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Abstract: This article reviews different methods used to perform quantitative X-ray microanalysis in the elec-
tron microscope and also demonstrates the urgency of measuring the fundamental parameters of X-ray genera-
tion for the development of accurate standardless quantitative methods. Using ratios of characteristic lines
acquired on the same X-ray spectrum, it is shown that the Cliff and Lorimer KA-B factor can be used in a general
correction method that is appropriate for all types of specimens and electron microscopes, providing that
appropriate corrections are made for X-ray absorption, fluorescence, and indirect generation. Since the funda-
mental parameters appear in the KA-B factor, only the ratio of the ionization cross sections needs to be known,
not their absolute values. In this regard, the measurement of ratios of the KA-B factor ~or intensities at different
beam energies of the same material with no change of beam spreading in the material! permits the validation for
the best models to compute the ratio of ionization cross sections. It is shown, using this method, that the
nonrelativistic Bethe equation, to compute ionization cross section, is very close to the equation of E. Casnati
et al. ~J Phys B 15, 155–167, 1982! and also to the equations proposed by D. Bote and F. Salvat ~Phys Rev A 77,
042701, 2008! for the computation of the ratio of ionization cross sections. The method is extended to show that
it could be used to determine the values of the Coster-Kronig transitions factors, an important fundamental
parameter for the generation of L and M lines that is mostly known with poor accuracy. The detector efficiency
can be measured with specimens where their intensities were measured with an energy dispersive spectrometer
detector, the efficiency of which has been measured in an X-ray synchrotron ~M. Alvisi et al., Microsc Microanal
12, 406–415, 2006!. The spatial resolution should always be computed when performing quantitative X-ray
microanalysis and the equations of R. Gauvin ~Microsc Microanal 13~5!, 354–357, 2007! for bulk materials and
the one presented in this article for thin films should be used. The effects of X-rays generated by fast secondary
electrons and by Auger electrons are reviewed, and their effect can be detrimental for the spatial resolution of
materials involving low-energy X-ray lines, in certain specific conditions. Finally, quantitative X-ray microanaly-
sis of heterogeneous materials is briefly reviewed.
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INTRODUCTION

The origin of quantitative X-ray microanalysis in electron
microscopy started with the work of Castaing ~1951!, who
built the first electron microprobe and developed the first
correction procedure in his seminal PhD thesis. Castaing
developed the electron microprobe using the wavelength
dispersive spectroscopy ~WDS! technique to detect charac-
teristic X-rays. Since each characteristic X-ray line has a
well-defined energy, it has therefore a well-defined wave-
length that gives a specific diffraction angle for a given
crystal using Bragg’s law. In WDS, the detection of a charac-
teristic line is performed by tilting a crystal to the corre-
sponding Bragg angle. Also, Castaing developed the basic
principle of quantitative X-ray microanalysis, consisting of
normalizing the net intensity, Ii , of a characteristic X-ray

line of an element i measured in a material composed of
many elements of unknown concentration ci to I~i!, that
obtained under the same experimental conditions in a
material where the concentration of element i, c~i!, is known.
The normalization of the net intensity of each element to
that obtained with standards of known composition has
been proven to be very effective for reducing uncertainties
in the fundamental parameters needed to compute absolute
X-ray generation.

In his thesis, Castaing introduced the concept of the
curves of X-ray generation, the w~rz! curves, to derive the
absorption correction, Ai , to correct for the difference of
X-rays absorbed in the specimen of unknown composition
from that of the standard. Duncumb ~1957! introduced the
atomic number correction, Zi , to correct for the difference
of X-rays generated in the specimen of unknown composi-
tion from that of the standard. Finally, the fluorescence
correction, Fi , was introduced to correct for the differences
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of X-rays fluoresced in the specimen of unknown composi-
tion from that of the standard, using an expression for the
characteristic fluorescence developed by Reed ~1965! and an
expression for the bremsstrahlung fluorescence developed
by Henoc ~1968!. These corrections factors led to the well-
known ZAF method that relates the weight fraction, ci , of
each element i in the unknown to the measured intensities
through the following equation ~Goldstein et al., 2003!:

ci

c~i !

� Zi Ai Fi

Ii

I~i !

, ~1!

where equation ~1! is solved iteratively for each element
until convergence is obtained. An excellent review of the
ZAF method is given in the classic textbook of Goldstein
et al. ~2003!. The parameters that must be kept constant
during the measurement of Ii and I~i! for all elements i, to
ensure that the differences are related to composition changes
only, are the electron beam energy, the take-off angle of the
X-ray detector, the acquisition time, and the beam current.
Since the concentrations of all the elements in the unknown
specimen are determined independently, or through known
stoichiometric ratios if not measured ~as might be the case
for certain low Z elements!, their summation must be equal
to 100% to obtain a successful analysis. In modern electron
microprobes, the accuracy in the determination of each
element can be as good as 1%, which makes this method the
most accurate spectrometry technique to perform absolute
quantitative chemical analysis of materials with a spatial
resolution at the mm level.

Despite this impressive achievement, quantitative X-ray
microanalysis is not used on a day-to-day basis by the vast
majority of microscopists who acquire energy dispersive
spectrometer ~EDS! spectra in electron microscopes. The
first reason is that the current models of equation ~1! were
developed mostly for specimens of homogeneous composi-
tion and a flat surface. Most materials analyzed in the
scanning electron microscope ~SEM! do not have locally
homogeneous composition or a flat surface, which is a
serious limitation, and it is disappointing that manufactur-
ers still only offer quantitative software packages for homo-
geneous materials. The second reason is the fact that
quantitative X-ray microanalysis was developed for a spe-
cific instrument—the electron microprobe that was first
built by Castaing ~1951! and led to its subsequent commer-
cialization. The electron microprobe was designed as a
quantitative X-ray microanalysis tool to perform quantita-
tive analysis, not imaging. The SEM was designed to be an
imaging tool, not a quantitative X-ray microanalysis tool.
With the introduction of the energy dispersive X-ray spec-
trometers made with lithium-drifted silicon detectors @Si~Li!#
by Fitzgerald et al. ~1968!, detection of X-rays became a
possibility in the SEM and in the transmission electron
microscope ~TEM!. However, since the Si~Li! EDS detectors
were installed on instruments designed mostly for imaging,
quantitative X-ray microanalysis remained used mostly in
the microprobes for bulk specimens. In the TEM, quantita-

tive analysis is a method used mostly in expensive dedicated
analytical instruments that came into use in the 1980s.

The third reason is that to perform quantitative X-ray
microanalysis, standards are needed to acquire reference
spectra, and this is time-consuming. Most SEM users do not
have a strong background in the experimental and theoret-
ical details of quantitative X-ray microanalysis, and they
prefer to push a button to perform it. Despite manufactur-
ers’ claims, standardless quantitative X-ray microanalysis is
often less accurate than that performed with standards, as
shown by Newbury et al. ~1995! and Horny et al. ~2010!.
Figure 1 compares quantitative X-ray microanalysis of the
NIST SRM–482 Cu–Au standard obtained by a method
using standards with a commercial standardless method.
The accuracy of the quantitative method using standards is
better than 5% while that of the commercial standardless
method is around 20%. This is the current state-of-the-art

Figure 1. Relative error of estimation of the Au weight fraction
with ~a! the new quantitative X-ray microanalysis method of
Horny et al. ~2010! and ~b! a commercial standardless X-ray
microanalysis method using the NIST SRM 482 Cu-Au standard.
Figures from Horny et al. ~2010!.
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with standardless quantitative X-ray microanalysis. I claim
strongly that without accurate standardless quantitative X-ray
analysis developed for the best SEM and TEM for character-
izing real materials, quantitative X-ray microanalysis will
remain the property of a very select club of experts of high
caliber—not a tool to solve real problems, but only to
perform elemental identification and qualitative chemical
mapping. Even worse, the lack of an accurate standardless
method can only generate incorrect data that will ultimately
undermine the field of quantitative X-ray microanalysis.

This article is organized as follows. First, the classical
quantitative X-ray microanalysis methods are reviewed in
the SEM and in the TEM. Second, the new quantitative
X-ray microanalysis method proposed by Horny et al. ~2010!
is presented to demonstrate how it could unify quantitative
X-ray microanalysis in the SEM and in the TEM. Third, the
problems that need to be solved to develop a standardless
quantitative X-ray method are presented. The accuracy of
the fundamental parameters is reviewed, and the utility of
measuring Cliff and Lorimer ~1975! KA-B factors at different
accelerating voltages ~or intensities at different beam ener-
gies of the same material with no change of beam spreading
in the material! to compute the ratio of ionization cross
sections is presented, following the work of Gauvin ~1990!.
That method is extended to show that it could be used to
determine the value of the Coster-Kronig transition factor,
an important fundamental parameter for the generation of
L and M lines that is mostly known with poor accuracy. The
measurement of the detector efficiency follows, and the
road to standardless quantitative X-ray microanalysis is
reviewed. Then, the spatial resolution of X-ray microanaly-
sis is presented, in the SEM and as well as in the TEM. The
effects of X-rays generated by fast secondary electrons ~FSE!
and by Auger electrons are reviewed, and their effect can be
detrimental for the spatial resolution of materials involving
low energy X-ray lines—also inaccurate quantification might
occur if their effects are not taken into account. Finally,
quantitative X-ray microanalysis of heterogeneous materials
is briefly reviewed.

X-RAY INTENSITY EMITTED FROM A
HOMOGENEOUS THICK SOLID

The net X-ray intensity of a characteristic line of an element
i, Ii , emitted from a thick specimen can be computed by this
equation:

Ii � � V

4p
� ip t

e
Qi vi ai ~1 � TCK, i !«i

ci

Ai

� N0 gi�1 � �(
j�1

m

fc, j� � fBr � find�, ~2!

where

gi ��
0

`

f~rz!i exp~�xi rz! d rz. ~3!

~V/4p! is the fractional solid angle of the X-ray detector, ip

is the electron beam current, t is the acquisition time, e is
the electron charge, Qi is the ionization cross section of the
atomic shell from which the characteristic line of element i
originates and is computed for the incident electron energy
E0, Ãi is the fluorescence yield of the ionized atomic shell
of element i , and ai is the weight of the characteristic line of
element i . The ~1 � TCK, i ! factor accounts for the effect of
Coster-Kronig transitions on X-ray emission for the ionized
atomic shell of element i . TCK, i � 0 for the K lines. «i is the
detector efficiency for the characteristic line of element i , Ci

is the composition given as the weight fraction of element i
in the thick specimen, Ai is the atomic weight of element i ,
and N0 is Avogadro’s number. fc , j is the contribution of
fluorescence on Ii from the m characteristic lines having
photon energy greater than the characteristic line i , and this
term is significant only for X-rays having their energy
slightly greater than the energy of the characteristic line i.
fBr is the contribution of fluorescence on Ii from the brems-
strahlung photons having an energy greater than the energy
of the characteristic line of the element i . fBr is generally
negligible when the absorption correction, described below,
is between 0.95 and 1.05. find is the fraction of X-rays
generated by stray electrons, backscattered electrons, FSEs,
and/or Auger electrons contributing to Ii . The contribu-
tions of FSEs and Auger electrons are reviewed below.

In equation ~3!, w~rz!i is the function of X-ray genera-
tion for the ionized shell of element i in a thick material as a
function of the mass depth rz, where z is the depth from
the surface of the specimen and r is the mass density—the
interested reader is referred to the book of Goldstein et al.
~2003! for a complete description of this function. The
w~rz! function is multiplied by an exponential function
that depends on xirz to account for X-ray absorption, and
this product is integrated from 0 to infinity as a function of
rz for a bulk specimen. The terms in front of the integral gi

in equation ~2! ~except for the fluorescence and indirect
generation corrections! correspond to the thin film contri-
bution per mass thickness on X-ray generation, and the
integral gi corresponds to the contribution of the bulk
specimen on X-ray emission. In the absorption function, xi

is given by the equation:

xi � cosec c (
j�1

n

Cj

m

r �
j

i

, ~4!

where the summation is taken for the n elements of the
specimen, m/r6ji is the mass absorption of the characteristic
line of element i into the absorbing element j, and c is the
take-off angle of the X-ray detector.

X-RAY INTENSITY EMITTED FROM A
HOMOGENEOUS THIN FILM

For a thin foil, fc, j , fBr, and find become negligible ~at least for
a cube of very small thickness! and w~rz!i � 1, by defini-
tion. Also, since rz is small, i.e., xi rz �� 1,exp~�xi rz! � 1
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and equation ~3! becomes the following equation when
integrated from 0 to rt, where t is the specimen thickness:

Ii � � V

4p
� it

e
Qi vi ai ~1 � TCK, i !«i

ci

Ai

N0 rt ~5!

for normal electron incidence. This equation also assumes
that the beam spreading and energy loss are negligible.

It is clear that the accuracy of the computation of
absolute X-ray intensities with equations ~2! and ~3! @or
equation ~5! in the case of a thin film# depends on the
accuracy of the many parameters used in these equations.
These are now reviewed.

FUNDAMENTAL PARAMETERS FOR
X-RAY GENERATION

In all of the parameters given in equation ~2!, the most
important is the ionization cross section of the atomic shell
from which the characteristic line of element i, Qi origi-
nates. The probability of ionizing the atomic shell is propor-
tional to the cross section. The best known equation to
compute Qi is the Bethe equation ~Powell, 1976!:

Qi � 6.51 � 10�20
Znl bnl

Enl, i
2 U

ln~cnl U ! ~cm2 !, ~6!

where Enl, i is the ionization energy of the nl shell of element
i, Znl is the number of electrons of that shell, and bnl and cnl

are constants that depend on that shell. U is the overvoltage
and is defined as E0/Enl, i . Powell ~1976! suggested values of
bnl and cnl from the experimental data available at that time,
and he also showed ~using a Fano plot that is Qi Enl, i

2 U as a
function of ln U where the intercept and the slope of the
straight line permits determination of bnl and cnl ! that
equation ~5! is valid for 4 � U � 25. The failure of equation
~6! for U � 4 is due to the fact that the Bethe equation was
developed using the First Born approximation, which is not
valid at low overvoltage. The failure for U � 25 is because
equation ~6! does not account for relativistic effects for the
low and medium atomic numbers that were analyzed. In
fact, the upper limit of this equation must be defined for
E0 � 30 keV because relativistic effects depend on the
energy of the incident electron, not on the overvoltage. The
relativistic version of the Bethe equation is ~Zaluzec, 1984!:

Qi � 6.51 � 10�20
Znl bnl

Enl, i Er

� �ln� cnl Er

Enl, i
�� ln~1 � b2 ! � b2� ~cm2 !, ~7!

where b � v/c, the ratio of the speed of the electron to the
speed of light, and Er � m0v2/2, where m0 is the mass of the
electron at rest.

However, values of the cnl parameters obtained through
Fano analysis from experimental data are generally smaller
than one, giving negative values of the cross sections for
U � 1/cnl ~for the nonrelativistic case!. As a result of this
limitation, Casnati et al. ~1982! developed a semiempirical

equation to compute ionization cross sections for K-shells,
which includes a relativistic correction. This equation was
found to be the most accurate to compute ionization cross
sections by Gauvin ~1993! and also by many others research-
ers. The Casnati et al. ~1982! equation was used successfully
to compute. EDS X-ray spectra of homogeneous Cu-Au and
Ag-Au samples with K, L, and M lines by Gauvin et al.
~2006! using the Monte Carlo program Win X-Ray. This
was possible by using adjustment factors for the absolute
values of the ionization cross sections in equation ~2! but
without including the Coster-Kronig factors. As a result,
there is a large consensus in the X-ray microanalysis com-
munity that the Casnati equation is the best to compute
ionization cross sections.

This consensus was obtained with a limited set of
experimental data of good quality because the direct mea-
surement of Qi is difficult because of the cumulative errors
of the many terms present in equation ~2!. Also, the theoret-
ical computation of the ionization cross sections is fairly
difficult because complex numerical methods are involved.
Recently, Bote and Salvat ~2008! succeeded in computing
the ionization cross sections up to 1 GeV for all the ele-
ments from hydrogen ~Z �1! to einsteinium ~Z � 99! using
the relativistic plane-wave Born approximation ~PWBA!
with a semirelativistic version of the distorted-wave Born
approximation ~DWBA!. These numerical computations were
performed for the K, L1, L2, L3, M1, M2, M3, M4, and M5

shells and they were fitted to numerical equations that were
published by Bote et al. ~2009!. For U , 16:

Qi � 4pa0
2

U � 1

U 2 �a1 � a2 U �
a3

1 � U

�
a4

~1 � U !3
�

a5

~1 � U !5�2

; ~8!

and for U � 16:

Qi � 4pa0
2

U

U � b

Anl

b2 �@ ln X 2 � b2 #�1 �
g1

X
�� g2

� g3~1 � b2 !1/4 �
g4

X
� , ~9!

where a0 is the Bohr radius, b the ratio of the speed of the
electron to that of light, and X is given by this equation:

X �
ME0 � ~E0 � 2m0 c 2 !

m0 c 2
. ~10!

In this last equation, m0c2 is the energy of the electron at
rest, equal to 511 keV. The various ai and gi as well as b and
Anl are fitting parameters that depend on the atomic num-
ber of the atom as well as on the shell ionized, and they are
tabulated in Bote et al. ~2009!.

Figures 2 and 3 show the ionization cross sections for
the K-shells of C and Cu, respectively, as a function of E0,
measured experimentally by many researchers and also com-
puted with the Bethe equation @equation ~6!# , the relativistic
Bethe equation @equation ~7!# , the Casnati equation ~Cas-
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nati et al., 1982!, and the Bote-Salvat equation @equations
~8!–~10!# . In these figures, the units of cross section are
barns ~1 barn � 1 � 10�24 cm2!. The Bethe cross sections
were computed with bnl � 0.9 ~Powell, 1976! and cnl � 1.
The most striking thing to notice is the strong scatter of the
experimental values among different researchers, 25% for
Cu and around 50% for C. This is not surprising because
the measurement of Qi is based on equation ~5! where at
least nine terms ~V/4p, i, t, vi , ai , TCK, i , «i , Ci , r, t ! must
be known with high accuracy for precise determination.
Since the variance of the statistical errors of the terms in
equation ~5! is additive, an error of 10% on each terms will

lead to a minimum accuracy of 30% on the measured value
of Qi . A precision of 2.8% is therefore needed on these
parameters to measure Qi with accuracy of 5%, and this is a
very difficult requirement to achieve in practice. The Bethe
model for Qi gives obviously too high values for U , 4, as a
result of the failure of the first Born approximation, as
mentioned above. Only at high electron energy ~30 keV!
does the relativistic Bethe equation start giving higher val-
ues of Qi . The Casnati et al. ~1982! and the Bote and Salvat
~2008! equations give more realistic values of Qi at low
overvoltage, but they show significant differences. However,
because of the uncertainties in the measured values of Qi , in
the order of 30%, it is not possible to determine which
parameterization of the ionization cross sections is the most
accurate.

For the parameters of equation ~5!, ~V/4p! and «i

depend on the EDS system and their values quoted by the
manufacturer are the nominal values. The precise value of
~V/4p! depends on the distance from the point of beam
impact on the specimen to the center of the EDS crystal, the
diameter of the crystal, and also that of the collimator.
Without a precise knowledge of these values, the error
introduced by using the nominal value could be significant.
~V/4p! can be determined experimentally with calibrated
nuclear sources but the uncertainty of the emitted X-ray
intensity is around 10%. Alvisi et al. ~2006! have shown that
the relative difference between nominal and experimentally
determined values of «i can be greater than 100% for the Ka

line of carbon. The reason for this discrepancy is that the
manufacturers are giving nominal values for the thicknesses
of the various windows in front of the detector and also for
the thickness of the active crystal that detects the X-rays.
The manufacturers should determine the true thickness of
their various windows or measure it experimentally with
the method of Alvisi et al. ~2006!. It is clear that this lack of
knowledge of the detector efficiency is a serious problem for
the development of accurate quantitative standardless X-ray
microanalysis and also that it affects the accuracy of the
measured ionization cross sections.

In equation ~5!, i and t can be determined with good
accuracy if it is possible to measure the probe current in a
given microscope with a Faraday cup. However, the value of
the specimen density r for a thin film can have uncertain-
ties depending on the preparation process. Also, the exact
value of the specimen thickness could be difficult to mea-
sure with great accuracy. Electron energy loss spectroscopy
~EELS! is now becoming a robust method to determine
that, but its accuracy is of the order of 10% ~Egerton, 2011!,
especially because of the uncertainties in the inelastic mean
free path.

The accuracy of the fluorescence yield, vi , was esti-
mated to be of the order of 5% for the K lines by Joy ~2001!.
For the L lines, a survey of the compilation performed by
Joy ~2001! shows variations in the experimental data that
fluctuate between 50 and 75%. However, another review by
Campbell ~2003! shows that the uncertainty for vL3 and vL2

is of the order of 5% while for vL1 it is between 10 and 30%.

Figure 2. Ionization cross section for the K shell of C as a func-
tion of E0 measured experimentally by many researchers and
computed with the Bethe equation @equation ~6!# , the relativistic
Bethe equation @equation ~7!# , the Casnati equation ~Casnati et al.,
1982!, and the Bote-Salvat equation @equations ~8!–~10!# .

Figure 3. Ionization cross section for the K shell of Cu as a
function of E0 measured experimentally by many researchers and
computed with the Bethe equation @equation ~6!# , the relativistic
Bethe equation @equation ~7!# , the Casnati equation ~Casnati et al.,
1982!, and the Bote-Salvat equation @equations ~8!–~10!# .
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Since there have been few measurements performed for the
M lines, it is difficult to imagine that the accuracy will be
better than that of the L lines. The accuracy of the weight of
the characteristic line, ai , was evaluated recently by Pia et al.
~2009!. From their compilation, it is seen that the experimen-
tal data fluctuate around 30% for the K-L2 transition. For
the L1-M2 transition, the fluctuation is around 60%. No
data are reported for the M lines, and, again, it is difficult to
forecast accuracy better than that of the L lines.

As shown by Merlet et al. ~2004!, the ~1 � TCK, i ! factor
accounts for nondirect ionization for vacancies in the Li or
Mi subshells. For an Li subshell, vacancies are produced not
only by direct ionization, but also by radiative and nonradi-
ative transitions to the K shell, Coster-Kronig transitions
between Li subshells and by radiative transitions between Li

subshells. Since the ionization of the K shell can only be by
direct electron impact, TCK, i � 0 for the K lines. For the L3

shell,

TCK, L3 � nKL3

QK

QL3

� f23

QL2

QL3

� ~ f13 � f12 f13 � f13
' !

QL1

QL3

,

~11!

where nKL3 is the radiative plus nonradiative yield for
transitions of vacancies from the K shell to the L3 subshell;
f13, f12, and f13 are the Coster-Kronig yields between L
subshells; and f13

' is the intrashell radiative yield for transi-
tions of vacancies from the L1 subshell to the L3 subshell. It
is clear that the ~1 � TCK, L3! parameter depends in a
complicated way on the direct ionization cross sections of
the L and the K shells weighted by the numerous param-
eters of equation ~11!. Figure 4 shows TCK, L3 computed as
a function of E0 for Ge with the ionization cross sections
of the three L shells of Bote and Salvat ~2008! and the
other parameters given by Merlet et al. ~2004!. Clearly,
TCK, L3 increases with E0 and becomes almost constant for

U � 20 � 30, where the ratios QK /QL3
, QL1
/QL3

and
QL2
/QL3

become also nearly constants.
Figure 5 shows TCK, L3 computed as a function of the

atomic number Z with the Coster-Kronig yields given by
Campbell ~2003!, and assuming that nKL3 and f13

' are negli-
gible and also that QL1/QL3 and QL2/QL3 are equal to 0.3
and 0.5 ~based on the computations of Bote and Salvat,
2008!. This factor fluctuates strongly as a function of Z and
increases the generation of X-rays, for the L lines, by 20 to
30%. Assuming uncertainties of 10% on all the terms of
equation ~9!, the uncertainty of TCK, L3 is about 35%. Since
TCK, L3 depends on 10 parameters, all of them need to be
known with very good accuracy too, but this is not the case
so far and their precise determination is urgently needed for
accurate quantitative X-ray microanalysis involving L lines
~the same being true for M lines!. A new method to mea-
sure the ~1 � TCK, i ! factor is presented later in this article.
Also, the uncertainties in the various values of equation ~11!
make the comparison between computed ionization cross
sections and measured ones subjective because they depend
on the choice of the specific factors of this equation.

This fact has to be kept in mind when the comparison
of the ionization cross section of the Ge L3 shell is made
between the values computed by the Bethe equation @equa-
tion ~6!# , the relativistic Bethe equation @equation ~7!# , the
Casnati equation ~Casnati et al., 1982!, and the Bote-Salvat
equation @equations ~8–10!# , and those measured by Merlet
et al. ~2004!, as shown in Figure 6. The Bethe cross sections
were computed with bnl � 0.75 ~Powell, 1976! and cnl � 1.
Clearly, the Bote-Salvat cross sections are the closest to the
experimental values, but this good agreement might be
fortuitous due to the uncertainties in the many parameters
of equation ~11! and also on the experimental measure-
ments of the ionization cross sections.

For the M lines, measurements of ionization cross
sections were made by Merlet et al. ~2008! for Au and Bi. In
this case, the TCK, M5 parameter is given by an equation more
complicated than equation ~11!, and the associated param-
eters are less well known than for the L lines. However, they

Figure 4. TCK, L3 computed as a function of the beam energy, E0,
for Ge. See the text for details.

Figure 5. TCK, L3 computed as a function of the atomic number Z.
See the text for details.
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found very good agreement with the values computed by
Bote and Salvat ~2008!, but again this good agreement
might be related to the choice of the parameters involved in
the computation of TCK, M5.

Figure 7 shows the comparison of the normalized val-
ues of the ionization cross sections of Figure 6. Clearly, the
Casnati equation fits very well the experimental shape at
low electron energy, and the Bote-Salvat fits very well the
experimental shape at high electron energy. However, the
relativistic Bethe curve is slightly lower than the Bote-Salvat
at low electron energy ~low overvoltage! and it is, again, a

demonstration of the failure of the first Born approxima-
tion. As usual, the nonrelativistic Bethe equation gives too
low values at high electron energy. Assuming that the exper-
imental shape of Merlet et al. ~2004! is good, none of these
equations fits perfectly the shape of the ionization cross
sections for the Ge L3 shell. It is dangerous to generalize this
result for all the shells and elements because of the limited
set of experimental data. It has to be kept in mind that
when a w~rz! curve is computed, only the relative shape of
the cross section as a function of electron beam energy is
needed.

Since the agreement between the absolute values of the
measured ionization cross sections and those computed by
Bote and Salvat ~2008! seems to be the best so far, and also
because they used a very consistent theory to compute them
for all the elements from hydrogen ~Z � 1! to einsteinium
~Z � 99! up to 1 GeV for the K, L1, L2, L3, M1, M2, M3, M4,
and M5 shells, these should be used to perform quantitative
X-ray microanalysis, even if more measurements are ur-
gently needed for the ionization cross sections and also for
all the parameters presented in this section. Also, from this
review on the fundamental parameters of X-ray generation,
it is clear that accuracies in the measured ionization cross
sections below 30% will be very difficult to achieve because
of the error propagation of the many terms involved in
equation ~5!.

QUANTITATIVE X-RAY MICROANALYSIS
IN THE TRANSMISSION
ELECTRON MICROSCOPE

Since it is difficult to determine accurately the specimen
thickness in the TEM and also since probe current measure-
ment is generally not a routine task, quantitative X-ray
microanalysis is based on the ratio of the net intensities of
two characteristic lines obtained in the same spectrum. In
looking at equation ~5!, it is easy to see that in this ratio the
probe current and the specimen thickness cancel out. How-
ever, knowledge of the specimen thickness is needed if
absorption and fluorescence effects are not negligible. The
ratio of the composition, cA and cB of two elements A and B,
is related to the net X-ray intensity of their characteristic
lines, IA and IB, although this equation neglects absorption
and fluorescence ~Cliff & Lorimer, 1975!:

cA

cB

� KA-B

IA

IB

, ~12!

where KA-B is the famous Cliff and Lorimer K-factor. Look-
ing at equation ~5!, it is easy to see that

KA-B �
QB vB aB~1 � TCK, i !B «B AA

QA vA aA~1 � TCK, i !A «A AB

. ~13!

Equation ~13! was first derived by Goldstein et al. ~1977!
without the use of the ~1 � TCK, i ! factor because they were
using, implicitly, an effective ionization cross section Qi

eff �
Qi~1 � TCK, i ! for the L and M lines. Writing the ~1 � TCK, i !

Figure 6. Comparison of the ionization cross section of the Ge L3

between those computed by the Bethe equation @equation ~6!# , the
relativistic Bethe equation @equation ~7!# , the Casnati equation
~Casnati et al., 1982!, and the Bote-Salvat equation @equations
~7!–~9!# , and those measured by Merlet et al. ~2004!.

Figure 7. Comparison of the normalized values of the ionization
cross section of the Ge L3 to their maximum value between those
computed by the Bethe equation @equation ~6!# , the relativistic
Bethe equation @equation ~7!# , the Casnati equation ~Casnati et al.,
1982!, and the Bote-Salvat equation @equations ~7!–~9!# and those
measured by Merlet et al. ~2004!.
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factor directly in equation ~13! is preferable because it is a
reminder of the importance of knowing with good accuracy
the Coster-Kronig transitions factors for the use of this
equation. Because of the uncertainties in the parameters in
equation ~13!, the best accuracy for quantitative X-ray mi-
croanalysis in the TEM is obtained when the KA-B factors
are determined experimentally with equation ~12! using
specimens of known composition for elements A and B and
by measuring experimentally their net X-ray intensities IA

and IB, as shown by Wood et al. ~1984!. When one of the
two lines is outside the range where the detector efficiency
is significantly smaller than 1, the KA-B factor becomes
microscope dependent because each EDS detector has a
different detection efficiency. Since it might be difficult to
find a specimen of homogeneous composition for a given
pair of elements A and B, the experimental determination
of a KA-B factor relies on interpolating its value from mea-
sured values KA-C and KB-C using KA-B � KA-C /KB-C , as can
be easily seen with equation ~13!. However, the experimen-
tal measurement of the KA-B factors is a disadvantage be-
cause it takes time to find or to make an alloy or a
compound, assess its homogeneity, and determine its com-
position with an accuracy below 5% ~if not 2%! using
another quantitative method. Fabricating a thin foil is not
generally a straightforward task and many EDS spectra
must be measured. Things are even more complicated if a
KA-B factor is interpolated from two others determined
experimentally. As a result, most of the quantitative work is
performed with computed KA-B factors using equation ~13!,
despite all the uncertainties in it as shown previously.

It is often said, or thought, that the Cliff and Lorimer
method is only valid for specimens thin enough to avoid
X-ray absorption and fluorescence. This is, of course, wrong
because absorption and fluorescence corrections do exist
for thin films having a given thickness. By neglecting fBr and
find in equation ~2!, equation ~12! can be rewritten as
follows:

cA

cB

� KA-B AA-B FA-B

IA

IB

. ~14!

AA-B is the absorption correction, given by

AA-B �

�
0

t

w~rz!B e�xB rz drz

�
0

t

w~rz!A e�xA rz drz

~15!

and if the specimen thickness is small enough, for a given
incident electron energy to avoid beam spreading, energy
loss, and electron backscattering, w~rz!B � w~rz!A � 1
then equation ~15! gives

AA-B �
xA @1 � e�xB rt #

xB @1 � e�xA rt #
. ~16!

This is the famous equation derived by Goldstein et al.
~1977! to correct for X-ray absorption in the TEM. The
equation applies only for thin specimens with parallel sur-

faces, as described above, having the same composition and
thickness in a distance perpendicular to the incident beam
and in the direction of the X-ray detector, equal to t/tan c,
where c is the take-off angle. In equation ~14!, FA-B is given
by

FA-B �

�1 � (
j�1

n

fc, j�
B

�1 � (
j�1

n

fc, j�
A

, ~17!

where the summation for each element ~A and B! is taken
for the n characteristic lines present in the spectrum, having
an energy greater than the characteristic line of element A
or B. Nockolds et al. ~1980! derived an absorption correc-
tion for thin films of uniform thickness when the line B
fluoresces A ~or the line A fluoresces B!. Anderson et al.
~1995! have developed formulas for fluorescence corrections
involving more complex geometries. The Cliff and Lorimer
method assumes that the sum of the mass fraction of all the
elements equals 1. Putting this constraint for a binary
system in equation ~14! and by noting that AA-B � gB/gA,
we obtain

cA �
1

1 � KB-A

gA

gB

FB-A

IB

IA

, ~18!

where KB-A � 1/KA-B and FB-A � 1/FA-B. When absorption
and/or fluorescence are significant, this equation needs to
be iterated until convergence is obtained in the value of cA

because the mass absorption coefficients, used in these
corrections, are composition dependent as seen in equation
~4!. When absorption, fluorescence, and dind are negligible,
equation ~18! can be solved directly for a binary system.

Generally, due to the small thickness of films used in
the TEM, the fluorescence correction is negligible and the
absorption correction is significant only for X-ray lines
having an energy below 1 keV because their mass absorp-
tion coefficients have very high values ~in the range of 104

to 105 cm2/g!. However, with focused ion beam specimens,
bulk regions surround thin films and fluorescence effects
are likely to be significant; the microanalyst should be aware
of this and more research is needed to quantify this effect.
Also, the accuracy of mass absorption coefficients with
photon energy between 0.5 to 1 keV is in the range of 10%
to 20% and 100% to 200% for photon energy between 0.1
to 0.5 keV ~Hubbell, 1999!, and this limits the accuracy of
absorption correction. Finally, the application of the absorp-
tion and the fluorescence corrections relies on the knowl-
edge of the specimen thickness at the point of analysis,
which might be difficult to determine at that point. It is for
that reason that Watanabe and Williams ~2006! developed
the z factor method that relies on the measurement of the
probe current with a Faraday cup and the experimental
determination of several z factors with specimens of known
composition and thickness. The measurement of the probe
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current then permits precise determination of the thickness
of the analyzed regions, and the absorption and fluores-
cence corrections can be computed to determine the com-
position of materials with improved accuracy. However,
most microscopes do not accommodate routine measure-
ment of the probe current, and the conventional Cliff-
Lorimer method is still being used extensively. A method to
determine the specimen thickness with bright-field–dark-
field imaging is proposed below.

QUANTITATIVE X-RAY MICROANALYSIS IN
THE SCANNING ELECTRON MICROSCOPE

As explained in the introduction of this article, quantitative
X-ray microanalysis in the SEM and in the electron micro-
probe is performed using the ZAF method. By inserting
equation ~5! into equation ~1! and neglecting dind , we
obtain

ci

c~i !

�

g~i !�1 � �(
j�1

m

fc, j� � fBr�
~i !

gi�1 � �(
j�1

m

fc, j� � fBr�
i

Ii

I~i !

. ~19!

The atomic number correction, Zi , is ~Horny et al., 2010!

Zi �

�
0

`

w~rz!i drz

�
0

`

w~rz!~i ! drz

. ~20!

The absorption correction is given by ~Castaing, 1951!

Ai �
f ~x~i ! !

f ~xi !
, ~21!

where

f ~xi ! �

�
0

`

w~rz!i e�xi rz drz

�
0

`

w~rz!i drz

~22!

and a similar expression exists for f ~x~i!!. f ~xi ! is the ratio
of the emitted X-rays to the generated X-rays of the charac-
teristic line of element i in the analyzed specimen and
f ~x~i! ! is the same, for the standard. The fluorescence
correction factor is therefore

Fi �

�1 � �(
j�1

m

fc, j� � fBr�
~i !

�1 � �(
j�1

m

fc, j� � fBr�
i

. ~23!

On looking at the equations ~1! and ~19!–~23!, it is clear
that the Zi and Ai corrections are related to each other since
g~i!/gi � Zi Ai . It is worth mentioning that Zi Ai Fi could be
rewritten as Ei Fi with Ei � g~i!/gi , Ei being the ratio of

emitted X-ray intensity of the standard of known composi-
tion to that of the specimen of unknown composition for
the characteristic line of element i . The only reason that
Zi Ai is used instead of Ei is historical, the Ai corrections
being introduced by Castaing ~1951! before Duncumb ~1957!
discovered the Zi correction.

Zi and Ai are the dominant terms in the ZAF correc-
tion because fluorescence effects are often negligible. In
looking at equation ~18!, the genius of Castaing is clear. The
ratio of the net intensity of a characteristic line measured in
the specimen of unknown composition to that of the stan-
dard of known composition, for the same X-ray lines of
each element i , removes all these parameters—the ioniza-
tion cross section, the fluorescence yield, the weight of the
characteristic line, the Coster-Kronig transition factor, and
the detector efficiency. Therefore, their precise knowledge is
not needed and their inaccuracies cannot affect the accu-
racy of the quantification. The validity of equation ~19!
relies on the use of the same experimental parameters to
measure the intensities of the specimen of unknown and
the standards of known composition—the same solid angle,
probe current, acquisition time, and take off angle. Only a
good shape of the w~rz! curve is needed in addition to
accurate mass absorption coefficients when the absorption
correction is significant.

The best w~rz! models, giving the Zi Ai corrections, are
those that were proposed by Pouchou and Pichoir ~1984!,
Merlet ~1994!, and Bastin et al. ~1998!. For the fluorescence
correction, when the standard is a pure element, fc, j is null.
For a multielement specimen, an expression for the charac-
teristic fluorescence, fc, j , was developed by Reed ~1965!, and
Henoc ~1968! developed an expression for the bremsstrah-
lung fluorescence, fBr . Accuracy as good as 1% can be
obtained in the electron microprobe, and this is the most
accurate quantitative method for chemical analysis. How-
ever, this accuracy is obtained with careful measurements of
X-ray intensities for the specimen of unknown composi-
tion, and the standards and the bulk specimen must be flat
and should have a homogeneous composition.

THE f-RATIO METHOD

The f-ratio method was developed by Horny et al. ~2010! as
an alternative to the conventional ZAF method in situations
when the measurement of the probe current is difficult
~there is no Faraday cup installed in the electron micro-
scope to measure the probe current! or for microscopes that
do not have a very stable probe current, as in cold-field
electron emitters. This method extends the idea developed
by Cliff and Lorimer ~1975! of using an intensity ratio to
eliminate the need to know the probe current. However, in
the Cliff and Lorimer method, when the intensity IB of the
element B is close to 0, the ratio IA/IB increases rapidly and
tends to diverge and because IB is small, the ratio then
becomes dominated by the noise. Horny et al. ~2010! have
proposed the f-ratio to avoid this problem. The ratio fA is
defined as
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fA �
IA

IA � IB

. ~24!

The f-ratio is normalized between 0 and 1. The Horny et al.
~2010! new method was developed for a binary system, A
and B, but it can be extended to multielement systems.

By inserting equation ~24! in equation ~2!, neglecting
find and assuming that cA � cB � 1 ~as in the Cliff and
Lorimer method!, Horny et al. ~2010! obtained

fA �
1

1 � KA-B

gB�1 � (
j�1

m

fc, j � fBr�
B

gA�1 � (
j�1

m

fc, j � fBr�
A

~1 � cA !

cA

. ~25!

In this article, the composition of the NIST SRM-482 Cu-Au
standard for the three compositions of 20, 60, and 80% Cu
was determined with an accuracy around 5% using calibra-
tion curves relating fA as a function of cA, as shown in
Figure 1a. Monte Carlo simulations were used to determine
the calibration curves. Because of the uncertainties in the
computation of the KCu-Au factor, a calibration factor was
determined for all the electron beam energies used. The
alloy having a composition of 40% was used for that pur-
pose. Clearly, this is a disadvantage because finding an alloy
~or a compound! of known and homogeneous composition
might be impossible for a given system A-B. Also, having to
measure the calibration factor every time the beam energy
is varied can be time-consuming. This fact will become
more important as methods for the characterization of
materials based on the uses of different beam energies are
being more and more used. A method to calibrate the KA-B

factor at only one beam energy is therefore needed because
true standardless X-ray microanalysis with an accuracy bet-
ter than 5% is not possible now. This will be discussed more
rigorously in the next section of this article.

By comparing equations ~25! and ~19!, it should be
clear that the Cliff and Lorimer factor, KA-B, appears natu-
rally in any quantitative X-ray microanalysis method involv-
ing the ratio of two different lines taken on the same
spectrum, both for thin foils and for bulk specimens. Of
course, the correction factors for the generation, absorp-
tion, fluorescence, and other indirect X-ray generation are
different and depend on the geometry and on the distribu-
tion of the various phases of the specimen.

By defining GB-A as

GB-A � LA-B KA-B

gB

gA

�1 � (
j�1

m

fc, j � fBr � find�
B

�1 � (
j�1

m

fc, j � fBr � find�
A

, ~26!

where LA-B is the experimental calibration factor of the Cliff
and Lorimer factor ~see Horny et al., 2010 for details about
its determination!, equation ~24! can be solved as follows:

cA �
fA GB-A

1 � fA~GB-A � 1!
~27!

and when the corrections factors for the generation, absorp-
tion, fluorescence, and other indirect X-ray generation are
significant, this equation must be solved iteratively. When
absorption, fluorescence, and other indirect X-ray genera-
tion effects are negligible, GB-A � LA-B KA-B and equation
~27! can be solved directly. It is interesting to note that when
GB-A � 1, cA � fA. Also, at the low concentration limit,
fA r 0 and cA � GB-A fA.

This method was extended to multielement systems by
Gauvin et al. ~to be submitted for publicationa!, and the full
analysis of the error propagation in the quantification pro-
cedure was analyzed. This shows that the f-ratio has a
smaller error than the IA/IB ratio, but the overall error is the
same for both methods when the propagation of errors in
the equations used to determine the composition are com-
puted. However, since the f-ratio is less sensitive to noise
propagation than the IA/IB ratio, qualitative chemical maps
should be built based on this new ratio method.

TOWARD STANDARDLESS QUANTITATIVE
X-RAY MICROANALYSIS

The author of this article strongly believes that any standard-
less quantitative X-ray microanalysis method should be
based on the ratio of net X-ray intensities acquired on the
same spectrum and the f-ratio method is the natural choice.
For that purpose, the Cliff and Lorimer factors need to be
computed exactly. As mentioned many times in this article,
this is not yet possible and, in this section, some ideas to
help in this regard are presented. It should be clear to the
reader that more research is needed to fully validate these
new ideas.

RATIO OF CLIF F AND LORIMER FACTOR
OBTAINED AT TWO DIF FERENT
ACCELERATING VOLTAGES

In his PhD thesis, Gauvin ~1990! proposed using the ratio
of a Cliff and Lorimer factor measured at two different
accelerating voltages E1 and E2 for the same elements A and
B, defined as

RA-B
E2-E1 �

KA-B
E2

KA-B
E1

, ~28!

where E2 � E1 by definition. Looking at equation ~13!, it
is seen that the ionization cross sections and also the
~1 � TCK, i ! factor for the L and M lines depend only on
electron energy. For the ~1 � TCK, i ! factor, this is when E2 or
E1 are smaller than 20 to 30 times the ionization energy of

aGauvin, R., Michaud, P., Demers, H. & Trudeau, M.L. The application
of the f-ratio method for quantitative X-ray microanalysis in the transmis-
sion electron microscope. To be submitted for publication to Microscopy &
Microanalysis.
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elements A and/or B. Assuming that E1 is sufficiently high
to neglect the variation of the ~1 � TCK , i ! factor for the L
and M lines with electron beam energy, insertion of equa-
tion ~13! in equation ~28! gives

RA-B
E2-E1 �

QB
E2 QA

E1

QA
E2 QB

E1
. ~29!

Equation ~29! is always true when only K lines are involved.
By inserting the Bethe equation for Qi @equation ~6!# in
equation ~29!, all the terms in front of the natural logarithm
cancel out, giving

RA-B
E2-E1 �

ln~cnl UB
E2 ! ln~cnl UA

E1 !

ln~cnl UA
E2 ! ln~cnl UB

E1 !
. ~30!

Assuming that cnl is not a function of the atomic number,
Gauvin ~1990! obtained this equation for its computation:

ln~cnl ! � 	c 2

4
�

~RA-B
E2-E1 a � b!

RA-B
E2-E1 � 1

�
c

2
, ~31!

where

c � ln~UB
E1 UA

E2 ! � ln~UB
E2 UA

E1 ! ~32!

a � ln~UB
E1 ! ln~UA

E2 ! ~33!

b � ln~UB
E2 ! ln~UA

E1 !. ~34!

Gauvin ~1990! also derived a similar equation for the cnl

parameter of the relativistic Bethe equation @equation ~7!# .
In addition he derived equations to compute the cnl param-
eter of each element A and B with the use of two different
RA-B

E2-E1 factors to take into account the possible variation of
the cnl parameter with atomic number.

RA-B
E2-E1 depends only on the ratio of the cross sections—

all the others parameters disappear in this ratio. This is a
great advantage because we have seen that the uncertainties
in the fluorescent yield, vi , the weight of the characteristic
line, ai , the Coster-Kronig transitions, ~1 � TCK, i !, and the
detector efficiency, «i , are all greater than, at least, 10%.
Since it is possible to measure Cliff and Lorimer factors
with great accuracy, the RA-B

E2-E1 factor can be determined
with great accuracy. This is very important because what is
needed to compute a KA-B factor for performing quantita-
tive X-ray microanalysis is the ratio of cross sections
QB/QA, not their absolute values QA and QB. The RA-B

E2-E1

factor is a normalized ratio of QB/QA at a reference energy
E1. Therefore, by fixing E1, the variation of RA-B

E2-E1 gives the
shape of QB/QA as a function of E2, allowing comparison of
the various models of cross section with accurate measured
values of RA-B

E2-E1 . Using a good model of cross section to
compute RA-B

E2-E1 with equation ~29!, the experimental KA-B

factor needs to be determined only at one electron beam
energy E1 and the factor at an electron beam energy E2 can
be accurately determined using equation ~28! as follows:

KA-B
E2 � RA-B

E2-E1 KA-B
E1 . ~35!

Therefore, with an accurate knowledge of the RA-B
E2-E1 ratio, it

is only necessary to determine experimental Cliff and
Lorimer factors at one electron beam energy, and this

should help in the implementation of the f-ratio method
presented previously.

Gauvin ~1990! used the Cliff and Lorimer factors mea-
sured at 100 and 200 keV by Schreiber and Wims ~1981! to
determine the cnl parameter of the nonrelativistic Bethe
equation @equation ~6!# using equations ~30!–~34!. Assum-
ing that the bnl parameter is not a function of the atomic
number, as in the Powell ~1976! parameterization, only the
cnl parameter is needed to compute the ratio of cross
sections QB/QA in Cliff and Lorimer factors. Also, the use of
the relativistic equation of Bethe @equation ~7!# did not
change the computed values of QB/QA. Excellent agreement
was found between Cliff and Lorimer factors computed in
this way with those measured by Gauvin ~1990! and also
with those measured by Wood et al. ~1984!. The comparison
was performed for Cliff and Lorimer factors with the energy
of their characteristic lines being between 5 and 15 keV
where the detector efficiency was close to 1 with the EDS
detectors used at that time. The article of Gauvin and
L’Espérance ~1991! gives the details about this work and
also the derivations of the various equations to compute cnl .

The RA-B
E2-E1 ratio can also be used to compare measured

values of ionization cross sections by computing it with two
separate ratios QB

E2 /QB
E1 and QA

E1 /QA
E2 determined from two

different experimental sets. Figure 8 shows RC-Cu
E0-E1 as a func-

tion of E0, with E1 equal to 10 keV, computed with some of
the experimental ionization cross sections of C and Cu
shown in Figures 2 and 3 and with the model of Casnati
et al. ~1982! and with the computations of Bote and Salvat
@equations ~8!–~10!# . The ratio of the cross sections for
carbon was obtained from a logarithmic fit of the values
measured by Hink & Pashke ~1971a, 1971b! and by Tawara
et al. ~1973!. Two RC-Cu

E0-E1 ratios were computed from the
ratio of cross sections of copper measured by He et al.
~1997! and by Llovet et al. ~2000!. Clearly, the RC-Cu

E0-E1 ratio
computed with Bote-Salvat cross sections is greater than
that computed with Casnati cross sections for E0 greater
than 20 keV. Also, the RC-Cu

E0-E1 ratio computed with Bote-
Salvat cross sections is closer but significantly smaller than
the experimental ratio computed with Llovet et al. ~2000!
Cu cross sections. The RC-Cu

E0-E1 ratios obtained with the exper-
imental Cu cross sections of He et al. ~1997! are the farthest
from the theoretical predictions. This is interesting because
in Figure 3 it is seen that they are very close to the com-
puted values of Bote-Salvat. This finding must be “taken
with a grain of salt” because these experimental ratios were
computed with sets of ionization cross sections that have
differences around 30% for Cu and 60% for C, giving an
estimated error on the RC-Cu

E0-E1 ratio that is about 100%. This
fact highlights that RA-B

E2-E1 ratios should be obtained from
the measurement of Cliff and Lorimer factors, or ratios of
net X-ray intensities, at different values of beam energy, as
will be explained in more detail below.

Looking at equation ~31!, the validity of equation ~30!
to compute RA-B

E2-E1 can be demonstrated if a plot of

Mc 2/4 � ~~RA-B
E2-E1 a � b!/~RA-B

E2-E1 � 1!! as a function of c
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gives a straight line with a slope of 1/2 and the inter-
cept at the origin being ln~cnl !. Figure 9 shows

Mc 2/4 � ~~RA-B
E2-E1 a � b!/~RA-B

E2-E1 � 1!! as a function of c
with RC-Cu

E0-E1 computed from 10 to 400 keV with the ioniza-
tion cross sections of Bethe @equation ~6!# , Bethe relativistic
@equation ~7!# , Casnati et al. ~1982!, and Bote-Salvat @equa-
tions ~8!–~10!# , and Table 1 gives the values of the param-
eters of the linear fit of these plots performed by regression
analysis. In all the cases, a straight line is obtained with a
slope equal to 0.5 for Bethe, Bethe relativistic, Casnati, and
0.495 from the values of Bote-Salvat. The good agreement
of the relativistic Bethe equation to compute RC-Cu

E0-E1 with
equation ~30! was expected, but the excellent agreements of
the Casnati et al. ~1982! and Bote-Salvat ionization cross
sections are absolutely astounding. This might suggest that
slight modifications of the Bethe equations could be needed
to account for the failure of the first Born approximation
below four times the ionization energy of the shell of the
ionized element.

For the Bote-Salvat cross sections, because the slope
equals 0.495, equation ~30! will not give good RC-Cu

E0-E1 ratios
with the determined value of cnl . The determined value of
the slope must be used and details in that regard are given
in Appendix A.

Figure 10 shows Mc 2/4 � ~~RA-B
E2-E1 a � b!/~RA-B

E2-E1 �1!!
as a function of c with the RC-Cu

E0-E1 values shown in Figure 8
and Table 2 gives the values of the parameters of the linear
fit of these plots performed by regression analysis. The
different values of m and cnl obtained here for the Casnati
and Bote-Salvat cross sections are because the fit was per-
formed between 10 and 50 keV, and more deviations are
observed with the Bethe theory because the failure of the
Born approximation below U equal to 4 will be more
significant than seen previously. However, a straight line is

Figure 8. RC-Cu
E0-E1 as a function of E0 with E1 equal to 10 keV,

computed with some of the experimental ionization cross sections
of C and Cu shown in Figures 2 and 3 and with the model of
Casnati et al. ~1982! and with the computations of Bote and Salvat
@equations ~8!–~10!# . See the text for details.

Figure 9. Mc 2/4 � ~~RA-B
E2-E1 a � b!/~RA-B

E2-E1 � 1!! as a function of
c, given by equations ~31!–~34!, with RC-Cu

E0-E1 computed from 10 to
400 keV with the ionization cross sections of ~a! Bethe @equation
~6!# and Bethe relativistic @equation ~7!# , ~b! Casnati et al. ~1982!,
and ~c! Bote-Salvat @equations ~8!–~10!# .
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still observed for both models, which is again astounding.
Also, the data obtained with the measurements of He et al.
~1997! seem to be the worst. They deviate very significantly
from exact Bethe behavior, and the quality of the fit is bad
at low electron energy ~low values of c!. The fit of the
measurements of Llovet et al. ~2000! for Cu seems to give
the best values, a beautiful line is observed with their data.
However, it is difficult to draw definite conclusions because,
as mentioned previously, the errors on the experimental
RC-Cu

E0-E1 ratios used here are around 100%. The results pre-
sented in the last two figures are intended to show how the

analysis of Mc 2/4 � ~~RA-B
E2-E1 a � b!/~RA-B

E2-E1 � 1!! as a func-
tion of c can be useful to assess the quality of models of
ionization cross section to compute RA-B

E2-E1 and also to access
the quality of experimental data of ionization cross sec-
tions. To determine which model of ionization cross section
should be used to compute RA-B

E2-E1 ratios, precise measure-
ments of RA-B

E2-E1 are needed.
When using equation ~12! to measure a KA-B factor, its

accuracy is determined by the errors of the values of cA, cB,
IA, and IB. The accuracy of the compositions depends on the
experimental method that was used for their determination,
and the best methods should give an accuracy of about 5%.
The error on the net X-ray intensity is mainly the statistical
noise coming from their emissions as is described by Pois-
son statistics, the statistical error, «st , on the measurement of
the characteristic X-ray intensity of element i, Ii , being

«st � 300
MIi

Ii

~%! ~36!

at the 99% level of confidence. If 10,000 counts are obtained
for IA and IB, each measured value of intensity will have a

statistical error of 3%. Adding the errors in quadrature, the
overall error on a KA-B factor measured with electron beam
energy of E1 is 8.25%. If the ratio RA-B

E2-E1 is computed using
two KA-B factors measured with the same accuracy, the
overall accuracy of this ratio will be around 12%. This value
above 10% is due to the propagation of the errors on the
values of the composition and on the values of the net
X-ray intensities. Not only the composition must be known
accurately to measure a good KA-B factor, but most impor-
tantly a specimen of homogeneous composition must be
found to measure it and, as mentioned previously, this
might be impossible for a given system A-B. Also, if absorp-
tion is significant, the errors in the determination of the
specimen thickness will propagate in the absorption correc-
tion and in the resulting KA-B factor.

Therefore, it might be advantageous to measure di-
rectly the RA-B

E2-E1 ratio. If the two KA-B factors are measured
for the same homogeneous specimen, the composition can-
cels out in the RA-B

E2-E1 ratio and the insertion of equation
~12! into equation ~28! gives

RA-B
E2-E1 �

IB
E2 IA

E1

IA
E2 IB

E1
. ~37!

An accuracy better than 5% can be achieved if all four
measured net X-ray intensities have at least 14,400 counts. If
the measurements are performed in the same region of the
specimen at the two energies E1 and E2, there is no need to
know the composition of the specimen. Even better, if the
specimen is thin enough, relative to the electron beam
energy, equation ~16! is applicable to compute the absorp-
tion correction, and it is the same at the two electron beam
energies because the thickness of the specimen and the
composition of the material where the X-ray propagates
through the EDS detector are the same. Therefore, when the
ratio IB/IA is measured in the same region ~or very close to
the same region! at the energies E1 and E2, not only there is
no need to know the composition of the material to mea-
sure RA-B

E2-E1 , but the absorption correction cancels out if
there is negligible beam spreading in the specimen. It will
be possible to measure many RA-B

E2-E1 ratios for many combi-
nations of elements with very high accuracy, even for light
elements when X-ray absorption is significant. In the case of
significant absorption, particulates or films in the 5–50 nm
range might have to be used depending on the electron
beam energy, dictated by the absence of beam spreading in
the material—the higher the beam energy, the greater the
allowable thickness.

DETER MINATION OF THE COSTER-KRONIG
TRANSITIONS FACTOR

Equation ~29! is exact for the K lines and the minimum
energy where it is valid for the L and M lines is above 20 to
30 times the ionization energy of the shell, as shown above.
The introduction of the Coster-Kronig transition factors in
the RA-B

E2-E1 ratios for L and M lines can be seen as a limita-
tion of the work presented so far. However, it is shown in

Table 1. Values of the Parameters of the Linear Fit of Equa-
tion ~30! with RC-Cu

E0-E1 Computed from 10 to 400 keV with the
Ionization Cross Sections of Bethe @equation ~6!# , Bethe Relativis-
tic @equation ~7!# , Casnati et al. ~1982!, and Bote-Salvat @equations
~8!–~10!# .*

Q Model m cnl R2

Bethe 0.5 6 2.42e�8 161e�7 1
Bethe relativistic 0.50064 61.58e�5 0.972 61e�4 1
Casnati 0.502 6 9e�5 0.98 61e�4 0.99999
Bote-Salvat 0.495 6 3e�4 1.007 61e�3 0.99998

*The plots are shown in Figure 9.

Table 2. Values of the Parameters of the Linear Fit of Equa-
tion ~31! Obtained with the RC-Cu

E0-E1 Taken from Figure 8.*

Q m cnl R2

He et al. ~1997! 0.56 6 0.03 0.8 6 0.1 0.977
Llovet et al. ~2000! 0.5199 6 5e�4 1.06 6 0.003 0.99997
Casnati 0.49941 6 4e�4 0.993 61e�3 0.99995
Bote-Salvat 0.483 6 3e�4 1.06 6 0.001 0.99997

*The plots are shown in Figure 10.
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Appendix B that its saturation at large overvoltage can be
used to determine the Coster-Kronig Transition Factor ~1 �
TCK, i !. Figure 11 shows the Coster-Kronig transition factors
for the L3 shell of germanium computed with the method
presented in Appendix B and the exact values computed
with equation ~11! ~all the computational details are given
in Appendix B!. The agreement is excellent and shows the
potential of using this method to determine Coster-Kronig
transition factors for many elements, which will eventually
lead to the development of accurate standardless quantita-
tive methods, and also for the same elements in different
compounds. This is because nonradiative transition de-
pends on the band structure for low energy shells and if
these variations are significant, this might invalidate the
cancellation of this factor in classical ZAF analysis where
the ratio of a given X-ray line is obtained from the speci-
men of unknown composition and the standard of known
composition.

MEASUREMENT OF THE DETECTOR
EF FICIENCY

Alvisi et al. ~2006! have devised a method to measure
experimentally the detector efficiency using an artificial
mixture of carbon, aluminum, manganese, copper, and zir-
conium. The intensities of the characteristic lines of this
material, Ii

0 , were previously measured with an EDS detec-
tor of known detection efficiency, «i

0 , calibrated in an X-ray
synchrotron. When this material is inserted in another
microscope that has a different EDS detector, the detector
efficiency «i of element i can be computed as follows:

«i � «Mn

Ii

IMn
�«i

0 /«Mn
0

Ii
0 /IMn

0 � ~38!

using the measured intensities, Ii , of the same material. It is
interesting to note that the detector efficiency and the
characteristic intensities are both normalized to the value of
the Ka line of Mn. Because of the energy of this characteris-
tic line, its transmission though the window of the detector
and its absorption are very close to unity, and «Mn repre-
sents the transmission of the Si ~or W! grid in front of a
conventional polymeric window.

Figure 12 shows the detector efficiency of a silicon drift
detector ~SDD! Oxford X-Max 80 mm2 ~Oxford Instru-
ments, Abingdon, Oxfordshire, UK! installed on a Hitachi
SU-8000 cold-field FE-SEM ~Hitachi, Ltd., Tokyo, Japan!
measured with a specimen similar to that used by Alvisi
et al. ~2006! and calibrated with their EDS detector. Their
experimental procedure was followed with two spectra ac-
quired at 10 keV and four spectra acquired at 30 keV, and

Figure 10. Mc 2/4 � ~~RA-B
E2-E1 a � b!/~RA-B

E2-E1 � 1!! as a function of
c, given by equations ~31!–~34!, with the RC-Cu

E0-E1 values shown in
Figure 8.

Figure 11. Coster-Kronig transition factors for the L3 shell of Ge
extracted from RC-Cu

E0-E1 using equations ~B.7!–~B.11! and compared
with the exact values computed with equation ~11!.

Figure 12. Detector efficiency of a SDD Oxford X-Max 80 mm2

installed on a Hitachi SU-8000 cold-field FE-SEM measured with
a specimen similar to that used by Alvisi et al. ~2006! and cali-
brated with their EDS detector. Two spectra were acquired at
10 keV and four spectra were acquired at 30 keV, and the experi-
mental detector efficiency, obtained with these spectra, is shown as
single dots. Also shown is the nominal detector efficiency, labeled
as AP3.3 and given by the manufacturer, and the fitted curve from
the experimental data following the method described by Alvisi
et al. ~2006!.
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the experimental values of detector efficiency, obtained with
these spectra, are shown as single dots. Also shown is the
nominal detector efficiency, labeled as AP3.3 and given by
the manufacturer, and the fitted curve from the experimen-
tal data following the method described by Alvisi et al.
~2006!. In all of these curves, the nominal value of the
transmission of X-rays through the grid ~80%! was used for
«Mn. Clearly, a strong difference between the experimental
values and the nominal values of the detector efficiency is
observed. This is due to the fact that the thicknesses of the
various windows in front of the EDS detector are different
from the nominal values, and this effect is clearly visible for
photon energies below 2,000 eV. Above 10,000 eV, the strong
disagreement between the nominal values and the measured
ones is because the calculated values assumed an old Si~Li!
detector with a Si crystal thickness of 3 mm where SDD
detectors have much smaller thicknesses. Here, its deter-
mined value is 343 mm. It is obvious that accurate standard-
less X-ray microanalysis requires the measurement of the
detector efficiency on every EDS detector with the method
described by Alvisi et al. ~2006!. This should become a
reality because in recent decades many countries have built
state-of-the-art X-ray synchrotrons.

THE ROAD TOWARD STANDARDLESS
X-RAY MICROANALYSIS

What needs to be remembered is that standardless X-ray
microanalysis, based on the ratio of characteristic lines of
different elements taken from the same spectrum, always
requires the computation of the Cliff and Lorimer KA-B

factors and various corrections for the effect of absorption,
fluorescence, and indirect X-ray generation by FSE and
Auger electrons. Generally, the absorption correction is the
most significant. The effects of FSE and Auger electrons on
X-ray microanalysis are reviewed below.

To compute a Cliff and Lorimer KA-B factor, we need to
compute ratios of the fundamental parameters, as seen in
equation ~13!. With the measurement of various RA-B

E2-E1

factors using equation ~37!, it will be possible to generate
enough data to determine which models of ionization cross
section are the best to compute the ratio and possibly to
improve these models. Also, the measurement of RA-B

E2-E1

factors with a K and L line will permit the determination of
the Coster-Kronig transition factors of the corresponding L
shell using the method presented in Appendix B. Using an
M line instead of an L line will allow us to determine the
Coster-Kronig transition factors of the corresponding M
shell. Since this parameter is poorly known, this new method
should be used extensively.

It is suggested that materials having elements that gen-
erate L and M lines should be ground to give particles with
sizes below 50 nm, which should be deposited on a thin
carbon film supported by a Be grid. The carbon film will
give the desired K line but other elements with a K line
could be present in the particles. A first X-ray spectrum
should be obtained in a low magnification mode of imaging

for a given beam energy E1. The low magnification is
expected to minimize effects of contamination and speci-
men drift. Then a second X-ray spectrum should be ob-
tained at beam energy E2 without moving the specimen and
changing the magnification. Thus, RA-B

E2-E1 can be computed
using equation ~37! because, by not moving the specimen,
the composition of the particles will not have changed. The
particles and the carbon film will need to be small enough
to allow almost no beam spreading at these two beam
energies and therefore the absorption correction will cancel
out, as mentioned previously. Thus, by collecting spectra at
different electron beam energies, many RA-B

E2-E1 ratios will be
measured without having to determine the specimen com-
position. The validation of the most accurate models to
compute ionization cross section ratios and the determina-
tion of Coster-Kronig transition factors will then be possible.

The detector efficiency must be measured with a method
similar to that of Alvisi et al. ~2006!. When the detector
efficiency is measured for a given EDS detector, accurate
experimental measurement of Cliff-Lorimer KA-B

Exp should be
performed with a set of elements that span photons ener-
gies from 0.2 to 20 keV. Using the experimental values of the
detector efficiencies obtained with a curve similar to that of
Figure 12 for elements A and B, «A

Exp and «B
Exp , the calibra-

tion factor LA-B @defined in equation ~26!# will be deter-
mined as follows:

LA-B � KA-B
Exp

QA vA aA AB

QB vB a B AA

 ~1 � TCK, i !A «A

~1 � TCK, i !B «B
�Exp

~39!

with the experimental values of the Coster-Kronig transi-
tion factors determined using the new method presented in
this article and the best choice of ionization cross sections
deduced from RA-B

E2-E1 ratio measurements. The main point
here is that the measurement of the detector efficiency
makes the calibration factor independent of the EDS detec-
tor used to measure it, allowing it to be used with any other
EDS system for which the detector efficiency has been
determined experimentally. Also, by choosing carefully the
cross sections model and by measuring the Coster-Kronig
transition factors, the calibration factors should reflect in-
consistencies in the fluorescence yield and the weight of
characteristic lines. This should significantly improve the
accuracy of computed Cliff and Lorimer KA-B factors with
the buildup of a database of RA-B

E2-E1 , ~1 � TCK, i !i and LA-B for
as many elements A and B as possible. With any EDS
detector of known efficiency @determined with a method
similar to that of Alvisi et al. ~2006!# , accurate Cliff and
Lorimer KA-B factors will be computed as follows:

KA-B � LA-B

QB vB aB~1 � TCK, i !B «B AA

QA vA aA~1 � TCK, i !A «A AB

. ~40!

All the parameters in equation ~40! will come from the
database except the detector efficiency that will have to be
determined experimentally, as stated previously. Note that
with an accurate database of fundamental parameters and
with good experimental KA-B factors, equation ~40! could be
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used to determine the detector efficiency and then compute
accurate theoretical KA-B factors for a given EDS detector.
Of course, only when the methods presented in this article
have been used extensively to generate a huge database of
fundamental parameters will true standardless quantitative
X-ray analysis become possible.

ABSORPTION CORRECTION AND
MEASUREMENT OF SPECIMEN THICKNESS

When quantitative X-ray microanalysis is performed on an
electron-transparent specimen, the specimen thickness must
be known to compute the absorption correction, as shown
in equation ~16!. In EELS, the specimen thickness is related
to the ratio of the number of electrons that suffered inelas-
tic collisions to the number of electrons that lost no energy
and also to the inelastic mean free path, as demonstrated by
Malis et al. ~1988!. The accuracy of this method is about
10–20% because of the uncertainties in the inelastic mean
free path. The main problem of this method is that not all
TEMs have an EELS and no SEM has one. The specimen
thickness can also be determined using convergent beam
techniques, but its applicability is limited to crystalline
specimens. Also, not all TEMs can perform convergent
beam analysis and it is not possible, yet, to use this tech-
nique in the SEM. This was the motivation of Watanabe and
Williams ~2006! to develop the z factor method to deter-
mine the specimen thickness with absolute X-ray measure-
ment because most TEMs and SEMs have an EDS detector.
However, the z factor method relies on the measurement of
the probe current with a Faraday cup, and most TEMs and
many SEMs do not have an integrated Faraday cup to allow
such a measurement. Also, in cold-field electron micro-
scopes, the probe current is drifting and such variations will
introduce errors in using this method. Since there are more
than 7,000 cold-field electron microscopes in the world
~mostly SEMs!, it is important to use a method that is not
current-dependent because X-ray microanalysis in the STEM
mode at 30 keV ~and less for very thin objects! will become
of paramount importance, as shown below in this article.

Since the STEM mode permits bright-field ~BF! and
dark-field ~DF! imaging in the TEM and in the SEM, the
ratio of the total intensity of both images will be indepen-
dent of the probe current and will depend on the specimen
thickness for a given composition. Figure 13 shows the ratio
of the number of transmitted electrons that have an exit
angle ~relative to the incident beam direction! greater than
60 mRad @N~u � 60 mRad!# to the number having an exit
angle smaller than 20 mRad @N~u � 20 mRad!# , as a
function of specimen thickness for carbon, aluminum, iron,
silver, and gold at 100 keV. These curves were obtained
using Monte Carlo simulations with the MC X-Ray pro-
gram developed by Michaud and Gauvin ~2009! with
1,000,000 simulated electron trajectories ~with the excep-
tion of carbon where 10,000,000 trajectories were used!. For
all these elements, the ratio of this intensity increases with
the specimen thickness, and the small fluctuations in the

curves are statistical fluctuations coming from the Monte
Carlo simulations. Also, there is a strong atomic number
contrast using this ratio—two orders of magnitude of
difference between C and Au. To use this method, calibra-
tion curves as a function of composition and specimen
thickness will have to be computed, with Monte Carlo
simulations, and the relation between the computed ratio of
scattering angles to the ratio of intensities of DF to BF
images ~or high-angle annular dark field to bright field! will
have to be calibrated with specimens of known composition
and thickness. Of course, such calibration will not be
necessary if the currents can be read directly from the BF
and DF detectors. Then, an iterative method, similar to that
of Watanabe and Williams ~2006!, will have to be developed
to perform quantitative X-ray microanalysis with absorp-
tion correction for transparent specimens. Of course, for
specimens that are transparent but where the conditions of
validity of equation ~16! do not hold, a quantitative X-ray
method using the f-ratio technique with equations ~26!–
~27! will have to be developed with gi , given by equation ~3!
integrated from 0 to the specimen thickness. This is the case
of transparent thick specimens and/or low incident electron
energy, such as scanning TEM in the SEM at 30 keV and
below. Models will have to be developed to compute the
w~rz! curves where there is beam spreading in thin foils
and energy loss.

SPATIAL RESOLUTION FOR
X-RAY MICROANALYSIS

In this section, the spatial resolution for X-ray microanaly-
sis will be reviewed because it is of crucial importance for
the analyst to know the volume of the analyzed material for
each spectrum produced. This is especially important for
the acquisition of X-ray maps to avoid oversampling issues
and also to interpret the data correctly. Bulk materials and
thin film are considered here.

SPATIAL RESOLUTION FOR
BULK MATERIALS

Generally, the depth in a given bulk material where a
characteristic X-ray is generated, XG , is computed with the
following equation:

XG �
k

r
~E0

n � Ec
n ! , ~41!

where r ~the material density! and k are constants that
depend on the atomic number of the irradiated material, E0

is the incident electron energy, and Ec is the ionization
energy of the electronic subshell of the characteristic line.
The problem with this equation is that X-ray absorption is
not taken into account, and the range of emitted X-rays, XE ,
is smaller than XG when X-ray absorption becomes signifi-
cant. Gauvin ~2007a! derived a universal equation to com-
pute XE by taking into account X-ray absorption:
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XE � ln� 1

1 � a
�

� lX sin c�1 � exp��XG�ln� 1

1 � a
�lX sin c�� ,

~42!

where lX is the mean free path for X-ray absorption of the
characteristic line, c is the take-off angle of the X-ray
detector and a is the fraction of X-rays that escape the
specimen. For 95% of the X-rays that escape the specimen,
ln~1/~1 � a!! equals 3. Figure 14 shows XE /l sin c as a

function of XG /l sin c computed with equation ~42! for
a � 0.964 ~96.4% of the X-rays escaping the specimen! and
also from Monte Carlo simulations of 200,000 electron
trajectories ~for each data point! in carbon, aluminum, iron,
silver, gold, and an Fe-B alloy, where 95% of the emitted
X-ray were summed to compute XE from the Monte Carlo
simulations. These results show that equation ~42! can be
used to compute XE and the interested reader is referred to
the article of Gauvin ~2007a! for the details of the deriva-
tion of this equation and also to find the equations needed
to compute XG and lX .

SPATIAL RESOLUTION FOR THIN FOILS

With the advent of field emission TEMs ~FE-TEMs! with
aberration correctors, a probe diameter of about 0.1 nm can
be obtained routinely. The spatial resolution of EDS X-ray
microanalysis therefore becomes limited by the beam broad-
ening in the specimen and that is commonly evaluated with
the single scattering equation derived by Goldstein et al.
~1977!. The beam broadening b, at the bottom of a thin foil,
is the diameter that includes 90% of the scattered electrons
and is given by

b � 6.25 � 105
Z

E0
	r

A
t 3/2 ~cm! , ~43!

where Z is the atomic number of the thin film of thickness t
~cm!, r is the mass density ~g/cm3!, A is the atomic weight
~g/mole! of the thin film, and E0 is the energy of the
incident electrons ~keV!. The Goldstein equation assumes
that a single elastic collision always occurs at the middle of
the specimen, which overestimates the beam broadening for
very thin specimens where most of the electrons will not
scatter at all. Gauvin ~2008! derived a single scattering
equation that takes into account the probability of scatter-
ing for small thicknesses and also added a power law term
to take into account plural scattering. Improved Monte
Carlo simulations were performed since the publication of
this article and better coefficients of the power law were
obtained. The resulting beam broadening equation that
includes 90% of the scattered electrons is ~Gauvin, to be
submitted for publicationb!

b

2lu*
�

j

2
� @e�j � 1# �

1

j
@1 � e�j ~1 � j!#

� 1.61 � 10�3j 3.04, ~44!

where j � t/l, t being the specimen thickness, l the elastic
mean free path, and u* a characteristic scattering angle that
is proportional to the screening parameter u0 and is given
by the equation:

bGauvin, R. A universal equation for computing the beam broadening of
incident electrons in the electron microscope in a thin foil in the single
scattering regime. To be submitted for publication to Microscopy &
Microanalysis.

Figure 13. Ratio of the number of transmitted electrons having
an exit angle ~relative to the incident beam direction! greater than
60 mRad @N~u � 60 mRad!# to that having an exit angle smaller
than 20 mRad @N~u � 20 mRad!# as a function of specimen
thickness for carbon, aluminum, iron, silver, and gold at 100 keV.
These curves were obtained using the Monte Carlo simulations
with the MC X-Ray program developed by Michaud and Gauvin
~2009! with 1,000,000 simulated electron trajectories ~for each
data point! except for carbon where 10,000,000 trajectories were
used.

Figure 14. XE /l sin c as a function of XG /l sin c computed using
equation ~42! @mentioned as equation ~4! in the legend of this
graph# and also from Monte Carlo simulations of 200,000 electron
trajectories ~for each data point! in carbon, aluminum, iron, silver,
and gold and an Fe-B alloy. This figure is taken from Gauvin
~2007a!.
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u* � 1.363
Z 0.333

ME0

, ~45!

where Z is, as usual, the atomic number of the material and
E0 is in keV. The article of Gauvin et al. ~2006! gives the
expressions to compute the elastic mean free path l. The
interested reader is referred to Gauvin ~to be submitted for
publication, see footnote b! for the complete derivation of
equations ~44! and ~45!.

Equation ~44! predicts a universal curve when b/2lu*

is plotted as a function of t/l. Figure 15 shows b/2lu*

versus t/l for carbon, aluminum, iron, silver, and gold
computed by Monte Carlo simulations with 1,000,000 elec-
tron trajectories ~for each data point! for E0 � 100 keV. Also
shown in this figure is equation ~44!, labeled as Gauvin PS
while Gauvin SC refers to the modeling of single scattering
only, i.e., equation ~44! minus its last term that is the power
law term. Clearly, the universal behavior of equation ~44! is
seen with the normalized values of b/2lu* computed by
Monte Carlo simulations, the strongest differences being
seen at t/l � 10 and these are of �2% for gold and �4%
for carbon. The universal behavior of equation ~44! means
that this equation is not dependent on a scattering model
because the simulated data was normalized by the values of
l and u0 used in the Monte Carlo simulations. Therefore,
this scattering model is not dependent on the choice of a
given scattering model while the Goldstein equation is.
Improved scattering models for l and u0 could be used in
equations ~44! and ~45! to compute more accurate values of
b. It is also very interesting to note that the single scattering
model of Gauvin ~2008! is valid up to t/l � 3.

Figure 16 compares b/2lu* as a function of t/l for
equation ~44! and also for equation ~43! for carbon and
gold. Equation ~43! was normalized with the values of l
given by Gauvin et al. ~2006! and with u* given by equation
~45!. For t/l , 1, the Goldstein model overestimates the

beam broadening because it assumes that there is always an
elastic collision at the middle of the specimen, where in
reality there is a probability of having an elastic collision that
becomes smaller as t/l decreases. For carbon, at t/l � 0.1,
the Goldstein model overestimates the beam broadening by
420% and by 807% for t/l � 0.01. Equation ~43! is often
used to estimate the spatial resolution of X-ray microanaly-
sis in variable pressure scanning electron microscopy ~VP-
SEM! where often t/l , 1. As a result, the size of the skirt
~the incident electrons scattered in the gas before hitting the
specimen! is wrongly overestimated, giving a more pessimis-
tic view of the capabilities of X-ray microanalysis in the
VP-SEM. The Gauvin and Goldstein models are consistent
around t/l �1, where one collision occurs but the Goldstein
model underestimates the scattering above t/l . 1, despite a
slope that seems correct, because it assumes a single collision
where there is more than one. The difference between b/2lu*

for C and Au computed with the Goldstein model is about
22.5%. The universal behavior already observed with the
Monte Carlo simulations, as shown in Figure 15, is not ob-
served with the Goldstein model. The paper of Gauvin ~to
be submitted for publication, see footnote b! gives more
details about the derivation of equation ~44! and its use,
with many more results on this subject.

EF FECT OF FAST SECONDARY ELECTRONS
AND AUGER ELECTRONS ON X-RAY
GENERATION AND SPATIAL RESOLUTION

Fast secondary electrons ~FSEs! are secondary electrons
having an initial energy greater than 50 eV. Since their mean
energy is about 2% of the energy of the incident electron
~the electron that ionizes the atom leading to FSE genera-
tion!, a 100 keV beam incident on a thin specimen in the
TEM will generate FSEs, generally perpendicular to the
beam with a mean energy of 2 keV. Figure 17 shows trajec-
tories of FSEs, along with those of the primary beam, for
graphite at 100 keV for a 30 nm thin foil. These were

Figure 15. b/2lu* versus t/l for C, Al, Fe, Cu, and Au computed
by Monte Carlo simulations with 1,000,000 electron trajectories
~for each data point! for E0 � 100 keV. Gauvin PS refers to the
modeling of plural scattering, i.e., the whole equation ~44! while
Gauvin SC refers to the modeling of single scattering, i.e., equation
~44! minus its last term, the power law equation.

Figure 16. b/2lu* as a function of t/l for equation ~44! ~corre-
sponding to Gauvin PS! and also for equation ~43! for carbon and
gold ~corresponding to Goldstein!. Equation ~43! was normalized
with the values of l given by Gauvin et al. ~2006! and with u*

given by equation ~45!.
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simulated by Gauvin ~1990!. The FSEs travel much further
in the thin film than do the primary electrons, and since
they have much lower energy, they are more efficient in
generating X-rays for light elements because of the increase
in the ionization cross section. Also, they have enough
energy to ionize the light elements in the major part of their
path in the thin film. This effect was first pointed out by Joy
et al. ~1982! who performed Monte Carlo simulations to
compute the percentage of X-rays generated by FSEs. Fig-
ure 18 shows the percentage of X-rays generated by FSEs as
a function of the ionization energy for the K-shells of pure
thin foils of C, Al, Si, and Fe at 100 keV. The percentage of
X-rays generated by FSEs increases as the ionization energy
of the ionized shell decreases for the reasons mentioned
above—the lower the ionization energy of an element, the
longer the FSE can ionize it during its path in the thin foil.
About 10% of the X-rays are generated by FSEs for pure C
and about 0.5% for pure Fe, which shows that X-rays
generated by FSEs are significant for light elements. Gauvin
~1990! developed a Monte Carlo program, using the model
of Joy et al. ~1982!, to simulate the effect of the FSEs on the

Cliff and Lorimer KA-B factor. In this regard, the normalized
KA-B
* factor was defined as follows:

KA-B
* �

KA-B~eP � eFSE !

KA-B~eP !
, ~46!

where KA-B~eP � eFSE ! is the Cliff and Lorimer KA-B factor
computed with the X-rays generated by the primary electrons
and by the FSEs and KA-B~eP! is the Cliff and Lorimer KA-B

factor computed with the X-rays generated by the primary
electrons only. Any deviation of KA-B

* indicates that FSEs gen-
erate X-rays in the system A-B for given composition, speci-
men thickness, and beam energy. Also, it is easy to show that

KA-B
* �

1 � fB

1 � fA

, ~47!

where fi is the fraction of X-rays generated by FSEs for
element i and it corresponds to find in equation ~2!.

Figure 19 shows KB-X
* as a function of boron concentra-

tion, cB, for B-N, B-Fe, and B-Nd systems with a primary
beam of 100 keV and a 100 nm thick foil, as computed by
Gauvin and L’Espérance ~1992!. For the B-N systems, the
number of X-rays generated by FSEs is about the same and
KB-N
* is close to 1 and not sensitive to cB. However, for the

B-Fe and B-Nd systems, the fraction of X-rays generated by
Fe and Nd is negligible and KB-Fe

* and KB-Nd
* become sensitive

to boron composition. Since FSEs lose energy when they travel
and also because energy loss is a function of the specimen
composition, the number of X-rays generated by FSEs be-
comes composition dependent for a system having a low en-
ergy line in addition to one of significantly higher energy.
This means that in such cases equation ~12! cannot be used
to perform quantitative X-ray microanalysis because it as-
sumes that KA-B is composition independent, which is true
only if X-rays are generated by the primary electrons alone.

Figure 20 shows D90, the diameter that includes 90% of
the X-ray emission volume generated by the primary elec-
trons and by the FSEs as a function of the accelerating

Figure 17. Primary and FSE trajectories simulated by Gauvin
~1990! in graphite at 100 keV for a thin foil of 30 nm.

Figure 18. Percentage of X-rays generated by FSEs as a function of
the ionization energy for the K shells of pure thin foils of C, Al, Si,
and Fe at 100 keV. There results were obtained from Monte Carlo
simulations by Joy et al. ~1982!.

Figure 19. KB-X
* as a function of boron concentration, cB, for B-N,

B-Fe, and B-Nd systems for a primary beam of 100 keV and a
100 nm thick foil, computed by Gauvin and L’Espérance ~1992!
with primary electrons and FSE.
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voltage, E0, for a 100 nm thick foil and a B–80 wt% Fe alloy,
as calculated by Gauvin and L’Espérance ~1992!. As E0

increases, the beam broadening of the primary electrons
decreases, as expected, because the mean free path increases
with E0 and, specimen thickness being the same, t/l be-
comes smaller and the beam broadening predicted by equa-
tion ~44! becomes smaller. As E0 increases, the FSEs have
more initial energy and they can travel further in the
specimen and D90 increases significantly. The degradation
of spatial resolution of X-ray microanalysis using low en-
ergy lines in the TEM was also computed with Monte Carlo
simulations by Romig et al. ~1991!. Therefore, the FSEs can
significantly degrade the spatial resolution of X-ray micro-
analysis using low energy lines in the TEM. Gauvin et al.
~1999! have shown that FSEs can also generate a significant
number of X-rays for low energy lines in the SEM.

Gauvin ~2007b! has studied the effect of Auger elec-
trons on X-ray generation in thin foils of Au-B alloys.
Figure 21 shows trajectories of the primary electrons and of
Auger Au M4N67N67 electrons in a 20 nm thick foil of an
Au–1% ~at.! B alloy for E0 equal to 100 keV. Clearly, the
trajectories of Auger electrons look similar to those of FSEs.
However, the Auger Au M4N67N67 electrons have incident
energy of 2.1 keV, independent of the beam energy, while
the FSEs have an initial energy distribution with a mean
energy that increases with E0. Therefore, different behavior
in terms of X-ray generation and spatial resolution is to be
expected. Figure 22 shows KB-Au

* as a function of the atomic
fraction of boron, XB, for an Au-B alloy in the form of foils
of 10 and 100 nm with incident electron energy of 100 and
400 keV, including the effect of the Auger Au M4N67N67

electrons on X-ray generation. KB-Au
* was computed using

equation ~47! with the fraction of B Ka X-rays generated by
the Auger Au M4N67N67 electrons simulated by Monte Carlo
calculations. Clearly, KB-Au

* is a function of boron composi-
tion because the number of X-rays generated by the Auger
electrons becomes more significant as the composition of

boron decreases. As the boron concentration is reduced,
more Auger Au M4N67N67 electrons are produced, per bo-
ron atom, and the fraction of X-rays generated by these
electrons increases for the Ka line of boron. Of course, the
Auger Au M4N67N67 electrons do not have enough energy to
ionize the M-shell of Au, and they only affect the generation
of the Ka line of boron, for this combination of elements.
The variation of KB-Au

* with boron composition increases
with specimen thickness and electron beam energy.

Figure 23 shows the radius of the volume of X-ray
generation for the B Ka line generated by the primary
electrons, the Auger Au M4N67N67 electrons and both ~la-
beled as Total! as a function of the beam energy, E0, in an
Au–1% ~at.! B alloy for a specimen of thickness 10 nm and
an incident probe diameter of 1 nm, computed by Gauvin
~2007b! using Monte Carlo simulations. Above 100 keV, the
Auger Au M4N67N67 electrons significantly degrade the spa-
tial resolution. The spatial resolution of the X-rays gener-
ated by the primary electrons equals only 1 nm. The spatial
resolution equals 5 nm when the primary and Auger Au
M4N67N67 electrons are included, which corresponds to the
effective resolution. Since the energy of Auger electrons
does not change with E0, the spatial resolution is constant
above 100 keV. Below 50 keV, the spatial resolution is
dominated by the scattering of the primary beam.

Since the effects of FSEs and Auger electrons presented
here on the Cliff and Lorimer KA-B factor and on the spatial
resolution of X-ray microanalysis were computed using
Monte Carlo simulations, their experimental validation is
urgently needed. KA-B

* can be measured experimentally with
the measurement of KA-B~ep! and KA-B~ep � eFSE !. KA-B~ep!
can be determined from a very small particulate of elements
A and B where there will be no X-rays generated by FSEs
and Auger electrons because they will escape the particulate.
KA-B~ep � eFSE ! can be measured in a thin film of given
thickness of the same system A-B, for various compositions.
X-ray line scans will need to be measured across interfaces
having light and heavy elements to validate the effect of
FSEs and Auger electrons on spatial resolution. Comparison

Figure 20. D90, the diameter that includes 90% of the X-ray
emission volume generated by the primary electrons and by the
FSE, as a function of the accelerating voltage, E0, for a 100 nm
thick foil and a B-80 wt% Fe alloy, as calculated by Gauvin and
L’Espérance ~1992!.

Figure 21. Trajectories of the primary and Auger Au M4N67N67

electrons in a 20 nm thick foil of an Au–1% ~at.! B alloy for E0 �
100 keV. Taken from Gauvin ~2007b!.
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with predictions based on Monte Carlo simulations will be
necessary to determine if their effects are significant. This is
very important, especially these days, with the new FE-
TEMs equipped with aberration correctors. They are very
expensive and their promise to give subnanometer spatial
resolution for X-ray microanalysis is predicted on the basis
of X-rays generated by primary electrons only. The pre-
dicted effect of FSEs and Auger electrons might limit the
use of aberration-corrected microscopes to improve the
spatial resolution in certain experimental situations, mostly
for microanalysis involving low X-ray energy lines, and this
needs to be clarified in the near future. Following this
experimental validation, the quantitative models to perform

X-ray microanalysis will have to include their effect if they
are found to be significant.

X-RAY MICROANALYSIS OF
HETEROGENEOUS MATERIALS

The methods to convert X-ray intensities into concentra-
tions, which were introduced above, are valid for specimens
having homogeneous composition and flat surfaces. Follow-
ing the pioneer work of Kyser and Murata ~1974!, quantita-
tive schemes have been developed for the determination of
the thickness and the composition of multilayered speci-
mens by Pouchou ~1993! and by Llovet and Merlet ~2010!.
The work of Kyser and Murata ~1974! inspired Gauvin ~1990!
~see also Gauvin et al., 1992! to develop a quantitative method
for the microanalysis of spherical inclusions embedded in a
matrix using Monte Carlo simulations. To perform quantita-
tive X-ray microanalysis in these cases, the geometry of the
material must be known in addition to the curve of X-ray
generation as a function of depth, the w~rz! curve. For
multilayered specimens, approximate analytical equations
were developed. For more complicated geometries, only
Monte Carlo simulations can give accurate w~rz! curves.

To demonstrate this point, Figure 24 shows curves of
X-ray generation, w~z!, as a function of the depth, z, for
bulk Al, C, and Au and for an Al sphere of 1,000 nm diam-
eter embedded in C and in Au. The center of the Al sphere is
at a depth of 500 nm in both cases. These curves were simu-
lated for incident electron energy of 20 keV using the Monte
Carlo program MC X-Ray ~Michaud & Gauvin, 2009!. The
w~z! curves for the K-shells are shown for Al and C and for
the L3 shell for Au. w~z! curves are used here, instead of the
w~rz! curves, because the material inside and outside the
inclusion is different and does not have the same density,
making discontinuities for rz when an electron, or an X-ray,
leaves the inclusion and enters the matrix. The concept of

Figure 22. KB-Au
* as a function of the atomic fraction of boron,

XB, for a Au-B alloy using foils of 10 and 100 nm thicknesses with
incident electron energy of 100 and 400 keV, including the effect of
the Auger Au M4N67N67 electrons on X-ray generation. Taken
from Gauvin ~2007b!.

Figure 23. Radius of the volume of X-ray generation for the B Ka

line generated by the primary electrons, the Auger Au M4N67N67

electrons and both ~labeled as Total! as a function of beam energy,
E0, in a Au–1% ~at.! B alloy for a specimen of thickness 10 nm and
an incident probe diameter of 1 nm. Taken from Gauvin ~2007b!.

Figure 24. Curve of X-ray generation, w~z!, as a function of the
depth, z, for bulk Al, C, and Au and for an Al sphere of 1,000 nm
diameter embedded in C and in Au. The center of the Al sphere is
at a depth of 500 nm in both cases. These curves were simulated
for incident electron energy of 20 keV with the Monte Carlo
program MC X-Ray ~Michaud & Gauvin, 2009!. The w~z! curves
for the K shells are shown for Al and C and for the L3 shell for Au.
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w~rz! curves is therefore difficult to use for heterogeneous
materials, and the w~z! curves should be used instead. Clearly,
the w~z! curves of the embedded Al inclusion in C and in Au
are very different from those of the bulk materials. It took
almost 50 years for the scientific community to find a set of
analytical equations to describe the w~rz! ~or w~z!! curves
for bulk, homogeneous materials with an electron beam at
normal incidence to a flat surface. It is therefore obvious
that it would take much longer for the case of embedded
spherical inclusions in a homogeneous matrix with a flat
surface. The solution resides in using Monte Carlo simula-
tions to simulate w~z! for X-rays generated from real materi-
als. In fact, the Monte Carlo program MC X-Ray computes
the w~x, y, z! curves with and without X-ray absorption di-
rectly in the simulation, permitting the computation of emit-
ted X-ray intensities as a function of composition and
geometrical parameters ~like the diameter and the depth of
an embedded inclusion in a matrix of a given composition!.
Also, more than one inclusion can be simulated with many
different types of geometry ~such as cubes and cylinders!
and with different orientations.

It is often argued that Monte Carlo simulations are too
slow and an unrealistically pessimistic view still exists with
regard to this computational method. Computers are always
becoming faster and, as an example, 70 electrons per second
were simulated at 20 keV for the 1,000 nm Al inclusion in Au
using MC X-Ray with a computer that has two Xeon� E5645
processors ~Intel Corporation, Santa Clara, CA, USA! at
2.4 GHz. Perhaps these fast computers could be used to
develop a database, from Monte Carlo simulations, of emit-
ted X-rays for commonly used materials with a specific ge-
ometry, and subsequently an efficient and fast interpolation
algorithm ~between the already simulated X-ray intensities!
could be used for live-time quantitative X-ray microanalysis.
Therefore, the classical argument that Monte Carlo simula-
tions are too slow no longer holds true, and significant
progress to perform quantitative X-ray microanalysis will
occur when this is recognized in the microanalysis
community.

CONCLUSIONS

What remains to be done to allow quantitative X-ray micro-
analysis performed with EDS to become a true characteriza-
tion technique? This article reviewed some of the most
important tasks, in the opinion of its author. There is a
strong need to measure the fundamental parameters for
X-ray generation to develop accurate standardless quantita-
tive methods. Using the ratio of characteristic lines acquired
on the same X-ray spectrum, it was shown that the Cliff and
Lorimer KA-B factor can be used in a general correction
method that is appropriate for all types of specimens, as
long as appropriate corrections for X-ray absorption, fluo-
rescence, and indirect generation are included. Since the
fundamental parameters appear in the KA-B factor, only the
ratio of the ionization cross sections needs to be known, not
their absolute values. In this regard, the measurement of

ratios of KA-B factor ~or intensities at different beam ener-
gies of the same material with almost no beam spreading in
the material! will permit the validation of the best models
to compute the ratio of ionization cross sections because
this ratio gives the ratio of cross sections of two elements at
two different energies. It was also shown, using this method,
that the nonrelativistic Bethe equation to compute ratio of
ionization cross section is very close to that computed with
the equation of Casnati et al. ~1982! and also to the ratio of
cross sections computed with the equations proposed by
Bote and Salvat ~2008!. That method was extended to show
that it could be used to determine the value of the Coster-
Kronig transitions factors, an important fundamental param-
eter for the generation of L and M lines, which are known
with poor accuracy. The detector efficiency can be mea-
sured with specimens where the intensities had already been
measured with an EDS detector, the efficiency of which was
previously measured in an X-ray synchrotron ~Alvisi et al.,
2006!. It is obvious that such specimens will become avail-
able and a world “round robin” should be initiated to
generate a database of the fundamental parameters of X-ray
generation with improved accuracy, leading to true standard-
less quantitative X-ray microanalysis.

The spatial resolution should always be computed when
performing quantitative X-ray microanalysis and the equa-
tions for thin and bulk materials were presented. The effect
of X-rays generated by FSEs and by Auger electrons will
have to be measured experimentally because the Monte
Carlo simulation results presented in this article show that
their effect can be detrimental for the spatial resolution of
materials involving low energy X-ray lines and also that the
Cliff and Lorimer KA-B factor becomes composition depen-
dent. Also, schemes to perform quantitative X-ray microanal-
ysis of heterogeneous materials will need to use Monte
Carlo simulations to develop the correction models. Finally,
we should keep in mind that an EDS detector can be
installed on any electron microscope, and we must develop
quantitative methods in that respect. Figure 25 shows a

Figure 25. Backscattered electron image of multiwall carbon nano-
tubes covered with Pt particulates and with Fe rods inside the
nanotubes. This picture was taken with a Hitachi SU-8000 FE-
SEM. ~Magnification 300,000�.!
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backscattered electron image of multiwall carbon nano-
tubes covered with Pt particulates and with Fe rods inside
the nanotubes. This was taken with a Hitachi SU-8000 field
emission SEM. Pt particles as small as 1 nm are visible.
Figure 26 shows an EDS line scan performed at 30 keV on a
20 nm Pt particulate obtained with an SDD EDS X-Max
detector from Oxford installed on the same microscope.
The Pt Ma intensity clearly increases where the particulate
is located. Also, an increase in Fe Ka and O Ka is observed at
the particulate location. The combination of an SDD detec-
tor and a high brightness gun gives a large number of
generated and detected X-ray counts. The analytical capabil-
ities of the new generation of FE-SEM are truly impressive,
and the microanalytical community must work to develop a
quantitative X-ray microanalysis method that works with all
electron microscopes, especially the high-resolution ones,
instead of saying “If you want to do quantitative X-ray

microanalysis, buy the appropriate microscope,” which might
not always have the highest spatial resolution.
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APPENDIX A: COMPUTATION OF RA-B
E2-E1

WITH LINEAR CURVE FITTING PARAMETERS

Assuming that Mc 2/4 � ~~RA-B
E2-E1 a � b!/~RA-B

E2-E1 � 1!! as a
function of c is linear, equation ~31! has to be rewritten as

	c 2

4
�

~RA-B
E2-E1 a � b!

RA-B
E2-E1 � 1

� mc � ln~cnl ! ~A.1!

and solving for RA-B
E2-E1 gives

RA-B
E2-E1 �

c 2 ~m2 � 4
1�! � b � ln2~cnl ! � 2mc ln~cnl !

c 2 ~m2 � 4
1�! � a � ln2~cnl ! � 2mc ln~cnl !

.

~A.2!

Therefore, with any values of m and cnl obtained from
linear regression analysis of the plot of

Mc 2/4 � ~~RA-B
E2-E1 a � b!/~RA-B

E2-E1 � 1!! as a function of c,
values of RA-B

E2-E1 can be computed accurately with equation

~A.2! if a linear behavior is observed. Equation ~A.2! can be
used in equation ~35! to compute the KA-B factor at electron
beam energy E2 from an experimental one measured at a
beam energy E1. Putting m � 1/2 in equation ~A.2! yields

RA-B
E2-E1 �

b � ln2~cnl ! � c ln~cnl !

a � ln2~cnl ! � c ln~cnl !
, ~A.3!

which becomes equivalent to equation ~30! when equations
~32!–~34! are inserted and the Bethe theory is recovered.

APPENDIX B: DETER MINATION OF THE
COSTER-KRONIG TRANSITION FACTORS

In the case where a Ka line is used for element A and an La

line for element B, insertion of equation ~13! into equation
~28! gives

RA-B
E2-E1 �

QB
E2 QA

E1 ~1 � TCK, L3
!B

E2

QB
E1 QA

E2 ~1 � TCK, L3
!B

E1
. ~B.1!

The key point is that the ratio of the Coster-Kronig Transi-
tions Factor is constant above 20 to 30 times the ionization
energy of the L3 shell, Ec

L3 . By defining GCK as

GCK �
~1 � TCK, L3

!B
E2

~1 � TCK, L3
!B

E1
~B.2!

for E2 � 30Ec
L3 , it can be determined with a measured

~RA-B
E2-E1 !Mes factor at high E2 ~E2 � 30Ec

L3 ! and a choice of a
model to compute the ionization cross sections that is
known to give accurate RA-B

E2-E1 ratios. Insertion of equation
~B.2! into equation ~B.1! gives

GCK �
~RA-B

E2-E1 !Mes

QB
E2 QA

E1

QB
E1 QA

E2

. ~B.3!

The next step is to use ~RA-B
E2-E1 !Mes and GCK to calculate the

values of the ratio of the cross sections for E2 � 30Ec
L3 by

extrapolation. To do so, ~RA-B
E2-E1 !Mes, measured for E2 �

30Ec
L3 , must be fitted and equation ~A.1! must be modified

because there is some small deviation from linearity in the
plots that are visible in Figures 9b and 9c. These small
deviations in the interpolation range become more signifi-
cant when extrapolation is performed, especially for extrap-
olated values near E1. For that reason, equation ~A.1! is
generalized in this way:

	c 2

4
�

~~RA-B
E2-E1 !Mesa � b!

~RA-B
E2-E1 !Mes � 1

� f ~c! , ~B.4!

where f ~c! is any suitable function that fits the data
well. Solution of equation ~B.4! gives the fitted ~RA-B

E2-E1 !Fit

factor as

~RA-B
E2-E1 !Fit �

@ f ~c!# 2 �
c 2

4
� b

@ f ~c!# 2 �
c 2

4
� a

. ~B.5!
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The most natural choice to include the nonlinear effect is to
use a second-order polynomial and f ~c! is given by this
equation:

f ~c! � ln~cnl ! � mc � dc 2. ~B.6!

The next step is to use ~RA-B
E2-E1 !Fit at E2 � 30Ec

L3 to compute
the extrapolated ratio of the ionization cross sections as
follows:

�QB
E2 QA

E1

QB
E1 QA

E2
�Extr

�
1

GCK

@ f ~c!# 2 �
c 2

4
� b

@ f ~c!# 2 �
c 2

4
� a

, ~B.7!

where equation ~B.5! was inserted in equation ~B.3!. Then,
the ratio of the Coster-Kronig transition factors can be
determined for E2 � 30Ec

L3 as follows:

~1 � TCK, L3
!B

E2

~1 � TCK, L3
!B

E1
�

~RA-B
E2-E1 !Mes

�QB
E2 QA

E1

QB
E1 QA

E2
�Extr

~B.8!

with ~RA-B
E2-E1 !Mes measured for E2 � 30Ec

L3 . The slope, m, of
the ratio of the Coster-Kronig factors above E1 can be
computed as follows:

m �
~1 � TCK, L3

!B
E1�DE � ~1 � TCK, L3

!B
E1

~1 � TCK, L3
!B

E1 DE
~B.9!

and assuming that the slope from Ec
L3 to E1 is the same as

that from E1 to E1 � DE and by taking the difference in the
numerator of equation ~B.9! from E1 to Ec

L3 , we obtain

m �
~1 � TCK, L3

!B
E1 � ~1 � TCK, L3

!B
Ec

L3

~1 � TCK, L3
!B

E1 DE
. ~B.10!

Knowing that ~1 � TCK, L3
!B

Ec
L3

� 1, by definition, solution of
equation ~B.10! for ~1 � TCK, L3

!B
E1 gives

~1 � TCK, L3
!B

E1 �
1

1 � m~E1 � Ec
L3!

~B.11!

and the absolute values of the Coster-Kronig transition
factors can be determined with the ratios computed with
equation ~B.8!.

To test this new method, RA-B
E2-E1 was computed for the K

shell of carbon and the L3 shell of germanium using equa-
tion ~B.1! for electron energy E2 between 1.3 and 60 keV
and E1 equal to 1.3 keV. The Bote et al. ~2009! equations to
compute the ionization cross sections were used in equation
~B.1! and in equation ~11! to compute the Coster-Kronig
transition factors of the L3 shell of germanium. Also, the
same parameters used in Figure 4 were used to compute the
~1 � TCK, L3

! ratios with equation ~11! and inserted in
equation ~B.1!. These computed RC-Ge

E2-E1 ratios were fitted
with equations ~B.4! and ~B.6!, with E2 between 40 to
60 keV, as shown in Figure B.1. The values of the coefficients
obtained are the following: ln~cnl! � �0.00344, m � 0.49566,

and d � 4.28461e � 4 with R2 � 1. It is clear that the
deviation from linearity is not very significant in the inter-
polation region, but the second-order term is needed to use
equation ~B.5! at low values of E2 to compute accurate
ratios of ionization cross sections. This is shown in Fig-
ure B.2, which compares RC-Ge

E2-E1 computed with @equation
~B.7!# and without the Coster-Kronig transition factors @equa-
tion ~B.5!# . Clearly, the method presented here to compute
this ratio by extrapolation seems to works very well. Fig-
ure 11 shows the Coster-Kronig transition factors computed
with equations ~B.5! to ~B.11! with the exact values com-
puted with equation ~11!. The agreement is excellent. Also,
the agreement can certainly be improved by finding the
optimum condition of the fit @energy range E1 and E2, the
number of points and the choice of f ~c! in equation ~B.4!# .
Work in this regard is currently being performed.

Figure B.1. Mc 2/4 � ~~RA-B
E2-E1 a � b!/~RA-B

E2-E1 � 1!! as a function
of c, given by equation ~31!–~34!, with the RC-Ge

E2-E1 values computed
with the Bote-Salvat ionization cross sections @equations ~8!–~10!#
where E2 is between 40 and 60 keV and E1 �1.3 keV for the K shell
of C and the L3 shell of Ge. The full line was fitted with equations
~B.4! and ~B.6!.

Figure B.2. RC-Ge
E2-E1 computed exactly with and without the Coster-

Kronig transition factors, equations ~B.1! and ~29!, respectively, for
the K shell of C and the L3 shell of Ge. Also, the ratio of the
ionization cross sections computed with equation ~B.7! ~corre-
sponding to RC-Ge

E2-E1 extracted without C-K! is shown.
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