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ABSTRACT

We have parallelized the PENELOPE Monte Carlo particle transport simulation package [1]. The
motivation is to increase efficiency of Monte Carlo simulations for medical applications. Our
parallelization is based on the standard MPI message passing interface. The parallel code is especially
suitable for a distributed memory environment, and has been run on up to 256 processors on the Indiana
University IBM Teraflop SP. Parallel speedup is nearly linear. Fortran 90 features have been
incorporated in the parallelized PENELOPE code. The code utilizes the parallel random number
generator (p.r.n.g.) developed by the MILC lattice-QCD collaboration [2]. We have tested the
parallelized PENELOPE in an application of calibration dosimetry of the Leksell Gamma Knife R� [3].
The parallel results of the test correspond with the serial results, which in turn have been empirically
verified in [3]. The parallelized PENELOPE Fortran 90 code, along with a simple example main
program, will be available from the Radiation Safety Information Computational Center (RSICC) at
Oak Ridge National Laboratory [4] upon completion of benchmark testing.

Key Words: Monte Carlo simulation, MPI, parallel, PENELOPE, radiation transport

1. INTRODUCTION

The use of Monte Carlo (MC) methods for dose computation in radiation oncology applications has been
limited by inadequate performance, even with continuing advances in computer architecture and clock
speed. Clinical radiotherapy treatment planning systems should provide dose distributions with accuracy of
2–3% of the dose maximum, within an acceptable time limit (less than 5 minutes). Though most MC
programs are quite fast for simulating dose deposition in homogeneous media and simple geometries,
radiotherapy applications involve numerous variations of material and density over small distances. Patient
geometry is usually simulated by a map of densities over a large number of parallelepipeds (voxels). The
voxel size ranges from 0.5 to 5.0 mm, and the number of voxels may be 512 � 512 � 200, which is
partitioned into 200 512 � 512 slices obtained from CT scans. Currently, Monte Carlo simulation of the
absorbed dose for such large-scale problems requires high-performance computational resources, including
parallel programming and computers.
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The first parallelization of PENELOPE was implemented by J. Sempau et al. [5]. The code was run on
eight processors of an SGI Origin 2000, a shared-memory parallel machine located at the Centre de
Supercomputaci ó de Catalunya (CESCA). The parallelization was carried out with the aid of the MPI
distributed-memory message passing library, version 1.2, which is discussed below. The authors used the
same random number generator (r.n.g.) employed in the serial version of PENELOPE. This r.n.g. combines
two different pseudo-random sequences according to the scheme proposed by l’Ecuyer; see [1] for a
detailed description. It is a congruential type with period of order ����. The authors assume one may safely
use this approach provided different seeds are introduced in the various processors. The lack of correlation
is reasonably guaranteed by the fact that the simulation of each particle involves a random number of calls
to the r.n.g. The authors show that results obtained in these studies corroborate the validity of this
assumption.

The primary challenge of this work was to ensure the validity of the implementation of the parallel random
number generator (p.r.n.g.). Our choice of p.r.n.g. was dictated by this need for validation and is discussed
in Section 2.1. A typical PENELOPE run generates ��� showers with each averaging ��� calls to the
random number generator. Errors in the implementation could easily be hidden by the mass of data. The
validity was verified in two ways, first by examining the step-by-step evolution of the p.r.n.g. using a
parallel debugger, and second by comparing final results with those of the serial PENELOPE program and
with experimental results. Further tests of the statistical validity of the p.r.n.g. are forthcoming in a separate
article.

2. DETAILED STRUCTURE OF PARALLELIZED PENELOPE

The generation of the trajectory ensemble is an “embarrassingly” parallelizable computational task. Each
parallel processor may read the same geometry and material files specifying the target, and each may
generate its own set of particle trajectories. No inter-processor communication is necessary while the
trajectory ensemble is being developed. Each processor accumulates relevant raw data from its own
trajectory set. Once all processors have completed, a single processor collects the raw data from the others,
sums the data into grand totals, and computes ensemble averages and variances. This same processor
produces the output, and the program terminates on all processors.

The computational model employed in the parallelization of PENELOPE is the very convenient SPMD
(single program, multiple data) model. In this model the distribution of work among the parallel processors
is effected not by each performing a unique task or program. Rather, each processor performs a common
task, but on a unique input data set. Only one program exists. Each processor executes this same program.
However, each processor uses a unique sequence of random numbers, the unique input data set, from which
to build its own unique set of trajectories. The critical aspect in the parallelization of PENELOPE,
therefore, is the replacement of PENELOPE’s original serial random number generator RAND with a
proven parallel random number generator. This parallel random number generator must be capable of
producing a sequence of independent, uniformly distributed random numbers on each processor such that
the processors’ sequences are mutually uncorrelated.

The current standard API (application programming interface) for implementing a SPMD program is MPI,
the Message Passing Interface first released in June 1994 [6]. Our parallelization of PENELOPE is
accomplished with the IBM MPI version 3.2. MPI provides the parallel programmer a library of
convenient subroutines for managing interprocessor communication. MPI also assigns each processor a
unique identification number. This ID may serve as initialization for a parallel random number generator,
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resulting in a unique random number sequence for each processor.

2.1. Parallelization of the PENELOPE Subroutines

The key to parallelizing the PENELOPE Fortran 77 subroutines is the replacement of subroutine RAND, the
serial random number generator supplied with the PENELOPE package, with a proven parallel random
number generator (p.r.n.g.). We have chosen the highly successful p.r.n.g. developed and used by the
MILC lattice-QCD collaboration [2]. We considered employing a SPRNG p.r.n.g. [7] but opted instead for
the MILC p.r.n.g. in anticipation of our need to perform detailed verification of its implementation. The
advantage of the MILC p.r.n.g. is its ease of implementation and easy-to-understand open-source code.
Each processor needs only to instantiate a structure with its processor rank, then pass this structure as the
argument in calls to the p.r.n.g. It was easy to track the detailed evolution of these structures using a
parallel debugger, enabling us to verify the implementation of the MILC p.r.n.g. For instance, this
step-by-step tracking revealed the MILC p.r.n.g. has a nonzero probability of returning zero, which is
unacceptable to some of the Penelope subroutines, and we were able to easily discover and correct for the
problem. We have, on the other hand, no evidence that actual use of the MILC p.r.n.g. is better than some
other parallel generator. However, extensive testing of the MILC p.r.n.g. has shown its statistical
performance is as good as the original r.n.g. of the serial Penelope distribution. Details of these statistical
tests are forthcoming in a separate article.

The MILC p.r.n.g. employs a Marsaglia-like 127 bit feedback shift register. The advantages of a shift
register approach compared to a linear congruential or lagged Fibonacci approach are (i) the speed of
logical operations compared to arithmetical operations, and (ii) the pseudo-random characteristics of
bit-mixing compared to purely arithmetical operations [8]. The period of the 127 bit feedback shift register
is ���� � � � ���� ; if used serially a gigaflop machine would not repeat its random sequence until ����

years have elapsed. Going one step further, the combination of a shift register with another algorithmically
different generator is a very effective means of suppressing any residual correlations in the shift register
[8]. The MILC p.r.n.g. combines its 127 bit feedback shift register with a 32 bit integer congruence
generator. Parallelization is effected in the MILC p.r.n.g. by each processor using a different multiplier in
the congruence generator and a different initial state in the shift register, so that each processor’s random
sequence is uncorrelated with the others’ sequences. The input to this unique initialization is the individual
MPI processor ID mentioned above. The MILC p.r.n.g. has served the eight-member MILC collaboration
for more than a decade in thousands of Monte Carlo lattice-QCD computations, resulting in well over a
hundred publications verifying the theoretical predictions of QCD. Throughout this research programme no
deficiencies in the MILC p.r.n.g. have been detected.

However, it is known that a r.n.g. performing well in one application may when employed in another
application introduce artifacts into the latter’s simulation results. Therefore, according to Ferrenberg et al.
[9], “a specific algorithm must be tested together with the random number generator being used regardless
of the tests which the generator passed.” We are currently testing the MILC p.r.n.g. alone and together with
parallelized PENELOPE. The test system is based on the classical Sobol scheme [10]. With various seeds
the p.r.n.g. is tested alone and together with parallelized PENELOPE based on Pearson’s chi-squared
criteria. Tests include:

i) one-dimensional uniformity test (hypothesis H1)

ii) frequency and pair test (bivariate uniformity test H2)

iii) serial and poker test (H3)
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iv) gap test (H4).

Tests (i) and (ii) are classical r.n.g. tests. However, they are not sufficient. Tests (iii) and (iv) are performed
on sampled random number subsets used in actual PENELOPE simulations. The subset length for tests (ii)
and (iii) will be typical for generating one trajectory. Test (iv) applies to both a subset used for generating a
single trajectory, and to the entire set used in the complete simulation. At present the stand-alone tests of
the MILC p.r.n.g. are completed. The results are no worse than for l’Ecuyer’s generator used in the serial
version of PENELOPE. Complete test results will be presented later.

The MILC p.r.n.g. subroutine is named myrand. The C code for myrand may be obtained from the
MILC collaboration web site [2]. The use of the term “myrand” indicates that if I am one of the parallel
processors, my calls to function myrand return a random number sequence unique to me. We slightly
modified the MILC p.r.n.g. to eliminate the possibility of returning zero; several PENELOPE subroutines
fail for a random variable of zero.

In the SPMD parallelization model each processor calls the same function myrand but with a unique data
set passed as the argument. These unique parameters are contained inside a structure. A structure is a
user-defined type (derived type) that contains a set of elements that themselves may be of various types. It
is a programming device ideal for containing the parameters of the random sequence. Each processor is
programmed with such a structure, but the parameter values contained in each processor’s structure are
unique to that processor.

Fortran 77, the programming language in which the PENELOPE subroutines are written, does not support
derived types or structures. Fortran 77 recognizes only implicitly defined types (INTEGER, REAL, etc),
while its only container is the array in which all elements must be of the same implicit type. On the other
hand, Fortran 90 does support structures, and a Fortran 90 compiler will compile Fortran 77 code. By
compiling PENELOPE with the IBM AIX xlf90 Fortran 90 compiler, we are able to insert structures
containing the parameters of the random sequence into the PENELOPE subroutines. The myrand
function takes a single argument which is this structure. Throughout the PENELOPE subroutine code, calls
to RAND are replaced with calls to myrand with this structure as argument. The derived type of this
structure is termed PRNDATA. The definition of this type is housed in a Fortran 90 module named
PRNDATA TYPE, which may be placed in the file containing the main program:
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This module is shared among both the main program and all subroutines calling myrand by the initial line
in the main program or subroutine:

��� ����	
	 
���

which is followed by the declaration of the structure itself:
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��� �����	
	� ������ ����	
	

where MYNODE PRNDATA is the unique structure containing the parameters of the random sequence for
each processor. Recall that in the SPMD parallelization model used here, each processor executes the same
program. Each processor reads and executes the above lines of code. What distinguishes one processor
from another is the unique initialization of the parameter values in each processor’s MYNODE PRNDATA
structure. This initialization must take place in the user’s main program, discussed below.

Note that any PENELOPE subroutine calling myrand is modified to take an additional argument which is
the MYNODE PRNDATA structure. For instance, PENELOPE’s KNOCK subroutine is modified to:

������
��� ��������� ����� ������ ����	
	�

2.2. Parallelization of the User’s Main Program

The PENELOPE package consists only of subroutines. The user must write the main program which
repeatedly calls PENELOPE’s subroutines to generate an ensemble of trajectories, then computes statistical
averages. For parallelizing main programs the user need have only a rudimentary knowledge of parallel
programming and MPI.

In distributed parallel programming, each processor is assigned a unique identification number called
MYRANK. The first task of the parallelized main program is to initialize the MPI API and assign each
processor its unique ID:

�	�� ��� ���
��������

�	�� ��� ���� �	������ ���� ������ ���	��� �������

The second task is for each processor to obtain the total number of processors NPROCS working in parallel:

�	�� ��� ���� �������� ���� ������ ������� �������

Each processor’s MYNODE PRNDATA structure is initialized with MYRANK via a call to the MILC p.r.n.g.’s
initializing C-code function:

�	�� ������ �!" #$�������� ����	
	� �%	�������� �%	�����	����

Calls to the p.r.n.g. from within the main program are accomplished simply with
myrand(MYNODE PRNDATA), and as mentioned above, calls to PENELOPE subroutines that require
random number generation must include the MYNODE PRNDATA structure, such as
JUMP(DSMAX(MAT),DS,MYNODE PRNDATA).

The main program divides the workload among the parallel processors. The user is free to decide this
partitioning of trajectories. We have chosen an equal partitioning. If NTOT is the total number of primary
trajectories to be generated, and MYNTOT is the number for each processor, then the following code
performs an equal partitioning:

���
�
 � �
�
�������

�&����	����
���
�
� ���
�
 � �������� ���
�
 � ���
�
� �
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The shower simulation now loops over a counter N ranging from 1 to MYNTOT. The PENELOPE timer
must be replaced with a parallel wall-clock timer. The MPI wall-clock timer is convenient. At the
beginning of the shower simulation loop code:

�
	�

��� � ��� �
�����

and later at the end of the shower simulation code:

��	����
��� � ��� �
������ �
	�

���

A processor’s completion of its portion of trajectories is tested by:

�&����
����
�
 �	��� ��	����
�����
��
���� �� 
� ���

where ITIME is the maximum wall-clock time allowed for the simulation, and where line 101 increments
the shower counter N=N+1 and initiates the generation of another primary trajectory.

During the simulation each processor tracks its own trajectory data. For every datum of a serial main
program, the corresponding parallel main program requires two data. For instance, the parallel main
requires not only the usual declaration for the total number of secondary particles:

��������� ������ ��

but also a declaration for the number of secondary particles generated by each processor:

��������� �������� ��

At the conclusion of the shower simulations on all the parallel processors, the processor with MYRANK
equaling 0 collects and sums the processors’ values for MYSEC into the grand total SEC. This collection
and amalgamation is very easily programmed with one single MPI function call:

�	�� ��� ������������� ���� '� ��� ������ ���������� ��� ���� �� ��� ���� ������ �������

At this point all processors but processor 0 are done. Processor 0 computes the desired statistics and
variances, and produces the output. This is easily programmed by nesting all this activity inside the if
statement:

�&����	������� 
(��

Finally, all processors terminate with the conclusion of the main program:

�	�� ��� &��	������������

�
��

���

See Figure 1 for a simplified flow chart of parallelized PENELOPE. It is very important to recognize that
each parallel processor executes this same flow chart. See [6] for a detailed description of the above MPI
function calls. The parallelized PENELOPE Fortran 90 code, along with a simple example main program,
will be available from the Radiation Safety Information Computational Center (RSICC) at Oak Ridge
National Laboratory [4] upon completion of benchmark testing.
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Figure 1. Simplified Flow Chart for Parallelized PENELOPE

3. APPLICATION OF PARALLELIZED PENELOPE

Our motivation in parallelizing PENELOPE is to increase efficiency of Monte Carlo simulations and
reduce run-time for medical physics applications. We have applied our parallelized PENELOPE to the
simulation of photon beams from the Leksell Gamma KnifeR�, a precision method for treating intracranial
lesions. The Gamma Knife R� concentrates radiation from 201 ��Co sources partially arrayed about the
exterior of a spherical helmet. Each source includes a primary and final collimator system creating beam
diameters of approximately 4, 8, 14, and 18 mm at the common isocenter of the beams. Individual sources
may be plugged to create an optimal configuration. Modeling of the Gamma KnifeR� using the serial
version of PENELOPE is detailed in [3]. The parallelized main program used in testing parallelized
PENELOPE is based on this same model.
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Table I. Parallel Performance for Gamma KnifeR� Simulation with ��� Showers

Number of Wall-Clock Speedup Efficiency
Processors (� ) Time � (sec) (��/�� ) (%)

1 65109 — —

4 16378 3.98 99.5

8 8162 7.98 99.8

16 4078 15.97 99.8

32 2059 31.62 98.8

64 1028 63.34 99.0

128 518 125.69 98.2

256 271 240.25 93.8

The parallelized PENELOPE code has been compiled and tested on the Aries Complex of the Indiana
University IBM Teraflop SP System. The Aries Complex includes eight frames of 4-cpu Power3+ Thin
nodes, providing a homogeneous parallel processing environment with a total of 508 processors. The nodes
within the Aries Complex are interconnected via a low-latency high-speed (150 megabytes/second)
network using crossbar switch technology. Each node runs its own copy of IBM’s Unix operating system,
AIX 5.1.0. The parallelized PENELOPE code has been compiled and linked with the IBM XL Fortran 90
compiler, version 7.1.1. The C code module containing the MILC p.r.n.g. has been compiled with the IBM
C 6.0� compiler. Parallelization is managed by the IBM Parallel Environment 3.2, which includes the IBM
MPI libraries. For additional details of the Indiana University IBM Teraflop SP System, including both the
Aries and Orion Complexes, see [11].

The run-time test results for ��� primary particle trajectories are listed in Table I and plotted in Figure 2.
The parallel speedup �� resulting from � processors is defined by the formula:

�� 	�
serial run time ��

� -processor run time ��
(1)

where times are wall-clock time, not CPU time. The parallel efficiency �� is defined:

�� 	�
��
�

(2)

The speedup is nearly linear while the parallel efficiency approaches ���� as expected for embarrassingly
parallelizable Monte Carlo algorithms. Efficiency decreases a bit for the 256-processor run;
communication overhead, as a fraction of run time, starts taking its toll as the number of processors
increases while the number of showers per processor decreases.

The parallel code is validated by comparison of output averages to those of the serial code, which in turn is
empirically validated in [3]. Because the parallel code uses a different random number generator than the
serial code, its output averages are not numerically identical to those of the serial code, but are statistically
identical. The parallel code’s output averages fall well within the range of estimated statistical error,
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Figure 2. Speedup vs. Number of Processors for Gamma KnifeR� Simulation with ��� Showers

thereby validating the output of the parallel code. Figures 3 and 4 are isodose plots of a spherical
polystyrene phantom of radius 16 cm centered at (100,100,100) which corresponds to the isocenter of the
Gamma Knife. The plots compare outputs of the serial (dash-dot line) and parallel (solid line) versions of

Figure 3. Comparison of dose calculations for Gamma Knife in�� 	 plane
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Figure 4. Comparison of dose calculations for Gamma Knife in�� 
 plane

PENELOPE. The smooth dashed line represents GammaPlan R� output. Details of the computational
model are presented in [3]. The plots show perfect agreement between parallel and serial versions of
PENELOPE. Calculations for parallel and serial cases were done with ��� primary photon trajectories
corresponding to a statistical error of 3% in dose calculations at the isocenter. The collimator for an 18 mm
final beam size was used in the simulation.

4. CONCLUSIONS

Our Fortran 90 parallelization of PENELOPE for execution on distributed-memory machines running MPI
exhibits near perfect efficiency. The use of parallelized PENELOPE is completely justified from a
resource-utilization standpoint. The output is statistically close to the serial output, which in turn is
empirically validated in [3]. The code is presently running on the Aries Complex of the Indiana University
IBM Teraflop SP System. However, the Fortran 90 features and MPI function calls in the parallel code are
standard, and porting to other parallel Unix platforms should present no difficulties. The parallelized
PENELOPE Fortran 90 code, along with a simple example main program, will be available from the
Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory [4] upon
completion of benchmark testing.
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