is zoomed

to 20 3 20 pixels about the location of the Pt. The vertical units on

the spectrum are normalized counts.

Figure 13. Pure components ~images and spectra! for the analysis

of the single-pixel-detection spectral image with 20 ms total dwell

time per pixel. The pure-component images are zoomed to 20 3

20 pixels about the Pt. The vertical units on the spectra are

normalized counts. Full scale for the silicon pure-component

spectrum was 0.62.
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and 7 counts full-scale in the Si peak, respectively. For the

Pt-M peak, this corresponded to ;1.5 counts full-scale for

the 20 ms/pixel acquisition. To characterize the relative

signal and noise levels in each of the spectral image data

sets, the eigenvalues for the respective data sets were com-

puted. The resultant vector of eigenvalues has a length of p

~i.e., the number of variables or energy channels! and

contains the absolute contribution of each of the compo-

nents ~or eigenvectors! to the solution. The majority of

eigenvalues, plotted in descending order, fall on a straight

line on a semi-log plot and simply describe the Poisson

statistics of counting photons and therefore the noise base-

line. Any component that contains nonnoise information

will be above this line and the relative S/N level can be

calculated by the ratio of the nonnoise versus noise eigen-

values. If this is done for the Pt pure component in Fig-

ure 13, a value of 1.09 is obtained ~a value for S/N of 1

corresponds to only noise!. A similar calculation was done

for the first apparent noise component for the 10-ms spec-

tral image analysis and a value of 1.01 was obtained. These

S/N numbers take into account the collective statistics of all

the similar pixels ~i.e., spectra from the original spectral

image! as well as all the channels that vary similarly in those

pixels. For the 20-ms spectral image, at least four pixels

contribute some part to the Pt pure component, but these

signals could be folded back into a smaller number of

Pt-only pixels.

The silicon pure-component image for the 10-ms spec-

tral image is qualitatively the same as for the 20-ms spectral

image, shown in Figure 13. That is, the number of dark-blue

pixels in the Si pure-component image is similar. From the

Pt pure component image in Figure 13, it appears that the

Pt signal originated from between one and two pixels while

the number of dark-blue Si pixels was significantly greater.

This is probably due to Pt absorbing some of the Si-K

X rays, as the pattern of pixels looks similar to those seen

for the particle analysis example. Overall, the number of

total counts per pixel ~in a 128 3 128 pixel spectral image!

to detect approximately one pixel of something different

is about 56. A more practical experimental value ~i.e.,

that provides better S/N! for the number of counts per pixel

to acquire to find one different pixel would be ;300. In

fact, test calculations on fabricated data sets placed the

crossover from nondetection to detection of one different

pixel between 30 and 300 counts per spectrum. The present

experimental example of Pt in Si was chosen to avoid a

great degree of spectral overlap. If the example of one pixel

of Rb in Si had been chosen, the answer would be much

different, as the two differ in relevant peak energy ~Rb-L

and Si-K ! by ;45 eV. With no other practical peaks to help

distinguish the two below 10 kV, it is expected that this

would take significantly more counts per pixel in the

spectral image to solve. It is expected that the case of one

pixel of W in Si ~;35 eV difference between W-M and

Si-K ! would be straightforward to solve, although less so

than the Pt-Si case, as the W-L lines would help differentiate

the two.

CONCLUSIONS

Automated analysis of large spectral image data sets has been

demonstrated with the application of MSA techniques devel-

oped in this work. Such analysis techniques clearly provide a

robust and objective way to analyze large spectral image data

sets in a computationally efficient way. Calculations on 128 3

128 pixel 3 1024 channel spectral image data sets take less

than 3 min in general. No a priori assumptions about X-ray

generation or detection are made by the software, which

results in the greatest analytical sensitivity to the unexpected.

As a result of this, however, under certain circumstances, the

analysis may return nonintuitive, but ultimately understand-

able results. These include, for example, geometrical effects

resulting in preferential absorption of one family of X-ray

lines such as was the case with the voids in the Cu-Ni diffu-

sion couple and with the analysis of particles. In this case,

there will not be one total spectral shape that is characteris-

tic of a given chemical phase or type of particle. Absent

geometrical effects, two pure components will be necessary

to describe the mixing of signals from two adjacent chemical

constituents as will occur at phase boundaries ~due to the

large X-ray generation volume! and in diffusion couples. At

both sharp and diffuse boundaries, the resultant mixed sig-

nals will be described as a linear combination of the adjacent

pure components. Additionally nonlinearity effects resulting

from absorption and fluorescence—~Aspectrum 1 Bspectrum! Þ

~A 1 B!spectrum—will also become apparent under the right

circumstances ~e.g., Cu-Ni diffusion couple at 20 kV!. Al-

though not explicitly mentioned in the above examples, arti-

facts from the acquisition such as correlated electronic noise

or spectrometer drift will also cause additional components

in the automated analysis, but these will not, in general,

correlate with microstructural features and can easily be

identified/ignored. In spite of the potential for some nonintu-

itive results, the automated analysis performs a powerful
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service for the analyst, quickly analyzing large, complex data

sets, but does not interpret the results. It is clear from the

examples shown in this work that the total number of counts

per spectrum needed to be able to perform the automated

MSA is quite small. Fewer than 300 total counts per spec-

trum can potentially find spectrally distinct components of

the order of one pixel.
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