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Abstract
The computer code system penelope (version 2003) performs Monte Carlo simulation
of coupled electron-photon transport in arbitrary materials for a wide energy range,
from a few hundred eV to about 1 GeV. Photon transport is simulated by means of
the standard, detailed simulation scheme. Electron and positron histories are generated
on the basis of a mixed procedure, which combines detailed simulation of hard events
with condensed simulation of soft interactions. A geometry package called pengeom

permits the generation of random electron-photon showers in material systems consisting
of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc.
This report is intended not only to serve as a manual of the penelope code system,
but also to provide the user with the necessary information to understand the details of
the Monte Carlo algorithm.
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Symbols and numerical values of constants frequently used in the text

(Mohr and Taylor, 2000).

Quantity Symbol Value

Avogadro’s number NA 6.022 141 99×1023 mol−1

Velocity of light in vacuum c 2.997 924 58×108 m s−1

Reduced Planck’s constant h̄ = h/(2π) 6.582 118 89×10−16 eV s

Electron charge e 1.602 176 462×10−19 C

Electron mass me 9.109 381 88×10−31 kg

Electron rest energy mec
2 510.998 902 keV

Classical electron radius re = e2/(mec
2) 2.817 940 285×10−15 m

Fine-structure constant α = e2/(h̄c) 1/137.035 999 76

Bohr radius a0 = h̄2/(mee
2) 0.529 177 208 3×10−10 m

Hartree energy Eh = e2/a0 27.211 383 4 eV

Revision date: 17 July, 2003
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Preface

Radiation transport in matter has been a subject of intense work since the beginning
of the 20th century. Today, we know that high-energy photons, electrons and positrons
penetrating matter suffer multiple interactions by which energy is transferred to the
atoms and molecules of the material and secondary particles are produced1. By re-
peated interaction with the medium, a high-energy particle originates a cascade of par-
ticles which is usually referred to as a shower. After each interaction of a particle, its
energy is reduced and further particles may be generated so that the evolution of the
shower represents an effective degradation in energy. As time goes on, the initial en-
ergy is progressively deposited into the medium, while that remaining is shared by an
increasingly larger number of particles.

A reliable description of shower evolution is required in a number of fields. Thus,
knowledge of radiation transport properties is needed for quantitative analysis in surface
electron spectroscopies (Jablonski, 1987; Tofterup, 1986), positron surface spectroscopy
(Schultz and Lynn, 1988), electron microscopy (Reimer, 1985), electron energy loss
spectroscopy (Reimer et al., 1992), electron probe microanalysis (Heinrich and Newbury,
1991), etc. Detailed information on shower evolution is also required for the design and
quantitative use of radiation detectors (Titus, 1970; Berger and Seltzer, 1972). A field
where radiation transport studies play an important sociological role is that of radiation
dosimetry and radiotherapy (Andreo, 1991).

The study of radiation transport problems was initially attempted on the basis of the
Boltzmann transport equation. However, this procedure comes up against considerable
difficulties when applied to limited geometries, with the result that numerical methods
based on the transport equation have only had a certain success in simple geometries,
mainly for unlimited and semi-infinite media (see, e.g., Zheng-Ming and Brahme, 1993).
At the end of the 1950s, with the availability of computers, Monte Carlo simulation
methods were developed as a powerful alternative to deal with transport problems.
Basically, the evolution of an electron-photon shower is of a random nature, so that this is
a process particularly amenable to Monte Carlo simulation. Detailed simulation, where
all the interactions experienced by a particle are simulated in chronological succession,
is exact, i.e. it yields the same results as the rigorous solution of the transport equation
(apart from the inherent statistical uncertainties).

To our knowledge, the first numerical Monte Carlo simulation of photon transport
is that of Hayward and Hubbell (1954) who generated 67 photon histories using a desk

1In this report, the term particle will be used to designate either photons, electrons or positrons.
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calculator. The simulation of photon transport is straightforward since the mean number
of events in each history is fairly small. Indeed, the photon is effectively absorbed after
a single photoelectric or pair-production interaction or after a few Compton interactions
(say, of the order of 10). With present-day computational facilities, detailed simulation
of photon transport is a simple routine task.

The simulation of electron and positron transport is much more difficult than that
of photons. The main reason is that the average energy loss of an electron in a single
interaction is very small (of the order of a few tens of eV). As a consequence, high-energy
electrons suffer a large number of interactions before being effectively absorbed in the
medium. In practice, detailed simulation is feasible only when the average number of
collisions per track is not too large (say, up to a few hundred). Experimental situations
which are amenable to detailed simulation are those involving either electron sources
with low initial kinetic energies (up to about 100 keV) or special geometries such as
electron beams impinging on thin foils. For larger initial energies, and thick geometries,
the average number of collisions experienced by an electron until it is effectively stopped
becomes very large, and detailed simulation is very inefficient.

For high-energy electrons and positrons, most of the Monte Carlo codes currently
available [e.g. etran (Berger and Seltzer, 1988), its3 (Halbleib et al., 1992), egs4

(Nelson et al., 1985), egsnrc (Kawrakow and Rogers, 2000), geant3 (Brun et al., 1986),
mcnp4b (Briesmeister, 1997) , . . . ] have recourse to multiple scattering theories which
allow the simulation of the global effect of a large number of events in a track segment
of a given length (step). Following Berger (1963), these simulation procedures will
be referred to as “condensed” Monte Carlo methods. The multiple scattering theories
implemented in condensed simulation algorithms are only approximate and may lead to
systematic errors, which can be made evident by the dependence of the simulation results
on the adopted step length (Bielajew and Rogers, 1987). To analyze their magnitude,
one can perform simulations of the same arrangement with different step lengths. The
results are usually found to stabilize when the step length is reduced, while computation
time increases rapidly, roughly in proportion to the inverse of the step length. Thus,
for each particular problem, one must reach a certain compromise between available
computer time and attainable accuracy. It is also worth noting that, owing to the
nature of certain multiple scattering theories and/or to the particular way they are
implemented in the simulation code, the use of very short step lengths may introduce
spurious effects in the simulation results. For instance, the multiple elastic scattering
theory of Molière (1948), which is the model used in egs4-based codes, is not applicable
to step lengths shorter than a few times the elastic mean free path (see e.g. Fernández-
Varea et al., 1993b) and multiple elastic scattering has to be switched off when the
step length becomes smaller than this value. As a consequence, stabilization for short
step lengths does not necessarily imply that simulation results are correct. Condensed
schemes also have difficulties in generating particle tracks in the vicinity of an interface,
i.e. a surface separating two media of different compositions. When the particle moves
near an interface, the step length must be kept smaller than the minimum distance
to the interface so as to make sure that the step is completely contained in the initial
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medium (Bielajew and Rogers, 1987). This may complicate the code considerably, even
for relatively simple geometries.

In the present report, we describe the version 2003 of penelope, a Monte Carlo
algorithm and computer code for the simulation of coupled electron-photon transport.
The name is an acronym that stands for PENetration and Energy LOss of Positrons and
Electrons (photon simulation was introduced later). The simulation algorithm is based
on a scattering model that combines numerical databases with analytical cross section
models for the different interaction mechanisms and is applicable to energies (kinetic
energies in the case of electrons and positrons) from a few hundred eV to ∼1 GeV.
Photon transport is simulated by means of the conventional detailed method. The sim-
ulation of electron and positron transport is performed by means of a mixed procedure.
Hard interactions, with scattering angle θ or energy loss W greater than pre-selected
cutoff values θc and Wc, are simulated in detail. Soft interactions, with scattering angle
or energy loss less than the corresponding cutoffs, are described by means of multiple
scattering approaches. This simulation scheme handles lateral displacements and inter-
face crossing appropriately and provides a consistent description of energy straggling.
The simulation is stable under variations of the cutoffs θc,Wc and these can be made
quite large, thus speeding up the calculation considerably, without altering the results.
A characteristic feature of our code is that the most delicate parts of the simulation
are handled internally; electrons, positrons and photons are simulated by calling the
same subroutines. Thus, from the user’s point of view, penelope makes the practical
simulation of electrons and positrons as simple as that of photons (although simulating
a charged particle may take a longer time).

The present version of penelope is the result of continued evolution from the first
version, which was released in 1996. The idea of developing a general-purpose Monte
Carlo code, with better modelling than those available at that time, arose during a short
course on radiation transport simulation given by F. Salvat at the Radiation Metrol-
ogy Unit, CIEMAT (Madrid), in 1988. The present version 2003 contains substantial
changes/improvements to the previous versions 1996, 2000 and 2001. As for the physics,
the model for electron/positron elastic scattering has been revised, bremsstrahlung emis-
sion is now simulated using partial-wave data instead of analytical approximate formu-
lae, photoelectric absorption in K and L shells is described from the corresponding
partial cross sections, and fluorescence radiation from vacancies in K and L shells is
now followed. Refinements have also been introduced in the electron/positron transport
mechanics, mostly to account for the energy dependence of the mean free paths for
hard events. Inner-shell ionization by electron and positron impact is described as an
independent mechanism by means of total cross sections obtained from an optical-data
model. The simulation routines have been re-programmed in a more structured (and
readable) way and new example MAIN programs have been written, with a more flexible
input and expanded output.

We have recently published a set of benchmark comparisons of simulation results with
experimental data (Sempau et al., 2003), which involves radiation transport in multiple
materials and for a wide energy range. Overall, the agreement between penelope
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results and experiment was found to be excellent. These calculations can be easily
reproduced by using the example main programs included in the distribution package.

This report is intended not only to serve as a manual of the simulation package, but
also to provide the user with the necessary information to understand the details of the
Monte Carlo algorithm. In chapter 1 we give a brief survey of random sampling methods
and an elementary introduction to Monte Carlo simulation of radiation transport. The
cross sections adopted in penelope to describe particle interactions, and the associated
sampling techniques, are presented in chapters 2 and 32. Chapter 4 is devoted to mixed
simulation methods for electron and positron transport. In chapter 5, a relatively simple,
but effective, method to handle simulation in quadric geometries is presented. The
fortran77 simulation package penelope and other complementary programs, are
described in chapter 6, which also provides instructions to operate them. Information
on relativistic kinematics and numerical methods is given in appendices A and B. Finally,
appendix C is devoted to simulation of electron/positron transport under external, static
electric and magnetic fields. The source files of penelope, the auxiliary programs and
the database are supplied on a zip-compressed file, which is distributed by the NEA
Data Bank3. The code is also available from the authors, but we would appreciate it if
users did try to get the code from this institution.

In the course of our Monte Carlo research, we have had the fortune of getting much
help from numerous friends and colleagues. Since the mid 1980’s, we have benefited from
discussions with D. Liljequist, which gave shape to our first algorithm for simulation of
electrons and positrons. We are particularly grateful to A. Riveros for his enthusiastic
and friendly support over the years, and for guiding us into the field of microanalysis
and x-ray simulation. A. Sánchez-Reyes and E. Garćıa-Toraño were the first external
users of the code system; they suffered the inconveniences of using continuously chang-
ing preliminary versions of the code without complaining too much. More recently,
stimulating collaboration with A.F. Bielajew has led to substantial improvements in
the electron transport mechanics and in the code organization. We are deeply indebted
to J.H. Hubbell and D.E. Cullen for kindly providing us with updated information on
photon interaction and atomic relaxation data. Thanks are also due to S.M. Seltzer
for sending us his bremsstrahlung energy-loss database. L. Sorbier generously prepared
most of the photoelectric and atomic relaxation database files and worked on the asso-
ciated sampling algorithms. We are especially indebted to P. Andreo for comments and
suggestions, which have been of much help to improve the present version of the code,
and for providing a preliminary version of the tutorial. Our most sincere appreciation to
the members of our research group; X. Llovet, M. Dingfelder, J. Asenjo and C. Campos.
They did much more than chasing bugs through the programs and in this write-up.
Finally, we would like to thank the staff of the NEA Data Bank, particularly E. Sartori,

2In these chapters, and in other parts of the text, the CGS Gaussian system of units is adopted.
3OECD Nuclear Energy Agency Data Bank. Le Seine Saint-Germain, 12 Boulevard des Iles. 92130

Issy-les-Moulineaux, France. e-mail: nea@nea.fr; http://www.nea.fr
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for kindly organizing the training courses on penelope. Last but not least, we are also
indebted to J. Baró and E. Acosta, who contributed to previous versions of the code
system and documentation.

Partial support from the Fondo de Investigación Sanitaria (Ministerio de Sanidad y
Consumo, Spain), project no. 01/0093, is gratefully acknowledged.

Barcelona, July 2003.
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Chapter 1

Monte Carlo simulation. Basic
concepts

The name “Monte Carlo” was coined in the 1940s by scientists working on the nuclear
weapon project in Los Alamos to designate a class of numerical methods based on the
use of random numbers. Nowadays, Monte Carlo methods are widely used to solve
complex physical and mathematical problems (James, 1980; Rubinstein, 1981; Kalos
and Whitlock, 1986), particularly those involving multiple independent variables where
more conventional numerical methods would demand formidable amounts of memory
and computer time. The book by Kalos and Whitlock (1986) gives a readable survey of
Monte Carlo techniques, including simple applications in radiation transport, statistical
physics, and many-body quantum theory.

In Monte Carlo simulation of radiation transport, the history (track) of a particle is
viewed as a random sequence of free flights that end with an interaction event where
the particle changes its direction of movement, loses energy and, occasionally, produces
secondary particles. The Monte Carlo simulation of a given experimental arrangement
(e.g. an electron beam, coming from an accelerator and impinging on a water phantom)
consists of the numerical generation of random histories. To simulate these histories we
need an “interaction model”, i.e. a set of differential cross sections (DCS) for the relevant
interaction mechanisms. The DCSs determine the probability distribution functions
(PDF) of the random variables that characterize a track; 1) free path between successive
interaction events, 2) kind of interaction taking place and 3) energy loss and angular
deflection in a particular event (and initial state of emitted secondary particles, if any).
Once these PDFs are known, random histories can be generated by using appropriate
sampling methods. If the number of generated histories is large enough, quantitative
information on the transport process may be obtained by simply averaging over the
simulated histories.

The Monte Carlo method yields the same information as the solution of the Boltz-
mann transport equation, with the same interaction model, but is easier to implement
(Berger, 1963). In particular, the simulation of radiation transport in finite samples is
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straightforward, while even the simplest finite geometries (e.g. thin foils) are very diffi-
cult to be dealt with by the transport equation. The main drawback of the Monte Carlo
method lies in its random nature: all the results are affected by statistical uncertainties,
which can be reduced at the expense of increasing the sampled population and, hence,
the computation time. Under special circumstances, the statistical uncertainties may be
lowered by using variance-reduction techniques (Rubinstein, 1981; Bielajew and Rogers,
1988).

1.1 Elements of probability theory

The essential characteristic of Monte Carlo simulation is the use of random numbers
and random variables. A random variable is a quantity that results from a repeatable
process and whose actual values (realizations) cannot be predicted with certainty. In
the real world, randomness originates either from uncontrolled factors (as occurs e.g.
in games of chance) or from the quantum nature of microscopic systems and processes
(e.g. nuclear disintegration and radiation interactions). As a familiar example, assume
that we throw two dice in a box; the sum of points in their upper faces is a discrete
random variable, which can take the values 2 to 12, while the distance x between the
dice is a continuous random variable, which varies between zero (dice in contact) and
a maximum value determined by the dimensions of the box. In the computer, random
variables are generated by means of numerical transformations of random numbers (see
below).

Let x be a continuous random variable that takes values in the interval xmin ≤ x ≤
xmax. To measure the likelihood of obtaining x in an interval (a,b) we use the probability
P{x|a < x < b}, defined as the ratio n/N of the number n of values of x that fall within
that interval and the total number N of generated x-values, in the limit N → ∞. The
probability of obtaining x in a differential interval of length dx about x1 can be expressed
as

P{x|x1 < x < x1 + dx} = p(x1) dx, (1.1)

where p(x) is the PDF of x. Since 1) negative probabilities have no meaning and 2)
the obtained value of x must be somewhere in (xmin,xmax), the PDF must be definite
positive and normalized to unity, i.e.

p(x) ≥ 0 and
∫ xmax

xmin

p(x) dx = 1. (1.2)

Any “function” that satisfies these two conditions can be interpreted as a PDF. In Monte
Carlo simulation we shall frequently use the uniform distribution,

Uxmin,xmax
(x) ≡





1/(xmax − xmin) if xmin < x < xmax,

0 otherwise,
(1.3)
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which is discontinuous. The definition (1.2) also includes singular distributions such as
the Dirac delta, δ(x− x0), which is defined by the property

∫ b

a
f(x)δ(x− x0) dx =




f(x0) if a < x0 < b,

0 if x0 < a or x0 > b
(1.4)

for any function f(x) that is continuous at x0. An equivalent, more intuitive definition
is the following,

δ(x− x0) ≡ lim
∆→0

Ux0−∆,x0+∆(x), (1.4′)

which represents the delta distribution as the zero-width limit of a sequence of uniform
distributions centred at the point x0. Hence, the Dirac distribution describes a single-
valued discrete random variable (i.e. a constant). The PDF of a random variable x
that takes the discrete values x = x1, x2, . . . with point probabilities p1, p2, . . . can be
expressed as a mixture of delta distributions,

p(x) =
∑

i

pi δ(x− xi). (1.5)

Discrete distributions can thus be regarded as particular forms of continuous distribu-
tions.

Given a continuous random variable x, the cumulative distribution function of x is
defined by

P(x) ≡
∫ x

xmin

p(x′) dx′. (1.6)

This is a non-decreasing function of x that varies from P(xmin) = 0 to P(xmax) = 1. In
the case of a discrete PDF of the form (1.5), P(x) is a step function. Notice that the
probability P{x|a < x < b} of having x in the interval (a,b) is

P{x| a < x < b } =
∫ b

a
p(x) dx = P(b)−P(a), (1.7)

and that p(x) = dP(x)/dx.

The n-th moment of p(x) is defined as

〈xn〉 =
∫ xmax

xmin

xn p(x) dx. (1.8)

The moment 〈x0〉 is simply the integral of p(x), which is equal to unity, by definition.
However, higher order moments may or may not exist. An example of a PDF that has
no even-order moments is the Lorentz or Cauchy distribution,

pL(x) ≡ 1

π

γ

γ2 + x2
, −∞ < x <∞. (1.9)

Its first moment, and other odd-order moments, can be assigned a finite value if they
are defined as the “principal value” of the integrals, e.g.

〈x〉L = lim
a→∞

∫ +a

−a
x

1

π

γ

γ2 + x2
dx = 0, (1.10)
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but the second and higher even-order moments are infinite, irrespective of the way they
are defined.

The first moment, when it exists, is called the mean or expected value of the random
variable x,

〈x〉 =
∫
x p(x) dx. (1.11)

The expected value of a function f(x) is defined in a similar way,

〈f(x)〉 ≡
∫
f(x) p(x) dx. (1.12)

Since f(x) is a random variable, it has its own PDF, π(f), which is such that the
probability of having f in a certain interval of length df is equal to the probability of
having x in the corresponding interval or intervals1. Thus, if f(x) is a monotonously
increasing function of x (so that there is a one-to-one correspondence between the values
of x and f), p(x) dx = π(f) df and

π(f) = p(x) (df/dx)−1 . (1.13)

It can be shown that the definitions (1.11) and (1.12) are equivalent. If f(x) increases
monotonously with x, the proof is trivial: we can start from the definition (1.11) and
write

〈f〉 =
∫
f π(f) df =

∫
f(x) p(x) (dx/df) df =

∫
f(x) p(x) dx,

which agrees with (1.12). Notice that the expectation value is linear, i.e.

〈a1f1(x) + a2f2(x)〉 = a1〈f1(x)〉+ a2〈f2(x)〉, (1.14)

where a1 and a2 are arbitrary real constants.

If the first and second moments of the PDF p(x) exist, we define the variance of x
[or of p(x)] by

var(x) ≡ 〈(x− 〈x〉)2〉 =
∫

(x− 〈x〉)2
p(x) dx = 〈x2〉 − 〈x〉2. (1.15)

The square root of the variance, σ ≡ [var(x)]1/2, is called the “standard deviation”
(and sometimes the “standard uncertainty”); it gives a measure of the dispersion of the
random variable (i.e. of the width of the PDF). The Dirac delta is the only PDF that
has zero variance. Similarly, the variance of a function f(x) is defined as

var{f(x)} = 〈f2(x)〉 − 〈f(x)〉2. (1.16)

Thus, for a constant f(x) = a, 〈f〉 = a and var{f} = 0.

1When f(x) does not increase or decrease monotonously with x, there may be multiple values of x
corresponding to a given value of f .
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1.1.1 Two-dimensional random variables

Let us now consider the case of a two-dimensional random variable, (x, y). The corre-
sponding (joint) PDF p(x, y) satisfies the conditions

p(x, y) ≥ 0 and
∫

dx
∫

dy p(x, y) = 1. (1.17)

The marginal PDFs of x and y are defined as

q(x) ≡
∫
p(x, y) dy and q(y) ≡

∫
p(x, y) dx, (1.18)

i.e. q(x) is the probability of obtaining the value x and any value of y. The joint PDF
can be expressed as

p(x, y) = q(x) p(y|x) = q(y) p(x|y), (1.19)

where

p(x|y) =
p(x, y)

q(y)
and p(y|x) =

p(x, y)

q(x)
(1.20)

are the conditional PDFs of x and y, respectively. Notice that p(x|y) is the normalized
PDF of x for a fixed value of y.

The expectation value of a function f(x, y) is

〈f(x, y)〉 =
∫

dx
∫

dy f(x, y) p(x, y). (1.21)

The moments of the PDF are defined by

〈xnym〉 =
∫

dx
∫

dy xnym p(x, y). (1.22)

In particular,

〈xn〉 =
∫

dx
∫

dy xn p(x, y) =
∫
xnq(x) dx. (1.23)

Again, the only moment that is necessarily defined is 〈x0y0〉 = 1. When the correspond-
ing moments exist, the variances of x and y are given by

var(x) = 〈x2〉 − 〈x〉2 and var(y) = 〈y2〉 − 〈y〉2. (1.24)

The variance of x+ y is

var(x+ y) = 〈(x+ y)2〉 − 〈x+ y〉2 = var(x) + var(y) + 2 cov(x, y), (1.25)

where
cov(x, y) = 〈xy〉 − 〈x〉 〈y〉 (1.26)

is the covariance of x and y, which can be positive or negative. A related quantity is
the correlation coefficient,

ρ(x, y) =
cov(x, y)

√
var(x) var(y)

, (1.27)
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which takes values from −1 to 1. Notice that cov(x, x) = var(x). When the variables x
and y are independent, i.e. when p(x, y) = px(x) py(y), we have

cov(x, y) = 0 and var(x+ y) = var(x) + var(y). (1.28)

Moreover, for independent variables,

var{a1x+ a2y} = a2
1 var(x) + a2

2 var(y). (1.29)

1.2 Random sampling methods

The first component of a Monte Carlo calculation is the numerical sampling of random
variables with specified PDFs. In this section we describe different techniques to generate
random values of a variable x distributed in the interval (xmin, xmax) according to a
given PDF p(x). We concentrate on the simple case of single-variable distributions,
since random sampling from multivariate distributions can always be reduced to single-
variable sampling (see below). A more detailed description of sampling methods can be
found in the textbooks of Rubinstein (1981) and Kalos and Whitlock (1986).

1.2.1 Random number generator

In general, random sampling algorithms are based on the use of random numbers ξ uni-
formly distributed in the interval (0,1). These random numbers can be easily generated
on the computer (see e.g. Kalos and Whitlock, 1986; James, 1990). Among the “good”
random number generators currently available, the simplest ones are the so-called mul-
tiplicative congruential generators (Press and Teukolsky, 1992). A popular example of
this kind of generator is the following,

Rn = 75Rn−1 (mod 231 − 1), ξn = Rn/(2
31 − 1), (1.30)

which produces a sequence of random numbers ξn uniformly distributed in (0,1) from a
given “seed” R0 (< 231−1). Actually, the generated sequence is not truly random, since
it is obtained from a deterministic algorithm (the term “pseudo-random” would be more
appropriate), but it is very unlikely that the subtle correlations between the values in
the sequence have an appreciable effect on the simulation results. The generator (1.30)
is known to have good random properties (Press and Teukolsky, 1992). However, the
sequence is periodic, with a period of the order of 109. With present-day computational
facilities, this value is not large enough to prevent re-initiation in a single simulation
run. An excellent critical review of random number generators has been published by
James (1990), where he recommends using algorithms that are more sophisticated than
simple congruential ones. The generator implemented in the fortran77 function RAND

(table 1.1) is due to L’Ecuyer (1988); it produces 32-bit floating point numbers uniformly
distributed in the open interval between zero and one. Its period is of the order of 1018,
which is virtually infinite for practical simulations.
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Table 1.1: Fortran77 random number generator.

C *********************************************************************
C FUNCTION RAND
C *********************************************************************

FUNCTION RAND(DUMMY)
C
C This is an adapted version of subroutine RANECU written by F. James
C (Comput. Phys. Commun. 60 (1990) 329-344), which has been modified to
C give a single random number at each call.
C
C The ’seeds’ ISEED1 and ISEED2 must be initialized in the main program
C and transferred through the named common block /RSEED/.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)
PARAMETER (USCALE=1.0D0/2.0D0**31)
COMMON/RSEED/ISEED1,ISEED2

C
I1=ISEED1/53668
ISEED1=40014*(ISEED1-I1*53668)-I1*12211
IF(ISEED1.LT.0) ISEED1=ISEED1+2147483563

C
I2=ISEED2/52774
ISEED2=40692*(ISEED2-I2*52774)-I2*3791
IF(ISEED2.LT.0) ISEED2=ISEED2+2147483399

C
IZ=ISEED1-ISEED2
IF(IZ.LT.1) IZ=IZ+2147483562
RAND=IZ*USCALE

C
RETURN
END

1.2.2 Inverse transform method

The cumulative distribution function of p(x), eq. (1.6), is a non-decreasing function of x
and, therefore, it has an inverse function P−1(ξ). The transformation ξ = P(x) defines
a new random variable that takes values in the interval (0,1), see fig. 1.1. Owing to the
correspondence between x and ξ values, the PDF of ξ, pξ(ξ), and that of x, p(x), are
related by pξ(ξ) dξ = p(x) dx. Hence,

pξ(ξ) = p(x)

(
dξ

dx

)−1

= p(x)

(
dP(x)

dx

)−1

= 1, (1.31)

that is, ξ is distributed uniformly in the interval (0,1).

Now it is clear that if ξ is a random number, the variable x defined by x = P−1(ξ)
is randomly distributed in the interval (xmin, xmax) with PDF p(x) (see fig. 1.1). This
provides a practical method of generating random values of x using a generator of
random numbers uniformly distributed in (0,1). The randomness of x is guaranteed by
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that of ξ. Notice that x is the (unique) root of the equation

ξ =
∫ x

xmin

p(x′) dx′, (1.32)

which will be referred to as the sampling equation of the variable x. This procedure for
random sampling is known as the inverse transform method; it is particularly adequate
for PDFs p(x) given by simple analytical expressions such that the sampling equation
(1.32) can be solved analytically.

0.0

0.2

0.4

0.6

0.8

1.0

p (x)

P (x)

�

�

ξ

x

Figure 1.1: Random sampling from a distribution p(x) using the inverse transform method.

Consider, for instance, the uniform distribution in the interval (a, b),

p(x) ≡ Ua,b(x) =
1

b− a.

The sampling equation (1.32) then reads

ξ =
x− a
b− a , (1.33)

which leads to the well-known sampling formula

x = a+ ξ(b− a). (1.34)

As another familiar example, consider the exponential distribution

p(s) =
1

λ
exp(−s/λ), s > 0, (1.35)

of the free path s of a particle between interaction events (see section 1.4.1). The
parameter λ represents the mean free path. In this case, the sampling equation (1.32)
is easily solved to give the sampling formula

s = −λ ln(1− ξ) = −λ ln ξ. (1.36)

The last equality follows from the fact that 1 − ξ is also a random number distributed
in (0,1).
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Numerical inverse transform

The inverse transform method can also be efficiently used for random sampling from
continuous distributions p(x) that are given in numerical form, or that are too compli-
cated to be sampled analytically. To apply this method, the cumulative distribution
function P(x) has to be evaluated at the points xi of a certain grid. The sampling
equation P(x) = ξ can then be solved by inverse interpolation, i.e. by interpolating in
the table (ξi,xi), where ξi ≡ P(xi) (ξ is regarded as the independent variable). Care
must be exercised to make sure that the numerical integration and interpolation do not
introduce significant errors.

x

p (x)

(a)

x

p (x)

(b)

Figure 1.2: Random sampling from a continuous distribution p(x) using the numerical inverse

transform method with N = 20 intervals. a) Piecewise constant approximation. b) Piecewise

linear approximation.

A simple, general, approximate method for numerical sampling from continuous
distributions is the following. The values xn (n = 0, 1, . . . , N) of x for which the
cumulative distribution function has the values n/N ,

P(xn) =
∫ xn

xmin

p(x) dx =
n

N
, (1.37)

are previously computed and stored in memory. Notice that the exact probability of
having x in the interval (xn, xn+1) is 1/N . We can now sample x by linear interpolation:
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we generate a random number ξ and consider the quantity y ≡ ξN , which takes values
in the interval (0, N). We set n = [y], where the symbol [y] denotes the integer part of
y (i.e. the largest integer that is less than y). The value of x is obtained as

x = xn + (xn+1 − xn)u, u ≡ y − n ∈ (0, 1). (1.38)

This is equivalent to approximating the PDF by a piecewise constant function (see fig.
1.2a). Since the spacing between the points xn (at which the cumulative distribution
function is specified) is roughly proportional to 1/p(xn), the approximation is more
accurate in regions where p(x) is large.

The algorithm can be improved by storing the values p(xn) of the PDF at the points
xn in memory and approximating the PDF in the interval (xn, xn+1) linearly,

pla(x) ' Cn

[
p(xn) +

p(xn+1)− p(xn)

xn+1 − xn
(x− xn)

]
, (1.39)

with a normalization constant Cn such that the integral of pla(x) over the interval (xn,
xn+1) equals 1/N . In general, this piecewise linear approximation is not continuous. Of
course, pla(x) will differ from the exact PDF p(x) when the latter is not linear in the
interval, but the differences are smaller than for the piecewise constant approximation
with the same number N of grid points (see fig. 1.2). Again, the approximation is better
where p(x) is larger. An exact algorithm for random sampling from the piecewise linear
approximation (1.39) is the following,

(i) Generate a random number ξ and set y = ξN , n = [y] and u = y − n.
(ii) If p(xn) 6= 0, set r = p(xn+1)/p(xn) and

t =






(1− u+ r2u)1/2 − 1

r − 1
if r 6= 1,

u if r = 1.
(1.40)

(iii) If p(xn) = 0, set t = u1/2.
(iv) Deliver x = xn + (xn+1 − xn)t.

1.2.3 Discrete distributions

The inverse transform method can also be applied to discrete distributions. Consider
that the random variable x can take the discrete values x = 1, . . . , N with point proba-
bilities p1, . . . , pN , respectively. The corresponding PDF can be expressed as

p(x) =
N∑

i=1

piδ(x− i), (1.41)

where δ(x) is the Dirac distribution. Here p(x) is assumed to be defined in an interval
(a, b) with a < 1 and b > N . The corresponding cumulative distribution function is

P(x) =
[x]∑

i=1

pi, (1.42)
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where [x] stands for the integer part of x. Notice that P(x) = 0 when x < 1. Then, eq.
(1.32) leads to the sampling formula

x = 1 if ξ ≤ p1

= 2 if p1 < ξ ≤ p1 + p2

...

= j if
∑j−1

i=1 pi < ξ ≤∑j
i=1 pi

...

(1.43)

We can define the quantities

P1 = 0, P2 = p1, P3 = p1 + p2, . . . , PN+1 =
N∑

i=1

pi = 1. (1.44)

To sample x we generate a random number ξ and set x equal to the index i such that

Pi < ξ ≤ Pi+1. (1.45)

If the number N of x-values is large, this sampling algorithm may be quite slow
because of the large number of comparisons needed to determine the sampled value.
The easiest method to reduce the number of comparisons is to use binary search instead
of sequential search. The algorithm for binary search, for a given value of ξ, proceeds
as follows:

(i) Set i = 1 and j = N + 1.
(ii) Set k = [(i+ j)/2].
(iii) If Pk < ξ, set i = k; otherwise set j = k.
(iv) If j − i > 1, go to step (ii).
(v) Deliver i.

When 2n < N ≤ 2n+1, i is obtained after n+1 comparisons. This number of comparisons
is evidently much less than the number required when using purely sequential search.

Walker’s aliasing method

Walker (1977) described an optimal sampling method for discrete distributions, which
yields the sampled value with only one comparison. The idea underlying Walker’s
method can be easily understood by resorting to graphical arguments (Salvat, 1987).
For this purpose, let us represent the PDF (1.41) as a histogram constructed with N
bars of width 1/N and heights Npi (see fig. 1.3). Now, the histogram bars can be cut
off at convenient heights and the resulting pieces can be arranged to fill up the square of
unit side in such a way that each vertical line crosses, at most, two different pieces. This
arrangement can be performed systematically by selecting the lowest and the highest
bars in the histogram, say the `th and the jth, respectively, and by cutting the highest
bar off to complete the lowest one, which subsequently is kept unaltered. In order to
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keep track of the performed transformation, we label the added piece with the “alias”
value K` = j, giving its original position in the histogram, and introduce the “cutoff”
value F` defined as the height of the lower piece in the `th bar of the resulting square.
This lower piece keeps the label `. Evidently, iteration of this process eventually leads
to the complete square (after N − 1 steps). Notice that the point probabilities pi can
be reconstructed from the alias and cutoff values. We have

Npi = Fi +
∑

j 6=i

(1 − Fj)δ(i,Kj), (1.46)

where δ(i, j) denotes the Kronecker delta (= 1 if i = j and = 0 otherwise). Walker’s
method for random sampling of x proceeds as follows: We sample two independent
random numbers, say ξ1 and ξ2, and define the random point (ξ1,ξ2), which is uniformly
distributed in the square. If (ξ1,ξ2) lies over a piece labelled with the index i, we take
x = i as the selected value. Obviously, the probability of obtaining i as a result of the
sampling equals the fractional area of the pieces labelled with i, which coincides with
pi.

1 2 3 4

1 1 1 1

1

2 2 2 2

2

3 3 3
3

3
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Figure 1.3: Graphical representation of the inverse transform method (top) and Walker’s

aliasing method (bottom) for random sampling from a discrete distribution. In this example,

the random variable can take the values i = 1, 2, 3 and 4 with relative probabilities 1, 2, 5

and 8, respectively.

As formulated above, Walker’s algorithm requires the generation of two random
numbers for each sampled value of x. With the aid of the following trick, the x-value
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can be generated from a single random number. Continuing with our graphical picture,
assume that the N bars in the square are aligned consecutively to form a segment of
length N (bottom of fig. 1.3). To sample x, we can generate a single random value
ξN , which is uniformly distributed in (0,N) and determines one of the segment pieces.
The result of the sampling is the label of the selected piece. Explicitly, the sampling
algorithm proceeds as follows:

(i) Generate a random number ξ and set R = ξN + 1.
(ii) Set i = [R] and r = R − i.
(iii) If r > Fi, deliver x = Ki.
(iv) Deliver x = i.

We see that the sampling of x involves only the generation of a random number and
one comparison (irrespective of the number N of possible outcomes). The price we
pay for this simplification reduces to doubling the number of memory locations that
are needed: the two arrays Ki and Fi are used instead of the single array pi (or Pi).
Unfortunately, the calculation of alias and cutoff values is fairly involved and this limits
the applicability of Walker’s algorithm to distributions that remain constant during the
course of the simulation.

1.2.4 Rejection methods

The inverse transform method for random sampling is based on a one-to-one correspon-
dence between x and ξ values, which is expressed in terms of a single-valued function.
There is another kind of sampling method, due to von Neumann, that consists of sam-
pling a random variable from a certain distribution [different from p(x)] and subjecting
it to a random test to determine whether it will be accepted for use or rejected. These
rejection methods lead to very general techniques for sampling from any PDF.

The rejection algorithms can be understood in terms of simple graphical arguments
(fig. 1.4). Consider that, by means of the inverse transform method or any other available
sampling method, random values of x are generated from a PDF π(x). For each sampled
value of x we sample a random value y uniformly distributed in the interval (0, Cπ(x)),
where C is a positive constant. Evidently, the points (x, y), generated in this way, are
uniformly distributed in the region A of the plane limited by the x-axis (y = 0) and
the curve y = Cπ(x). Conversely, if (by some means) we generate random points (x, y)
uniformly distributed in A, their x-coordinate is a random variable distributed according
to π(x) (irrespective of the value of C). Now, consider that the distribution π(x) is such
that Cπ(x) ≥ p(x) for some C > 0 and that we generate random points (x, y) uniformly
distributed in the region A as described above. If we reject the points with y > p(x),
the accepted ones (with y ≤ p(x)) are uniformly distributed in the region between the
x-axis and the curve y = p(x) and hence, their x-coordinate is distributed according to
p(x).

A rejection method is thus completely specified by representing the PDF p(x) as

p(x) = Cπ(x)r(x), (1.47)
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x
0

1

p (x)

Cπ (x)

A

r (x)

Figure 1.4: Random sampling from a distribution p(x) using a rejection method.

where π(x) is a PDF that can be easily sampled e.g. by the inverse transform method,
C is a positive constant and the function r(x) satisfies the conditions 0 < r(x) ≤ 1. The
rejection algorithm for sampling from p(x) proceeds as follows:

(i) Generate a random value x from π(x).
(ii) Generate a random number ξ.
(iii) If ξ > r(x), go to step (i).
(iv) Deliver x.

From the geometrical arguments given above, it is clear that the algorithm does
yield x values distributed according to p(x). The following is a more formal proof:
Step (i) produces x-values in the interval (x, x + dx) with probability π(x) dx, these
values are accepted with probability r(x) = p(x)/[Cπ(x)] and, therefore, (apart from
a normalization constant) the probability of delivering a value in (x, x + dx) is equal
to p(x) dx as required. It is important to realize that, as regards Monte Carlo, the
normalization of the simulated PDF is guaranteed by the mere fact that the algorithm
delivers some value of x.

The efficiency of the algorithm, i.e. the probability of accepting a generated x-value,
is

ε =
∫ b

a
r(x)π(x) dx =

1

C
. (1.48)

Graphically, the efficiency equals the ratio of the areas under the curves y = p(x) and
y = Cπ(x), which are 1 and C, respectively. For a given π(x), since r(x) ≤ 1, the
constant C must satisfy the condition Cπ(x) ≥ p(x) for all x. The minimum value of
C, with the requirement that Cπ(x) = p(x) for some x, gives the optimum efficiency.

The PDF π(x) in eq. (1.47) should be selected in such a way that the resulting
sampling algorithm is as fast as possible. In particular, random sampling from π(x)
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must be performed rapidly, by the inverse transform method or by the composition
method (see below). High efficiency is also desirable, but not decisive. One hundred
percent efficiency is obtained only with π(x) = p(x) (but random sampling from this
PDF is just the problem we want to solve); any other PDF gives a lower efficiency.
The usefulness of the rejection method lies in the fact that a certain loss of efficiency
can be largely compensated with the ease of sampling x from π(x) instead of p(x). A
disadvantage of this method is that it requires the generation of several random numbers
ξ to sample each x-value.

1.2.5 Two-dimensional variables. Composition methods

Let us consider a two-dimensional random variable (x, y) with joint probability distri-
bution p(x, y). Introducing the marginal PDF q(y) and the conditional PDF p(x|y) [see
eqs. (1.18) and (1.20)],

q(y) ≡
∫
p(x, y) dx, p(x|y) =

p(x, y)

q(y)
,

the two-variate distribution can be expressed as

p(x, y) = q(y) p(x|y). (1.49)

It is now evident that to generate random points (x, y) from p(x, y) we can first sample
y from q(y) and then x from p(x|y). Hence, two-dimensional random variables can be
generated by using single-variable sampling methods. This is also true for multivariate
distributions, because an n-dimensional PDF can always be expressed as the product of
a single-variable marginal distribution and an (n− 1)-dimensional conditional PDF.

From the definition of the marginal PDF of x,

q(x) ≡
∫
p(x, y) dy =

∫
q(y) p(x|y) dy, (1.50)

it is clear that if we sample y from q(y) and, then, x from p(x|y), the generated values of
x are distributed according to q(x). This idea is the basis of the composition methods,
which are applicable when p(x), the distribution to be simulated, is a probability mixture
of several PDFs. More specifically, we consider that p(x) can be expressed as

p(x) =
∫
w(y) py(x) dy, (1.51)

where w(y) is a continuous distribution and py(x) is a family of one-parameter PDFs,
where y is the parameter identifying a unique distribution. Notice that if the parameter
y takes only integer values y = i with point probabilities wi, we would write

p(x) =
∑

i

wi pi(x). (1.52)
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The composition method for random sampling from the PDF p(x) is as follows. First,
a value of y (or i) is drawn from the PDF w(y) and then x is sampled from the PDF
py(x) for that chosen y.

This technique may be applied to generate random values from complex distributions
obtained by combining simpler distributions that are themselves easily generated, by the
inverse transform method or by rejection methods.

Devising fast, exact methods for random sampling from a given PDF is an interesting
technical challenge. The ultimate criterion for the quality of a sampling algorithm is its
speed in actual simulations: the best algorithm is the fastest. However, programming
simplicity and elegance may justify the use of slower algorithms. For simple analytical
distributions that have an analytical inverse cumulative distribution function, the in-
verse transform method is usually satisfactory. This is the case for a few elementary
distributions (e.g. the uniform and exponential distributions considered above). The
inverse transform method is also adequate for discrete distributions and for continu-
ous PDFs given in numerical form. By combining the inverse transform, rejection and
composition methods we can devise sampling algorithms for virtually any (single- or
multivariate) PDF.

Example 1. Sampling from the normal distribution

Frequently, we need to generate random values from the normal (or Gaussian) distribu-
tion

pG(x) =
1√
2π

exp(−x2/2). (1.53)

Since the cumulative distribution function cannot be inverted analytically, the inverse
transform method is not appropriate. The easiest (but not the fastest) method to sample
from the normal distribution consists of generating two independent random variables at
a time, as follows. Let x1 and x2 be two independent normal variables. They determine
a random point in the plane with PDF

p2G(x1, x2) = pG(x1) pG(x2) =
1

2π
exp[−(x2

1 + x2
2)/2].

Introducing the polar coordinates r and φ,

x1 = r cos φ, x2 = r sinφ,

the PDF can be expressed as

p2G(x1, x2) dx1 dx2 =
1

2π
exp(−r2/2) rdr dφ =

[
exp(−r2/2) rdr

] [ 1

2π
dφ
]
.

We see that r and φ are independent random variables. The angle φ is distributed
uniformly on (0,2π) and can be sampled as φ = 2πξ. The PDF of r is exp(−r2/2) r and
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the corresponding cumulative distribution function is P(r) = 1−exp(−r2/2). Therefore,
r can be generated by the inverse transform method as

r =
√
−2 ln(1− ξ) =

√
−2 ln ξ.

The two independent normal random variables are given by

x1 =
√
−2 ln ξ1 cos(2πξ2),

x2 =
√
−2 ln ξ1 sin(2πξ2), (1.54)

where ξ1 and ξ2 are two independent random numbers. This procedure is known as the
Box-Müller method. It has the advantages of being exact and easy to program (it can
be coded as a single fortran statement).

The mean and variance of the normal variable are 〈x〉 = 0 and var(x) = 1. The
linear transformation

X = m+ σx (σ > 0) (1.55)

defines a new random variable. From the properties (1.14) and (1.29), we have

〈X〉 = m and var(X) = σ2. (1.56)

The PDF of X is

p(X) = pG(x)
dx

dX
=

1

σ
√

2π
exp

[
−(X −m)2

2σ2

]
, (1.57)

i.e. X is normally distributed with mean m and variance σ2. Hence, to generate X
we only have to sample x using the Box-Müller method and apply the transformation
(1.55).

Example 2. Uniform distribution on the unit sphere

In radiation transport, the direction of motion of a particle is described by a unit vector
d̂. Given a certain frame of reference, the direction d̂ can be specified by giving either
its direction cosines (u, v, w) (i.e. the projections of d̂ on the directions of the coordinate
axes) or the polar angle θ and the azimuthal angle φ, defined as in fig. 1.5,

d̂ = (u, v, w) = (sin θ cosφ, sin θ sinφ, cos θ). (1.58)

Notice that θ ∈ (0, π) and φ ∈ (0, 2π).

A direction vector can be regarded as a point on the surface of the unit sphere.
Consider an isotropic source of particles, i.e. such that the initial direction (θ, φ) of
emitted particles is a random point uniformly distributed on the surface of the sphere.
The PDF is

p(θ, φ) dθ dφ =
1

4π
sin θ dθ dφ =

[
sin θ

2
dθ

] [
1

2π
dφ
]
. (1.59)



18 Chapter 1. Monte Carlo simulation. Basic concepts

z

x

y

d
^

θ

φ

^

^

^

Figure 1.5: Polar and azimuthal angles of a direction vector.

That is, θ and φ are independent random variables with PDFs pθ(θ) = sin θ/2 and
pφ(φ) = 1/(2π), respectively. Therefore, the initial direction of a particle from an
isotropic source can be generated by applying the inverse transform method to these
PDFs,

θ = arccos(1− 2ξ1), φ = 2πξ2. (1.60)

In some cases, it is convenient to replace the polar angle θ by the variable

µ = (1 − cos θ)/2, (1.61)

which varies from 0 (θ = 0) to 1 (θ = π). In the case of an isotropic distribution, the
PDF of µ is

pµ(µ) = pθ(θ)

(
dµ

dθ

)−1

= 1. (1.62)

That is, a set of random points (µ, φ) uniformly distributed on the rectangle (0, 1) ×
(0, 2π) corresponds to a set of random directions (θ, φ) uniformly distributed on the unit
sphere.

1.3 Monte Carlo integration

As pointed out by James (1980), at least in a formal sense, all Monte Carlo calculations
are equivalent to integrations. This equivalence permits a formal theoretical founda-
tion for Monte Carlo techniques. An important aspect of simulation is the evaluation
of the statistical uncertainties of the calculated quantities. We shall derive the basic
formulae by considering the simplest Monte Carlo calculation, namely, the evaluation
of a unidimensional integral. Evidently, the results are also valid for multidimensional
integrals.
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Consider the integral

I =
∫ b

a
F (x) dx, (1.63)

which we recast in the form of an expectation value,

I =
∫
f(x) p(x) dx ≡ 〈f〉, (1.64)

by introducing an arbitrary PDF p(x) and setting f(x) = F (x)/p(x) [it is assumed that
p(x) > 0 in (a, b) and p(x) = 0 outside this interval]. The Monte Carlo evaluation of the
integral I is very simple: generate a large number N of random points xi from the PDF
p(x) and accumulate the sum of values f(xi) in a counter. At the end of the calculation
the expected value of f is estimated as

f ≡ 1

N

N∑

i=1

f(xi). (1.65)

The law of large numbers says that, as N becomes very large,

f → I (in probability). (1.66)

In statistical terminology, this means that f , the Monte Carlo result, is a consistent
estimator of the integral (1.63). This is valid for any function f(x) that is finite and
piecewise continuous, i.e. with a finite number of discontinuities.

The law of large numbers (1.66) can be restated as

〈f〉 = lim
N→∞

1

N

N∑

i=1

f(xi). (1.67)

By applying this law to the integral that defines the variance of f(x) [cf. eq. (1.16)]

var{f(x)} =
∫
f2(x) p(x) dx − 〈f〉2, (1.68)

we obtain

var{f(x)} = lim
N→∞





1

N

N∑

i=1

[f(xi)]
2 −

[
1

N

N∑

i=1

f(xi)

]2


 . (1.69)

The expression in curly brackets is a consistent estimator of the variance of f(x). It is
advisable (see below) to accumulate the squared function values [f(xi)]

2 in a counter
and, at the end of the simulation, estimate var{f(x)} according to eq. (1.69).

It is clear that different Monte Carlo runs [with different, independent sequences of
N random numbers xi from p(x)] will yield different estimates f . This implies that the
outcome of our Monte Carlo code is affected by statistical uncertainties, similar to those
found in laboratory experiments, which need to be properly evaluated to determine the
“accuracy” of the Monte Carlo result. For this purpose, we may consider f as a random
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variable, the PDF of which is, in principle, unknown. Its mean and variance are given
by

〈f 〉 =

〈
1

N

N∑

i=1

f(xi)

〉
=

1

N

N∑

i=1

〈f〉 = 〈f〉 (1.70)

and

var(f) = var

[
1

N

N∑

i=1

f(xi)

]
=

1

N2

N∑

i=1

var{f(x)} =
1

N
var{f(x)}, (1.71)

where use has been made of properties of the expectation and variance operators. The
standard deviation (or standard error) of f ,

σf ≡
√

var(f) =

√
var{f(x)}

N
, (1.72)

gives a measure of the statistical uncertainty of the Monte Carlo estimate f . The
result (1.72) has an important practical implication: in order to reduce the statistical
uncertainty by a factor of 10, we have to increase the sample size N by a factor of
100. Evidently, this sets a limit to the accuracy that can be attained with the available
computer power.

We can now invoke the central limit theorem (see e.g. James, 1980), which establishes
that, in the limit N →∞, the PDF of f is a normal (Gaussian) distribution with mean
〈f〉 and standard deviation σf ,

p(f ) =
1

σf

√
2π

exp

(
−(f − 〈f〉)2

2σ2
f

)
. (1.73)

It follows that, for sufficiently large values of N , for which the theorem is applicable,
the interval f ± nσf contains the exact value 〈f〉 with a probability of 68.3% if n = 1,
95.4% if n = 2 and 99.7% if n = 3 (3σ rule).

The central limit theorem is a very powerful tool, since it predicts that the gener-
ated values of f follow a specific distribution, but it applies only asymptotically. The
minimum number N of sampled values needed to apply the theorem with confidence
depends on the problem under consideration. If, in the case of our problem, the third
central moment of f ,

µ3 ≡
∫

[f(x)− 〈f〉]3 p(x) dx, (1.74)

exists, the theorem is essentially satisfied when

|µ3| � σ3
f

√
N. (1.75)

In general, it is advisable to study the distribution of the estimator to ascertain the
applicability of the central limit theorem. In most Monte Carlo calculations, however,
statistical errors are estimated by simply assuming that the theorem is satisfied, irre-
spective of the sample size. We shall adopt this practice and report Monte Carlo results
in the form f ± 3σf . In simulations of radiation transport, this is empirically validated
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by the fact that simulated continuous distributions do “look” continuous (i.e. the “error
bars” define a smooth band).

Each possible p(x) defines a Monte Carlo algorithm to calculate the integral I, eq.
(1.63). The simplest algorithm (crude Monte Carlo) is obtained by using the uniform
distribution p(x) = 1/(b−a). Evidently, p(x) determines not only the density of sampled
points xi, but also the magnitude of the variance var{f(x)}, eq. (1.68),

var{f(x)} =
∫ b

a
p(x)

[
F (x)

p(x)

]2

dx− I2 =
∫ b

a
F (x)

[
F (x)

p(x)
− I

]
dx. (1.76)

As a measure of the effectiveness of a Monte Carlo algorithm, it is common to use the
efficiency ε, which is defined by

ε = 1/[σ2
f T ], (1.77)

where T is the computing time (or any other measure of the calculation effort) needed
to get the simulation result. Since σ2

f and T are roughly proportional to N−1 and N ,
respectively, ε is a constant (i.e. it is independent of N), on average.

The so-called variance-reduction methods are techniques that aim to optimize the
efficiency of the simulation through an adequate choice of the PDF p(x). Improving
the efficiency of the algorithms is an important, and delicate, part of the art of Monte
Carlo simulation. The interested reader is addressed to the specialized bibliography (e.g.
Rubinstein, 1981). Although of common use, the term “variance reduction” is somewhat
misleading, since a reduction in variance does not necessarily lead to improved efficiency.
To make this clear, consider that a Monte Carlo algorithm, based on a certain PDF
p(x), has a variance that is less than that of crude Monte Carlo (i.e. with the uniform
distribution); if the generation of x-values from p(x) takes a longer time than for the
uniform distribution, the “variance-reduced” algorithm may be less efficient than crude
Monte Carlo. Hence, one should avoid using PDFs that are too difficult to sample.

1.4 Simulation of radiation transport

In this section, we describe the essentials of Monte Carlo simulation of radiation trans-
port. For the sake of simplicity, we limit our considerations to the detailed simulation
method, where all the interaction events experienced by a particle are simulated in
chronological succession, and we disregard the production of secondary particles, so
that only one kind of particle is transported.

1.4.1 Scattering model and probability distributions

Consider a particle with energy E (kinetic energy, in the case of electrons and positrons)
moving in a given medium. We limit our considerations to homogeneous “random
scattering” media, such as gases, liquids and amorphous solids, where the “molecules”
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are distributed at random with uniform density. The composition of the medium is
specified by its stoichiometric formula, i.e. atomic number Zi and number of atoms
per molecule ni of all the elements present. The stoichiometric indices ni need not
have integer values. In the case of alloys, for instance, they may be set equal to the
percentage in number of each element and then a “molecule” is a group of 100 atoms with
the appropriate proportion of each element. The “molecular weight” is AM = ΣniAi,
where Ai is the atomic weight of the i-th element. The number of molecules per unit
volume is given by

N = NA
ρ

AM
, (1.78)

where NA is Avogadro’s number and ρ is the mass density of the material.

In each interaction, the particle may lose energy W and/or change its direction of
movement. The angular deflection is determined by the polar scattering angle θ, i.e.
the angle between the directions of the particle before and after the interaction, and
the azimuthal angle φ. Let us assume that the particle can interact with the medium
through two independent mechanisms, denoted as “A” and “B” (for instance, elastic
and inelastic scattering, in the case of low-energy electrons). The scattering model is
completely specified by the molecular differential cross sections (DCS)

d2σA

dWdΩ
(E;W, θ) and

d2σB

dWdΩ
(E;W, θ), (1.79)

where dΩ is a solid angle element in the direction (θ, φ). We have made the paramet-
ric dependence of the DCSs on the particle energy E explicit. Considering that the
molecules in the medium are oriented at random, the DCS is independent of the az-
imuthal scattering angle, i.e. the angular distribution of scattered particles is axially
symmetrical around the direction of incidence. The total cross sections (per molecule)
are

σA,B(E) =
∫ E

0
dW

∫ π

0
2π sin θ dθ

d2σA,B

dWdΩ
(E;W, θ). (1.80)

The PDFs of the energy loss and the polar scattering angle in individual scattering
events are

pA,B(E;W, θ) =
2π sin θ

σA,B(E)

d2σA,B

dWdΩ
(E;W, θ). (1.81)

Notice that pA(E;W, θ)dWdθ gives the (normalized) probability that, in a scattering
event of type A, the particle loses energy in the interval (W,W + dW ) and is deflected
into directions with polar angle (relative to the initial direction) in the interval (θ,
θ+ dθ). The azimuthal scattering angle in each collision is uniformly distributed in the
interval (0, 2π), i.e.

p(φ) =
1

2π
. (1.82)

The total interaction cross section is

σT(E) = σA(E) + σB(E). (1.83)
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When the particle interacts with the medium, the kind of interaction that occurs is a
discrete random variable, that takes the values “A” and “B” with probabilities

pA = σA/σT and pB = σB/σT. (1.84)

It is worth recalling that this kind of single scattering model is only valid when diffrac-
tion effects resulting from coherent scattering from several centres (e.g. Bragg diffrac-
tion, channelling of charged particles) are negligible. This means that the simulation is
applicable only to amorphous media and, with some care, to polycrystalline solids.

To get an intuitive picture of the scattering process, we can imagine each molecule
as a sphere of radius rs such that the cross-sectional area πr2

s equals the total cross
section σT. Now, assume that a particle impinges normally on a very thin material
foil of thickness ds. What the particle sees in front of it is a uniform distribution of
N ds spheres per unit surface. An interaction takes place when the particle strikes one
of these spheres. Therefore, the probability of interaction within the foil equals the
fractional area covered by the spheres, NσT ds. In other words, NσT is the interaction
probability per unit path length. Its inverse,

λT ≡ (NσT)−1 , (1.85)

is the (total) mean free path between interactions.

Let us now consider a particle that moves within an unbounded medium. The PDF
p(s) of the path length s of the particle from its current position to the site of the next
interaction may be obtained as follows. The probability that the particle travels a path
length s without interacting is

F(s) =
∫ ∞

s
p(s′) ds′. (1.86)

The probability p(s) ds of having the next interaction when the travelled length is in the
interval (s, s + ds) equals the product of F(s) (the probability of arrival at s without
interacting) and λ−1

T ds (the probability of interacting within ds). It then follows that

p(s) = λ−1
T

∫ ∞

s
p(s′) ds′. (1.87)

The solution of this integral equation, with the boundary condition p(∞) = 0, is the
familiar exponential distribution

p(s) = λ−1
T exp (−s/λT) . (1.88)

Notice that the mean free path λT coincides with the average path length between
collisions:

〈s〉 =
∫ ∞

0
s p(s) ds = λT. (1.89)

The differential inverse mean free path for the interaction process A is defined as

d2λ−1
A

dWdΩ
(E;W, θ) = N d2σA

dWdΩ
(E;W, θ). (1.90)
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Evidently, the integral of the differential inverse mean free path gives the inverse mean
free path for the process,

λ−1
A =

∫
dW

∫
2π sin θ dθ

d2λ−1
A

dWdΩ
(E;W, θ) = NσA. (1.91)

In the literature, the product NσA is frequently called the macroscopic cross section,
although this name is not appropriate for a quantity that has the dimensions of inverse
length. Notice that the total inverse mean free path is the sum of the inverse mean free
paths of the different active interaction mechanisms,

λ−1
T = λ−1

A + λ−1
B . (1.92)

1.4.2 Generation of random tracks

Each particle track starts off at a given position, with initial direction and energy in
accordance with the characteristics of the source. The “state” of a particle immediately
after an interaction (or after entering the sample or starting its trajectory) is defined
by its position coordinates r = (x, y, z), energy E and direction cosines of the direction
of flight, i.e. the components of the unit vector d̂ = (u, v, w), as seen from the labora-
tory reference frame. Each simulated track is thus characterized by a series of states
rn, En, d̂n, where rn is the position of the n-th scattering event and En and d̂n are the
energy and direction cosines of the direction of movement just after that event.

The generation of random tracks proceeds as follows. Let us assume that a track has
already been simulated up to a state rn, En, d̂n. The length s of the free path to the next
collision, the involved scattering mechanism, the change of direction and the energy loss
in this collision are random variables that are sampled from the corresponding PDFs,
using the methods described in section 1.2. Hereafter, ξ stands for a random number
uniformly distributed in the interval (0,1).

The length of the free flight is distributed according to the PDF given by eq. (1.88).
Random values of s are generated by using the sampling formula [see eq. (1.36)]

s = −λT ln ξ. (1.93)

The following interaction occurs at the position

rn+1 = rn + sd̂n. (1.94)

The type of this interaction (“A” or “B”) is selected from the point probabilities given
by eq. (1.84) using the inverse transform method (section 1.2.2). The energy loss W and
the polar scattering angle θ are sampled from the distribution pA,B(E;W, θ), eq. (1.81),
by using a suitable sampling technique. The azimuthal scattering angle is generated,
according to the uniform distribution in (0, 2π), as φ = 2πξ.

After sampling the values of W , θ and φ, the energy of the particle is reduced,
En+1 = En −W , and the direction of movement after the interaction d̂n+1 = (u′, v′, w′)
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Figure 1.6: Angular deflections in single-scattering events.

is obtained by performing a rotation of d̂n = (u, v, w) (see fig. 1.6). The rotation matrix
R(θ, φ) is determined by the polar and azimuthal scattering angles. To explicitly obtain
the direction vector d̂n+1 = R(θ, φ)d̂n after the interaction, we first note that, if the
initial direction is along the z-axis, the direction after the collision is




sin θ cos φ

sin θ sinφ

cos θ


 = Rz(φ)Ry(θ)ẑ, (1.95)

where ẑ=(0,0,1) and

Ry(θ) =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 and Rz(φ) =




cosφ − sinφ 0

sin φ cos φ 0

0 0 1


 (1.96)

are rotation matrices corresponding to active rotations of angles θ and φ about the y-
and z-axes, respectively. On the other hand, if ϑ and ϕ are the polar and azimuthal
angles of the initial direction

d̂n = (sinϑ cosϕ, sinϑ sinϕ, cosϑ), (1.97)

the rotation Ry(−ϑ)Rz(−ϕ) transforms the vector d̂n into ẑ. It is then clear that the

final direction vector d̂n+1 can be obtained by performing the following sequence of
rotations of the initial direction vector: 1) Ry(−ϑ)Rz(−ϕ), which transforms d̂n into ẑ;
2) Rz(φ)Ry(θ), which rotates ẑ according to the sampled polar and azimuthal scattering
angles; and 3) Rz(ϕ)Ry(ϑ), which inverts the rotation of the first step. Hence

R(θ, φ) = Rz(ϕ)Ry(ϑ)Rz(φ)Ry(θ)Ry(−ϑ)Rz(−ϕ). (1.98)
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The final direction vector is

d̂n+1 = R(θ, φ)d̂n = Rz(ϕ)Ry(ϑ)




sin θ cos φ

sin θ sinφ

cos θ


 (1.99)

and its direction cosines are

u′ = u cos θ +
sin θ√
1− w2

[uw cos φ− v sinφ] ,

v′ = v cos θ +
sin θ√
1 − w2

[vw cos φ+ u sinφ] , (1.100)

w′ = w cos θ −
√

1− w2 sin θ cos φ.

These equations are indeterminate when w ' ±1, i.e. when the initial direction is nearly
parallel or antiparallel to the z-axis; in this case we can simply set

u = ± sin θ cos φ, v = ± sin θ sinφ, w = ± cos θ. (1.101)

Moreover, eqs. (1.100) are not very stable numerically and the normalization of d̂n+1

tends to drift from 1 after repeated usage. This must be remedied by periodically
renormalizing d̂n+1. The change of direction expressed by eqs. (1.100) and (1.101) is
performed by the subroutine DIRECT (see the penelope source listing).

The simulation of the track then proceeds by repeating these steps. A track is finished
either when it leaves the material system or when the energy becomes smaller than a
given energy Eabs, which is the energy where particles are assumed to be effectively
stopped and absorbed in the medium.

1.4.3 Particle transport as a Markov process

The foregoing concepts, definitions and simulation scheme rest on the assumption that
particle transport can be modelled as a Markov process2, i.e. “future values of a random
variable (interaction event) are statistically determined by present events and depend
only on the event immediately preceeding”. Owing to the Markovian character of the
transport, we can stop the generation of a particle history at an arbitrary state (any
point of the track) and resume the simulation from this state without introducing any
bias in the results.

In mixed simulations of electron/positron transport, it is necessary to limit the length
s of each “free jump” so that it does not exceed a given value smax. To accomplish this,
we still sample the free path length s to the next interaction from the exponential PDF

2The quoted definition is from the Webster’s Encyclopedic Unabridged Dictionary of the English
Language (Portland House, New York, 1989).
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(1.88), but when s > smax we only let the particle advance a distance smax along the
direction of motion. At the end of the truncated free jump we do nothing (i.e. the
particle keeps its energy and direction of motion unaltered); however, for programming
convenience, we shall say that the particle suffers a delta interaction (actually, a “non-
interaction”). When the sampled value of s is less than smax, a real interaction is
simulated. After the interaction (either real or delta), we sample a new free path s,
move the particle a distance s′ = min(s, smax), etc. From the Markovian character of
the transport, it is clear that the insertion of delta interactions keeps the simulation
unbiased. If you do not see it so clearly, here comes a direct proof. First we note that
the probability that a free jump ends with a delta interaction is

pδ =
∫ ∞

smax

p(s) ds = exp(−smax/λT). (1.102)

To obtain the probability p(s)ds of having the first real interaction at a distance in the
interval (s, s + ds), we write s = nsmax + s′ with n = [s/smax] and, hence, s′ < smax.
The sought probability is then equal to the probability of having n successive delta
interactions followed by a real interaction at a distance in (s′, s′ + ds) from the last,
n-th, delta interaction,

p(s) ds = pn
δ λ

−1
T exp(−s′/λT) ds = λ−1

T exp(−s/λT) ds, (1.103)

which is the correct value [cf. eq. (1.88)].

Up to this point, we have considered transport in a single homogeneous medium.
In practical cases, however, the material structure where radiation is transported may
consist of various regions with different compositions. We assume that the interfaces
between contiguous media are sharp (i.e. there is no diffusion of chemical species across
them) and passive (which amounts to neglecting e.g. surface plasmon excitation and
transition radiation). In the simulation code, when a particle arrives at an interface, it
is stopped there and the simulation is resumed with the interaction properties of the
new medium. Obviously, this procedure is consistent with the Markovian property of
the transport process.

Consider two homogeneous media, 1 and 2 (with corresponding mean free paths λT,1

and λT,2), separated by an interface, which is crossed by particles that move from the
first medium to the second. The average path length between the last real interaction in
medium 1 and the first real interaction in medium 2 is λT,1+λT,2, as can be easily verified
by simulation. This result seemed paradoxical to some authors and induced confusion in
the past. In fact, there is nothing odd here as you may easily verify (again by simulation)
as follows. Assume particles being transported within a single homogeneous medium
with an imaginary plane that acts as a “virtual” interface, splitting the medium into
two halves. In the simulation, the particles do not see this interface, i.e. they do not
stop when crossing. Every time a particle crosses the plane, we score the length splane

of the track segment between the two real interactions immediately before and after the
crossing. It is found that the average value of splane is 2λT, in spite of the fact that the
free path length between consecutive collisions was sampled from an exponential PDF
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with the mean free path λT [yes, the scored values splane were generated from this PDF!].
The explanation of this result is that, as a consequence of the Markovian character, the
average path length from the plane (an arbitrary fixed point in the track) back to the
last collision (or up to the next collision) is λT.

1.5 Statistical averages and uncertainties

For the sake of being more specific, let us consider the simulation of a high-energy
electron beam impinging on the surface of a semi-infinite water phantom. Each primary
electron originates a shower of electrons and photons, which are individually tracked
down to the corresponding absorption energy. Any quantity of interest Q is evaluated
as the average score of a large number N of simulated random showers. Formally, Q
can be expressed as an integral of the form (1.64),

Q =
∫
q p(q) dq, (1.104)

where the PDF p(q) is usually unknown. The simulation of individual showers provides
a practical method to sample q from the “natural” PDF p(q): from each generated
shower we get a random value qi distributed according to p(q). The only difference to
the case of Monte Carlo integration considered above is that now the PDF p(q) describes
a cascade of random interaction events, each with its characteristic PDF. The Monte
Carlo estimate of Q is

Q =
1

N

N∑

i=1

qi. (1.105)

Thus, for instance, the average energy Edep deposited within the water phantom per
incident electron is obtained as

Edep =
1

N

N∑

i=1

ei, (1.106)

where ei is the energy deposited by all the particles of the i-th shower. The statistical
uncertainty (standard deviation) of the Monte Carlo estimate [eq. (1.72)] is

σQ =

√
var(q)

N
=

√√√√ 1

N

[
1

N

N∑

i=1

q2
i −Q

2

]
. (1.107)

As mentioned above, we shall usually express the simulation result in the form Q ±
3σQ, so that the interval (Q − 3σQ, Q + 3σQ) contains the true value Q with 99.7%
probability. Notice that to evaluate the standard deviation (1.107) we must score the
squared contributions q2

i . In certain cases, the contributions qi can only take the values
0 and 1, and the standard error can be determined without scoring the squares,

σQ =

√
1

N
Q(1 −Q). (1.108)
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Simulation/scoring can also be used to compute continuous distributions. The sim-
plest method is to “discretize” the distributions, by treating them as histograms, and to
determine the “heights” of the different bars. To make the arguments clear, let us con-
sider the depth-dose distribution D(z), defined as the average energy deposited per unit
depth and per incident electron within the water phantom. D(z)dz is the average energy
deposited at depths between z and z+dz per incident electron, and the integral of D(z)
from 0 to ∞ is the average deposited energy Edep (again, per incident electron). Since
part of the energy is reflected back from the water phantom (through backscattered
radiation), Edep is less than the kinetic energy Einc of the incident electrons. We are
interested in determining D(z) in a limited depth interval, say from z = 0 to z = zmax.
The calculation proceeds as follows. First of all, we have to select a partition of the inter-
val (0, zmax) into M different depth bins (zk−1, zk), with 0 = z0 < z1 < . . . < zM = zmax.
Let eij,k denote the amount of energy deposited into the k-th bin by the j-th particle of
the i-th shower (each incident electron may produce multiple secondary particles). The
average energy deposited into the k-th bin (per incident electron) is obtained as

Ek =
1

N

N∑

i=1

ei,k with ei,k ≡
∑

j

eij,k, (1.109)

and is affected by a statistical uncertainty

σEk =

√√√√ 1

N

[
1

N

N∑

i=1

e2
i,k − E2

k

]
. (1.110)

The Monte Carlo depth-dose distribution DMC(z) is a stepwise constant function,

DMC(z) = Dk ± 3σDk for zk−1 < z < zk (1.111)

with

Dk ≡
1

zk − zk−1
Ek, σDk ≡

1

zk − zk−1
σEk. (1.112)

Notice that the bin average and standard deviation have to be divided by the bin
width to obtain the final Monte Carlo distribution. Defined in this way, DMC(z) is
an unbiased estimator of the average dose in each bin. The limitation here is that
we are approximating the continuous distribution D(z) as a histogram with finite bar
widths. In principle, we could obtain a closer approximation by using narrower bins.
However, care has to be taken in selecting the bin widths since statistical uncertainties
may completely hide the information in narrow bins.

A few words regarding programming details are in order. To evaluate the average
deposited energy and its standard deviation for each bin, eqs. (1.109) and (1.110), we
must score the shower contributions ei,k and their squares e2

i,k. There are cases in which
the literal application of this recipe may take a large fraction of the simulation time.
Consider, for instance, the simulation of the 3D dose distribution in the phantom, which
may involve several thousand volume bins. For each bin, the energies eij,k deposited by
the individual particles of a shower must be accumulated in a partial counter to obtain
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the shower contribution ei,k and, after completion of the whole shower, the value ei,k

and its square must be added to the accumulated counters. As only a small fraction
of the bins receive energy from a single shower, it is not practical to treat all bin
counters on an equal footing. The fastest method is to transfer partial scores to the
accumulated counters only when the partial counter is going to receive a contribution
from a new shower. This can be easily implemented in a computer program as follows.
For each quantity of interest, say Q, we define three real counters, Q, Q2 and QP, and
an integer label LQ; all these quantities are initially set to zero. The partial scores qij of
the particles of a shower are accumulated in the partial counter QP, whereas the global
shower contribution qi and its square are accumulated in Q and Q2, respectively. Each
shower is assigned a label, for instance its order number i, which is stored in LQ the
first time that the shower contributes to QP. In the course of the simulation, the value
of QP is transferred to the global counters Q and Q2 only when it is necessary to store a
contribution qij from a new shower. Explicitly, the fortran code for scoring Q is

IF(i.NE.LQ) THEN

Q=Q+QP

Q2=Q2+QP**2

QP=qij

LQ=i
ELSE

QP=QP+qij

ENDIF

At the end of the simulation, the residual contents of QP must be transferred to the
global counters.

For some quantities (e.g. the mean number of scattering events per track, the depth-
dose function, . . . ) almost all the simulated tracks contribute to the score and the
inherent statistical uncertainties of the simulation results are comparatively small. Other
quantities (e.g. angle and energy distributions of the particles transmitted through a
thick foil) have considerable statistical uncertainties (i.e. large variances) because only
a small fraction of the simulated tracks contribute to the partial scores.

1.6 Variance reduction

In principle, the statistical error of a quantity may be somewhat reduced (without in-
creasing the computer simulation time) by using variance-reduction techniques. Unfor-
tunately, these optimization techniques are extremely problem-dependent, and general
recipes to minimize the variance cannot be given. On the other hand, the importance
of variance reduction should not be overvalued. In many cases, analogue3 simulation
does the work in a reasonable time. Spending manhours by complicating the program,
to get a modest reduction in computing time may not be a good investment. It is

3We use the term “analogue” to refer to detailed, condensed or mixed simulations that do not
incorporate variance-reduction procedures.
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also important to realize that an efficient variance-reduction method usually lowers the
statistical error of a given quantity Q at the expense of increasing the uncertainties
of other quantities. Thus, variance-reduction techniques are not recommended when a
global description of the transport process is sought. Here we give a brief description of
those techniques which, with a modest programming effort, can be useful in improving
the solution of some ill-conditioned problems. For the sake of generality, we consider
that secondary particles can be generated in the interactions with the medium. A nice,
and practically oriented, review of variance-reduction methods in radiation transport
has been given by Bielajew and Rogers (1988).

1.6.1 Interaction forcing

Sometimes, a high variance results from an extremely low interaction probability. Con-
sider, for instance, the simulation of the energy spectrum of bremsstrahlung photons
emitted by medium energy (∼ 100 keV) electrons in a thin foil of a certain material.
As radiative events are much less probable than elastic and inelastic scattering, the un-
certainty of the simulated photon spectrum will be relatively large. In such cases, an
efficient variance-reduction method is to artificially increase the interaction probability
of the process A of interest. Our practical implementation of interaction forcing consists
of replacing the mean free path λA of the real process by a shorter one, λA,f , i.e. we
force A interactions to occur more frequently than for the real process. We consider
that the PDF for the energy loss, the angular deflections (and the directions of emit-
ted secondary particles, if any) in the forced interactions is the same as for the real
interactions. To sample the length of the free jump to the next interaction, we use the
exponential distribution with the reduced mean free path λA,f . This is equivalent to
increasing the interaction probability per unit path length of the process A by a factor

F =
λA

λA,f
> 1. (1.113)

To keep the simulation unbiased, we must correct for the introduced distortion as follows:

(i) A weight w(1)
p = 1 is associated with each primary particle. Secondary particles

produced in forced interactions have an associated weight w(2)
p = w(1)

p /F ; the

weights of successive generations of forced secondaries are w(k)
p = w(k−1)

p /F . Sec-
ondary particles generated in non-forced interactions (i.e. of types other than A)
are given a weight equal to that of their parent particle.

(ii) Forced interactions are simulated to determine the energy loss and possible emis-
sion of secondary radiation, but the state variables of the interacting particle are
altered only with probability 1/F . That is, the energy E and direction of move-
ment d̂ of the projectile are varied only when the value ξ of a random number falls
below 1/F , otherwise E and d̂ are kept unchanged.

(iii) A weight w
(k)
E = w(k)

p /F is given to the deposited energy4 (and to any other

4This option may effectively reduce the statistical uncertainties of simulated dose distributions in
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alteration of the medium such as e.g. charge deposition) that results from forced

interactions of a particle with weight w(k)
p . For non-forced interactions w

(k)
E = w(k)

p .

Of course, interaction forcing should be applied only to interactions that are dynamically
allowed, i.e. for particles with energy above the corresponding “reaction” threshold.

Let wi1 and fi1 denote the weight and the contribution to the score of the i-th
primary, and let wij and fij (j > 1) represent the weights and contributions of the
j-th secondary particles generated by the i-th primary. The Monte Carlo estimate of F
obtained from the N simulated histories is

F =
1

N

∑

i,j

wijfij . (1.114)

Evidently, the estimates F obtained with interaction forcing and from an analogue
simulation are equal (in the statistical sense, i.e. in the limit N → ∞, their difference
tends to zero). The standard deviation is given by

σF =

√√√√√√
1

N




1

N

∑

i




∑

j

wijfij




2

− F 2


. (1.115)

Quantities directly related to the forced interactions will have a reduced statistical error,
due to the increase in number of these interactions. However, for a given simulation
time, other quantities may exhibit standard deviations larger than those of the analogue
simulation, because of the time spent in simulating the forced interactions.

1.6.2 Splitting and Russian roulette

These two techniques, which are normally used in conjunction, are effective in problems
where interest is focused on a localized spatial region. Typical examples are the calcula-
tion of dose functions in deep regions of irradiated objects and, in the case of collimated
radiation beams, the evaluation of radial doses far from the beam axis. The basic idea
of splitting and Russian roulette methods is to favour the flux of radiation towards the
region of interest and inhibit the radiation that leaves that region. These techniques are
also useful in other problems where only a partial description of the transport process
is required. The “region of interest” may then be a limited volume in the space of state
variables (r, E, d̂). Thus, in studies of radiation backscattering, the region of interest
may be selected as the spatial region of the sample close to the irradiated surface and
the set of particle directions that point towards this surface.

As in the case of interaction forcing, variance reduction is accomplished by modifying
the weights of the particles. It is assumed that primary particles start moving with unit

very thin media. However, it violates energy conservation (because the sum of energies deposited along
a track differs from the energy lost by the projectile) and, therefore, yields energy deposition spectra
that are biased.
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weight and each secondary particle produced by a primary one is assigned an initial
weight equal to that of the primary. Splitting consists of transforming a particle, with
weight w0 and in a certain state, into a number S > 1 of identical particles with weights
w = w0/S in the same initial state. Splitting should be applied when the particle
“approaches” the region of interest. The Russian roulette technique is, in a way, the
reverse process: when a particle tends to move away from the region of interest it is
“killed” with a certain probability, K < 1, and, if it survives, its weight is increased by
a factor 1/(1−K). Here, killing means that the particle is just discarded (and does not
contribute to the scores anymore). Evidently, splitting and killing leave the simulation
unbiased. The mean and standard deviation of the calculated quantities are given by
eqs. (1.114) and (1.115). The effectiveness of these methods relies on the adopted values
of the parameters S and K, and on the strategy used to decide when splitting and killing
are to be applied. These details can only be dictated by the user’s experience.

1.6.3 Other methods

Very frequently, an effective “reduction of variance” may be obtained by simply avoiding
unnecessary calculations. This is usually true for simulation codes that incorporate
“general-purpose” geometry packages. In the case of simple (e.g. planar, spherical,
cylindrical) geometries the program may be substantially simplified and this may speed
up the simulation appreciably. In general, the clever use of possible symmetries of the
problem under consideration may lead to spectacular variance reductions. As a last
example, we can quote the so-called “range rejection” method, which simply consists of
absorbing a particle when it (and its possible secondaries) cannot leave (or reach) regions
of interest. Range rejection is useful e.g. when computing the total energy deposition of
electrons or positrons in a given spatial region. When the residual range of a particle
(and its possible secondaries) is less than the distance to the nearest limiting surface
of the region of interest, the particle will deposit all its energy inside or outside the
considered region (depending of its current position) and the simulation of the track
can be stopped. Range rejection is not adequate for photon transport simulation, since
the concept of photon range is not well defined (or, to be more precise, photon path
length fluctuations are very large).
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Chapter 2

Photon interactions

In this chapter, we consider the interactions of unpolarized photons of energy E with
atoms of atomic number Z. We limit our considerations to the energy range from 100 eV
up to 1 GeV, where the dominant interaction processes are coherent (Rayleigh) scat-
tering, incoherent (Compton) scattering, the photoelectric effect and electron-positron
pair production. Other interactions, such as photonuclear absorption, occur with much
smaller probability and can be disregarded for most practical purposes (see e.g. Hubbell
et al., 1980).
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Figure 2.1: Basic interactions of photons with matter.
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As long as the response of an atom is not appreciably distorted by molecular binding,
the single-atom theory can be extended to molecules by using the additivity approxi-
mation, i.e. the molecular cross section for a process is approximated by the sum of the
atomic cross sections of all the atoms in the molecule. The additivity approximation can
also be applied to dense media whenever interference effects between waves scattered
by different centres (which, for instance, give rise to Bragg diffraction in crystals) are
small. We assume that these conditions are always satisfied.

The ability of Monte Carlo simulation methods to describe photon transport in com-
plex geometries has been established from research during the last five decades (Hayward
and Hubbell, 1954; Zerby, 1963; Berger and Seltzer, 1972; Chan and Doi, 1983; Ljung-
berg and Strand, 1989). The most accurate DCSs available are given in numerical form
and, therefore, advanced Monte Carlo codes make use of extensive databases. To reduce
the amount of required numerical information, in penelope we use a combination of
analytical DCSs and numerical tables. The adopted DCSs are defined by simple, but
physically sound analytical forms. The corresponding total cross sections are obtained
by a single numerical quadrature that is performed very quickly using the SUMGA exter-
nal function described in appendix B. Moreover, the random sampling from these DCSs
can be done analytically and, hence, exactly. Only coherent scattering requires a simple
preparatory numerical step.

It may be argued that using analytical approximate DCSs, instead of more accurate
tabulated DCSs implies a certain loss of accuracy. To minimize this loss, penelope

renormalizes the analytical DCSs so as to reproduce partial attenuation coefficients
that are read from the input material data file. As a consequence, the free path be-
tween events and the kind of interaction are sampled using total cross sections that are
nominally exact; approximations are introduced only in the description of individual
interaction events.

In the following, κ stands for the photon energy in units of the electron rest energy,
i.e.

κ ≡ E

mec2
. (2.1)

2.1 Coherent (Rayleigh) scattering

Coherent or Rayleigh scattering is the process by which photons are scattered by bound
atomic electrons without excitation of the target atom, i.e. the energies of the incident
and scattered photons are the same. The scattering is qualified as “coherent” because
it arises from the interference between secondary electromagnetic waves coming from
different parts of the atomic charge distribution.

The atomic DCS per unit solid angle for coherent scattering is given approximately
by (see e.g. Born, 1969)

dσRa

dΩ
=

dσT

dΩ
[F (q, Z)]2 , (2.2)
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where
dσT(θ)

dΩ
= r2

e

1 + cos2 θ

2
(2.3)

is the classical Thomson DCS for scattering by a free electron at rest, θ is the polar
scattering angle (see fig. 2.1) and F (q, Z) is the atomic form factor. The quantity re is
the classical electron radius and q is the magnitude of the momentum transfer given by

q = 2(E/c) sin(θ/2) = (E/c) [2(1− cos θ)]
1/2
. (2.4)

In the literature on x-ray crystallography, the dimensionless variable

x ≡ q 10−8cm

4πh̄
= 20.6074

q

mec
(2.5)

is normally used instead of q.

The atomic form factor can be expressed as the Fourier transform of the atomic
electron density ρ(r) which, for a spherically symmetrical atom, simplifies to

F (q, Z) = 4π
∫ ∞

0
ρ(r)

sin(qr/h̄)

qr/h̄
r2 dr. (2.6)

F (q, Z) is a monotonically decreasing function of q that varies from F (0, Z) = Z
to F (∞, Z) = 0. The most accurate form factors are those obtained from Hartree-
Fock or configuration-interaction atomic-structure calculations; here we adopt the non-
relativistic atomic form factors tabulated by Hubbell et al. (1975). Although relativistic
form factors are available (Doyle and Turner, 1968), Hubbell has pointed out that the
non-relativistic form factors yield results in closer agreement with experiment (Cullen
et al., 1997).

In the calculations, we use the following analytical approximation

F (q, Z) =






f(x,Z) ≡ Z 1 + a1x
2 + a2x

3 + a3x
4

(1 + a4x2 + a5x4)2 ,

max {f(x,Z), FK(q, Z)} if Z > 10 and f(x,Z) < 2,

(2.7)

where

FK(q, Z) ≡ sin(2b arctanQ)

bQ (1 +Q2)b , (2.8)

with
Q =

q

2meca
, b =

√
1− a2, a ≡ α(Z − 5/16), (2.9)

where α is the fine-structure constant. The function FK(q, Z) is the contribution to
the atomic form factor due to the two K-shell electrons (see e.g. Baró et al., 1994a).
The parameters of expression f(x,Z) for Z = 1 to 92, which have been determined by
Baró et al. (1994a) by numerically fitting the atomic form factors tabulated by Hubbell
et al. (1975), are included in the block data subprogram PENDAT. The average relative
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Figure 2.2: Atomic form factors for carbon and lead. Crosses are values from the tables of

Hubbell et al. (1975), continuous curves represent the analytical approximation given by eq.

(2.7).

difference between the analytical and tabulated form factors is less than 0.5% (see fig.
2.2).

The total coherent scattering cross section per atom is

σRa =
∫

dσRa

dΩ
dΩ = πr2

e

∫ 1

−1

(
1 + cos2 θ

)
[F (q, Z)]2 d(cos θ). (2.10)

Introducing q, eq. (2.4), as a new integration variable, the asymptotic behaviour of the
total cross section for small and large photon energies is made clear. For low photon
energies, the form factor in the integrand does not depart appreciably from the value
F (0, Z) = Z, i.e. coherent scattering reduces to pure Thomson scattering. Consequently,
we have

σRa '
8

3
πr2

e Z
2. (2.11)

In the high-energy limit, we get
σRa ∝ E−2. (2.12)

In practice, this limiting behaviour is attained for energies of the order of Z/2 MeV.

Strictly speaking, expression (2.2) is adequate only for photons with energy well
above the K absorption edge. The low-energy behaviour given by eq. (2.11) is sub-
stantially altered when anomalous scattering factors are introduced (see e.g. Cullen et
al., 1989; Kane et al., 1986). These factors lead to a general decrease of the coherent
scattering cross section near the absorption edges and at low energies. Nevertheless,
at the energies where anomalous scattering effects become significant, coherent scatter-
ing is much less probable than photoelectric absorption (see fig. 2.10 below), and the
approximation given by eq. (2.2) is usually sufficient for simulation purposes.
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2.1.1 Simulation of coherent scattering events

The PDF of the angular deflection, cos θ, can be written as [see eqs. (2.2) and (2.3);
normalization is irrelevant here]

pRa(cos θ) =
1 + cos2 θ

2
[F (x,Z)]2 , (2.13)

where x, which is defined by eqs. (2.4) and (2.5), can take values in the interval from 0
to

xmax = 20.6074 × 2κ. (2.14)

This PDF can be factorized in the form

pRa(cos θ) = g(cos θ)π(x2) (2.15)

with

g(cos θ) ≡ 1 + cos2 θ

2
and π(x2) ≡ [F (x,Z)]2 . (2.16)

Notice that, for a compound, [F (x,Z)]2 has to be replaced by the sum of squared form
factors of the atoms in the molecule.

The function π(x2) can be considered as the (unnormalized) PDF of the variable x2.
Random values of x2 distributed according to this PDF can be generated by the inverse
transform method (section 1.2.2), i.e. from the sampling equation

∫ x2

0
π(x′2) dx′2 = ξ

∫ x2
max

0
π(x′2) dx′2. (2.17)

It is convenient to introduce the function

Π(x2) =
∫ x2

0
π(x′2) dx′2, (2.18)

which increases monotonically with x2 and saturates for high x2-values to a constant
finite value. Then, the sampling equation (2.17) can be written in the form

Π(x2) = ξΠ(x2
max), (2.19)

which is easy to solve numerically. To this end, we only need to have a table of values
of the function Π(x2) stored in memory. For a given photon energy, Π(x2

max) can be
evaluated by interpolation in this table. Linear log-log interpolation (extrapolation) in
a table with about 240 points logarithmically distributed in the interval (10−4,106) yields
results which are accurate to within 0.01% (notice that in the interval from 0 to 10−4,
F (x,Z) ' Z and, hence, Π(x2) is proportional to x2, i.e. extrapolation for x2 < 10−4 is
exact). The value

x2 = Π−1
(
ξΠ(x2

max)
)

(2.20)

can then be obtained by inverse linear interpolation (or extrapolation) with a binary
search.



40 Chapter 2. Photon interactions

The angular deflection cos θ can now be sampled by the rejection method (section
1.2.4), since the function g(cos θ) is a valid rejection function (i.e. it is positive and less
than or equal to unity). The algorithm for sampling cos θ proceeds as follows:

(i) Compute Π(x2
max).

(ii) Generate a random number ξ and determine x2 using eq. (2.20). Set

cos θ = 1 − 1

2

x2

(20.6074κ)2
. (2.21)

(iii) Generate a new random number ξ.

(iv) If ξ > g(cos θ), go to step (ii).

(v) Deliver cos θ.

Although numerical interpolation is necessary, it is performed on a single function
that is independent of the photon energy and the errors introduced are negligible. It is
worth noting that the sampling algorithm is essentially independent of the adopted form
factor, and directly applicable to molecules. The advantage of using the analytical form
factor, eq. (2.7), instead of a numerical database is that Π(x2) can be easily calculated
to the desired accuracy, using the SUMGA integration function (appendix B).

The efficiency of the sampling method (i.e. the fraction of generated values of cos θ
that is accepted) increases with photon energy. At low energies, it equals 2/3 (exactly)
for all elements. For E = 100 keV, the efficiencies for hydrogen and uranium are 100%
and 86%, respectively.

2.2 Photoelectric effect

In the photoelectric effect, a photon of energy E is absorbed by the target atom, which
makes a transition to an excited state. The photon beams found in radiation transport
studies have relatively low photon densities and, as a consequence, only single-photon
absorption is observed1. To represent the atomic states, we can adopt an independent-
electron model, such as the Dirac-Hartree-Fock-Slater self-consistent model (see e.g.
Pratt et al., 1973), in which each electron occupies a single-particle orbital, with well-
defined ionization energy. The set of orbitals with the same principal and total angular
momentum quantum numbers and the same parity constitute a shell. Each shell i
can accommodate a finite number of electrons, with characteristic ionization energy Ui.
Notice that the shell ionization energies are positive, the quantity −Ui represents the
“binding” energy of each individual electron. Fig. 2.3 (left diagram) shows the various
notations used to designate the innermost atomic electron shells (i.e. those with the

1In intense low-energy photon beams, such as those from high-power lasers, simultaneous absorption
of several photons is possible.



2.2. Photoelectric effect 41

�

�

K

L 1

L 2

L 3

M 1

M 3

M 2

M 4

M 5

1s1/2

2s1/2

2p1/2

2p 3 /2

3s1/2

3p1/2

3p 3 /2

3d 3 /2

3d 5 /2

n     > 3 X

E    ≥  0

�E
����

���

���

�����

K

L
I

L
II

LIII

M
I

MIII

M
II

M
IV

M
V

X

�

α
1

α
2 β

1
β
2

l

K s e r i e s

L s e r i e s

α
1

α
2

η β
1

β
4

β
3

Figure 2.3: Various notations for inner atomic electron shells (left) and allowed radiative

transitions (right) to these shells. Transitions different from the ones indicated in the diagram

(e.g. K-M4) are also possible, but their transition probabilities are extremely small.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

Z

1 E + 2

1 E + 3

1 E + 4

1 E + 5

U
i 
  

(e
V

)

L 1K L 3 M 5
M 1

Figure 2.4: Ionization energies of the innermost shells of free atoms, as given by Lederer and

Shirley (1978).



42 Chapter 2. Photon interactions

largest ionization energies) as well as their ordering in energy and allowed occupancies.
In our simulations, we use the experimental ionization energies given by Lederer and
Shirley (1978), which pertain to free, neutral atoms. Ionization energies of K-, L- and
M-shells are displayed in fig. 2.4.

Considering the interaction with the photon field as a first-order perturbation (which
is appropriate for fields with low photon densities) it follows that only one-electron
transitions are allowed. That is, in the photoelectric effect, the photon is absorbed by
an individual electron in the “active” shell i, which leaves the parent atom with kinetic
energy Ee = E − Ui. Evidently, photoionization of a given shell is only possible when
the photon energy exceeds the corresponding ionization energy; this gives rise to the
characteristic absorption edges in the photoelectric cross section (see fig. 2.5).

The photoelectric cross sections used in penelope are obtained by interpolation in
a numerical table that was extracted from the LLNL Evaluated Photon Data Library
(EPDL; Cullen et al., 1997). This library contains photoelectric cross sections for all
shells of the elements Z = 1− 100 and photon energies from 1 eV to 1000 GeV, derived
from Scofield’s theoretical calculations of shell cross sections (Saloman et al., 1988) and
Hubbell’s total cross sections (Hubbell et al., 1980; Berger and Hubbell, 1987). The
penelope database for photoelectric absorption (a subset of the EPDL) consists of
tables of the total atomic cross section σph(E) and the cross sections for the K and L
shells, σph,i(E) (i = K, L1, L2 and L3) for the elements Z = 1–92, which span the
energy range from 100 eV to 1000 GeV. These tables are estimated to be accurate to
within a few percent for photon energies above 1 keV (Cullen et al., 1997). At lower
energies, uncertainties in the data are much larger: 10–20% for 0.5 keV < E < 1 keV
and 100–200% for 0.1 keV < E < 0.5 keV. Notice that the cross sections in the EPDL
are based on free-atom theoretical calculations and, therefore, near-edge absorption
structures produced by molecular or crystalline ordering (e.g. extended x-ray absorption
fine-structure) are ignored.

For compound materials (and also for mixtures) the molecular cross section σph(E)
is evaluated by means of the additivity approximation, that is, as the sum of the atomic
cross sections of the elements involved. In the energy range between successive absorp-
tion edges, the photoelectric cross section is a continuous function of the photon energy
(see fig. 2.5). In penelope, the molecular cross section is defined by means of a table of
numerical values σph(Ei) for a logarithmic grid of energies Ei, which is stored in mem-
ory. Photon mean free paths are determined by linear log-log interpolation in this table.
Knowledge of the atomic cross sections is needed, only when a photoabsorption event
has effectively occurred, to select the element that has been ionized (whose probability
is proportional to the atomic cross section).

2.2.1 Simulation of photoelectron emission

Let us consider that a photon with energy E is absorbed by an atom of the element
Z. The “active” shell i that is ionized is considered as a discrete random variable with
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pi = σph,i(Z,E)/σph(Z,E), (2.22)

where σph,i(Z,E) is the cross section for ionization of shell i and σph(Z,E) is the total
photoelectric cross section of the atom. penelope incorporates a detailed description
of photoabsorption in K- and L-shells (including the subsequent atomic relaxation).
The ionization probabilities of these inner shells are determined from the corresponding
partial cross sections. The probability of ionization in an outer shell is obtained as

pouter = 1− (pK + pL1 + pL2 + pL3). (2.23)

When the ionization occurs in an inner K- or L-shell, the initial energy of the photo-
electron is set equal to Ee = E − Ui; the residual atom, with a vacancy in the shell,
subsequently relaxes to its ground state by emitting x rays and Auger electrons. If the
ionization occurs in an outer shell, we assume that the photoelectron leaves the target
atom with kinetic energy equal to the energy deposited by the photon, Ee = E, and we
disregard the emission of subsidiary fluorescent radiation (see section 2.6).

Initial direction of photoelectrons

The direction of emission of the photoelectron, relative to that of the absorbed photon,
is defined by the polar and azimuthal angles θe (fig. 2.1) and φe. We consider that the
incident photon is not polarized and, hence, the angular distribution of photoelectrons
is independent of φe, which is uniformly distributed in the interval (0, 2π). The polar
angle θe is sampled from the K-shell cross section derived by Sauter (1931) using K-shell
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hydrogenic electron wave functions. The Sauter DCS (per electron) can be written as

dσph

dΩe
= α4r2

e

(
Z

κ

)5 β3

γ

sin2 θe

(1− β cos θe)4

[
1 +

1

2
γ(γ − 1)(γ − 2)(1 − β cos θe)

]
, (2.24)

where α is the fine-structure constant, re is the classical electron radius, and

γ = 1 + Ee/(mec
2), β =

√
Ee(Ee + 2mec2)

Ee + mec2
. (2.25)

Strictly speaking, the DCS (2.24) is adequate only for ionization of the K-shell by high-
energy photons. Nevertheless, in many practical simulations no appreciable errors are
introduced when Sauter’s distribution is used to describe any photoionization event,
irrespective of the atomic shell and the photon energy. The main reason is that the
emitted photoelectron immediately starts to interact with the medium, and its direction
of movement is strongly altered after travelling a path length much shorter than the
photon mean free path. On the other hand, when the photon energy exceeds the K-
edge, most of the ionizations occur in the K-shell and then the Sauter distribution
represents a good approximation.

Introducing the variable ν = 1 − cos θe, the angular distribution of photoelectrons
can be expressed in the form

p(ν) = (2− ν)
[

1

A+ ν
+

1

2
βγ(γ − 1)(γ − 2)

]
ν

(A+ ν)3
, A =

1

β
− 1, (2.26)

apart from a normalization constant. Random sampling of ν from this distribution can
be performed analytically. To this end, p(ν) can be factorized in the form

p(ν) = g(ν)π(ν) (2.27)

with

g(ν) = (2 − ν)
[

1

A+ ν
+

1

2
βγ(γ − 1)(γ − 2)

]
(2.28)

and

π(ν) =
A(A+ 2)2

2

ν

(A+ ν)3
. (2.29)

The variable ν takes values in the interval (0,2), where the function g(ν) is definite
positive and attains its maximum value at ν = 0, while the function π(ν) is positive
and normalized to unity. Random values from the probability distribution π(ν) are
generated by means of the sampling formula (inverse transform method, see section
1.2.2) ∫ ν

0
π(ν ′) dν ′ = ξ, (2.30)

which can be solved analytically to give

ν =
2A

(A+ 2)2 − 4ξ

[
2ξ + (A+ 2)ξ1/2

]
. (2.31)

Therefore, random sampling from Sauter’s distribution can be performed by the rejection
method (see section 1.2.4) as follows:
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(i) Generate ν from π(ν) by using eq. (2.31).

(ii) Generate a random number ξ.

(iii) If ξg(0) > g(ν), go to step (i).

(iv) Deliver cos θe = 1 − ν.

The efficiency of this algorithm is ∼ 0.33 at low energies and increases slowly with Ee;
for Ee = 1 MeV, the efficiency is 0.4. As photoelectric absorption occurs at most once
in each photon history, this small sampling efficiency does not slow down the simulation
significantly.

2.3 Incoherent (Compton) scattering

In Compton scattering, a photon of energy E interacts with an atomic electron, which
absorbs it and re-emits a secondary (Compton) photon of energy E ′ in the direction Ω =
(θ, φ) relative to the direction of the original photon. In penelope, Compton scattering
events are described by means of the cross section obtained from the relativistic impulse
approximation (Ribberfors, 1983). Contributions from different atomic electron shells
are considered separately. After a Compton interaction with the i-th shell, the active
target electron is ejected to a free state with kinetic energy Ee = E−E ′−Ui > 0, where
Ui is the ionization energy of the considered shell, and the residual atom is left in an
excited state with a vacancy in the i-th shell.

In the case of scattering by free electrons at rest, the conservation of energy and mo-
mentum implies the following relation between the energy E ′ of the scattered (Compton)
photon and the scattering angle θ [cf. eq. (A.19)]

E ′ ≡ E

1 + κ(1− cos θ)
≡ EC, (2.32)

where κ = E/mec
2, as before. The DCS for Compton scattering by a free electron at

rest is given by the familiar Klein-Nishina formula,

dσKN
Co

dΩ
=
r2
e

2

(
EC

E

)2 (EC

E
+

E

EC
− sin2 θ

)
. (2.33)

Although this simple DCS was generally used in old Monte Carlo transport codes, it
represents only a rough approximation for the Compton interactions of photons with
atoms. In reality, atomic electrons are not at rest, but move with a certain momentum
distribution, which gives rise to the so-called Doppler broadening of the Compton line.
Moreover, transitions of bound electrons are allowed only if the energy transfer E − E ′

is larger than the ionization energy Ui of the active shell (binding effect).

The impulse approximation accounts for Doppler broadening and binding effects
in a natural, and relatively simple, way. The DCS is obtained by considering that
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electrons in the i-th shell move with a momentum distribution ρi(p). For an electron in
an orbital ψi(r), ρi(p) ≡ |ψi(p)|2, where ψi(p) is the wave function in the momentum
representation. The DCS for Compton scattering by an electron with momentum p
is derived from the Klein-Nishina formula by applying a Lorentz transformation with
velocity v equal to that of the moving target electron. The impulse approximation to
the Compton DCS (per electron) of the considered shell is obtained by averaging over
the momentum distribution ρi(p).

After some manipulations, the Compton DCS of an electron in the i-th shell can be
expressed as [eq. (21) in Brusa et al., 1996]

d2σCo,i

dE ′dΩ
=
r2
e

2

(
EC

E

)2 (EC

E
+

E

EC
− sin2 θ

)
F (pz)Ji(pz)

dpz

dE ′
, (2.34)

where re is the classical electron radius. EC is the energy of the Compton line, defined
by eq. (2.32), i.e. the energy of photons scattered in the direction θ by free electrons at
rest . The momentum transfer vector is given by q ≡ h̄k − h̄k′, where h̄k and h̄k′ are
the momenta of the incident and scattered photons; its magnitude is

q =
1

c

√
E2 + E ′2 − 2EE ′ cos θ. (2.35)

The quantity pz is the projection of the initial momentum p of the electron on the
direction of the scattering vector h̄k′ − h̄k = −q; it is given by2

pz ≡ −
p · q
q

=
EE ′(1 − cos θ)−mec

2(E − E ′)

c2q
(2.36)

or, equivalently,
pz

mec
=
E(E ′ −EC)

EC cq
. (2.37)

Notice that pz = 0 for E ′ = EC. Moreover,

dpz

dE ′
=

mec

cq

(
E

EC

+
E cos θ −E ′

cq

pz

mec

)
. (2.38)

The function Ji(pz) in eq. (2.34) is the one-electron Compton profile of the active
shell, which is defined as

Ji(pz) ≡
∫ ∫

ρi(p) dpx dpy, (2.39)

where ρi(p) is the electron momentum distribution. That is, Ji(pz) dpz gives the proba-
bility that the component of the electron momentum in the z-direction is in the interval
(pz, pz + dpz). Notice that the normalization

∫ ∞

−∞
Ji(pz) dpz = 1 (2.40)

2The expression (2.36) contains an approximation, the exact relation is obtained by replacing the
electron rest energy mec

2 in the numerator by the electron initial total energy,
√

(mec2)2 + (cp)2.
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1996.)

is assumed. In the Hartree-Fock approximation for closed-shell configurations, the mo-
mentum distribution of the electrons in an atomic shell, obtained by adding the contri-
butions of the orbitals in that shell, is isotropic. For an isotropic distribution, expression
(2.39) simplifies to

Ji(pz) = 2π
∫ ∞

|pz|
p ρi(p) dp. (2.41)

The atomic Compton profile is given by

J(pz) =
∑

i

fi Ji(pz), (2.42)

where fi is the number of electrons in the i-th shell and Ji(pz) is the one-electron profile
of this shell. The functions J(pz) and Ji(pz) are both bell-shaped and symmetrical about
pz = 0 (see fig. 2.6). Extensive tables of Hartree-Fock Compton profiles for the elements
have been published by Biggs et al. (1975). These numerical profiles are adequate for
bound electron shells. In the case of conductors, the one-electron Compton profile for
conduction electrons may be estimated by assuming that these form a free-electron gas
with ρe electrons per unit volume. The one-electron profile for this system is (see e.g.
Cooper, 1971)

J feg
i (pz) =

3

4pF

(
1− p2

z

p2
F

)
Θ(pF − |pz|), J feg

i (0) =
3

4pF
, (2.43)

where pF ≡ h̄(3π2ρe)
1/3 is the Fermi momentum. For scattering in a compound material,
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the molecular Compton profile is obtained as the sum of atomic profiles of the atoms in
a molecule (additivity rule).

The factor F (pz) in eq. (2.34) is approximately given by

F (pz) ' 1 +
cqC
E

(
1 +

EC(EC −E cos θ)

(cqC)2

)
pz

mec
, (2.44)

where qC is the momentum transfer associated with the energy E ′ = EC of the Compton
line,

qC ≡
1

c

√
E2 + E2

C − 2EEC cos θ. (2.45)

Expression (2.44) is accurate only for small |pz|-values. For large |pz|, Ji(pz) tends to
zero and the factor F (pz) has no effect on the DCS. We use the values given by expression
(2.44) only for |pz | < 0.2mec and take F (±|pz|) = F (±0.2mec) for |pz | > 0.2mec. Owing
to the approximations introduced, negative values of F may be obtained for large |pz|;
in this case, we must set F = 0.

We can now introduce the effect of electron binding: Compton excitations are allowed
only if the target electron is promoted to a free state, i.e. if the energy transfer E − E ′

is larger than the ionization energy Ui of the active shell. Therefore the atomic DCS,
including Doppler broadening and binding effects, is given by

d2σCo

dE ′dΩ
=

r2
e

2

(
EC

E

)2 (EC

E
+

E

EC
− sin2 θ

)

× F (pz)

(
∑

i

fi Ji(pz)Θ(E − E ′ − Ui)

)
dpz

dE ′
, (2.46)

where Θ(x) (= 1 if x > 0, = 0 otherwise) is the Heaviside step function. In the
calculations we use the ionization energies Ui given by Lederer and Shirley (1978), fig.
2.4. The DCS for scattering of 10 keV photons by aluminium atoms is displayed in fig.
2.7, for θ = 60 and 180 degrees, as a function of the fractional energy of the emerging
photon. The DCS for a given scattering angle has a maximum at E ′ = EC; its shape
resembles that of the atomic Compton profile, except for the occurrence of edges at
E ′ = E − Ui.

In the case of scattering by free electrons at rest we have Ui = 0 (no binding) and
Ji(pz) = δ(pz) (no Doppler broadening). Moreover, from eq. (2.37) E ′ = EC, so that
photons scattered through an angle θ have energy EC. Integration of the DCS, eq.
(2.46), over E ′ then yields the familiar Klein-Nishina cross section,

dσKN
Co

dΩ
= Z

r2
e

2

(
EC

E

)2 (EC

E
+

E

EC
− sin2 θ

)
, (2.47)

for the Z atomic electrons [cf. eq. (2.33)]. For energies of the order of a few MeV and
larger, Doppler broadening and binding effects are relatively small and the free-electron
theory yields results practically equivalent to those of the impulse approximation.
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Figure 2.7: DCS for Compton scattering of 10 keV photons by aluminium atoms at the

indicated scattering angles. The continuous curves represent the DCS (2.46) calculated using

the Hartree-Fock Compton profile (Biggs et al., 1975). The dashed curves are results from eq.

(2.46) with the analytical profiles given by eq. (2.57). (Adapted from Brusa et al., 1996.)

The angular distribution of scattered photons is given by the directional DCS,

dσCo

dΩ
=
∫

d2σCo

dE ′dΩ
dE ′ =

r2
e

2

(
EC

E

)2 (EC

E
+

E

EC
− sin2 θ

)

×
∑

i

fi Θ(E − Ui)
∫ pi,max

−∞
F (pz)Ji(pz) dpz , (2.48)

where pi,max is the highest pz-value for which an electron in the i-th shell can be excited.
It is obtained from eq. (2.36) by setting E ′ = E − Ui,

pi,max(E, θ) =
E(E − Ui)(1− cos θ)−mec

2Ui

c
√

2E(E − Ui)(1− cos θ) + U2
i

. (2.49)

Except for energies just above the shell ionization threshold, the function F (pz) in the
integral can be replaced by unity, since pzJi(pz) is an odd function and its integral is
close to zero, i.e. ∫ pi,max

−∞
F (pz)Ji(pz) dpz ' ni(pi,max), (2.50)
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where

ni(pz) ≡
∫ pz

−∞
Ji(p

′
z) dp′z . (2.51)

Notice that ni(pz) is a monotonously increasing function of pz, which varies from 0 at
pz = −∞ to unity at pz =∞; the quantity ni(pi,max) represents the fraction of electrons
in the i-th shell that can be effectively excited in a Compton interaction. We can then
write

dσCo

dΩ
' r2

e

2

(
EC

E

)2 (EC

E
+

E

EC
− sin2 θ

)
S(E, θ). (2.52)

The function

S(E, θ) =
∑

i

fi Θ(E − Ui)ni(pi,max) (2.53)

can be identified with the incoherent scattering function in the impulse approximation
(see e.g. Ribberfors and Berggren, 1982). The total cross section can then be obtained
as

σCo = 2π
∫ 1

−1

dσCo

dΩ
d(cos θ). (2.54)

For comparison purposes, and also to calculate the energy deposition, it is useful to
consider the cross section differential in only the energy of the scattered photon,

dσCo

dE ′
≡
∫ d2σCo

dE ′dΩ
dΩ. (2.55)

In the case of scattering by free electrons at rest, E ′ = EC and the Klein-Nishina formula
(2.47) gives the following expression for the energy DCS,

dσKN
Co

dE ′
= 2π

dσKN
Co

dΩ

d(cos θ)

dEC

=
πr2

e

E
κ−3

(
E2

E ′2
+

(κ2 − 2κ− 2)E

E ′
+ (2κ + 1) +

κ2E ′

E

)
. (2.56)

Fig. 2.8 displays the energy DCSs obtained from this formula and from the impulse
approximation for scattering of high-energy (E > Ui) photons by aluminium and gold
atoms. These results show clearly the differences between the physics of the impulse
approximation and the cruder free-electron approximation. The most conspicuous fea-
ture of the impulse approximation DCS is the absence of a threshold energy, which is
a direct manifestation of the Doppler broadening. For relatively small energy transfers
(E ′ ∼ E) the Klein-Nishina DCS increases with the energy of the scattered photon,
whereas the energy DCS obtained from the impulse approximation vanishes at E ′ = E
due to the effect of binding, which also causes the characteristic edge structure, similar
to that of the photoelectric cross section (see fig. 2.8).
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Figure 2.8: Energy DCSs for Compton scattering of 50 and 500 keV photons by aluminium

and gold atoms. The continuous curves represent the DCS (2.55), computed using the analyt-

ical Compton profiles (2.57). The dashed curves are obtained from the Klein-Nishina formula

(2.56), i.e. assuming that the atomic electrons are free and at rest.

2.3.1 Analytical Compton profiles

In order to minimize the required numerical information and to simplify the random
sampling, we use approximate one-electron profiles of the form

JA
i (pz) = Ji,0

nd2

2

(
d1 + d2Ji,0 |pz|

)n−1
exp

[
dn

1 −
(
d1 + d2Ji,0 |pz|

)n]
(2.57)

with

n = 2, d1 =
(
n − 1

n

)1/n

=

√
1

2
, d2 =

2

n
d 1−n

1 =
√

2.

The quantity Ji,0 ≡ Ji(0) is the value of the profile at pz = 0 obtained from the Hartree-
Fock orbital (Biggs et al., 1975). Ji(0) is tabulated in the file PDATCONF.TAB for all
shells of the elements Z = 1 to 92. Notice that JA

i (pz) is normalized according to eq.
(2.40). With the profiles (2.57),

nA
i (pz) ≡

∫ pz

−∞
JA

i (p′z) dp′z =





1
2

exp
[
d 2

1 −
(
d1 − d2Ji,0 pz

)2
]

if pz < 0,

1− 1
2

exp
[
d 2

1 −
(
d1 + d2Ji,0 pz

)2
]

if pz > 0.

(2.58)
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Thus, the incoherent scattering function (2.53) can be expressed analytically and the
integral (2.54) evaluated very quickly with the aid of function SUMGA (appendix B). On
the other hand, the sampling equation nA

i (pz) ≡ ξnA
i (pi,max) (see section 1.2.2) can be

solved analytically,

pz =





1

d2Ji,0

[
d1 −

(
d 2

1 − ln 2A
)1/2

]
if A < 1

2
,

1

d2Ji,0

[(
d 2

1 − ln 2(1 −A)
)1/2 − d1

]
if A > 1

2
,

(2.59)

where A ≡ ξnA
i (pi,max). Atomic Compton profiles obtained from the approximation

given by eq. (2.57) are accurate for small pz and oscillate about the Hartree-Fock values
for intermediate momenta (see fig. 2.6). The relative differences are normally less than
5%, except for large momenta for which J(pz) is very small. Similar differences are found
between the DCS computed from Hartree-Fock and analytical Compton profiles (see fig.
2.7). For most applications (e.g. studies of detector response, dosimetry, radiotherapy,
etc.), the effect of these differences on the simulation results is not important. The
impulse approximation with the analytical one-electron profiles (2.57) then provides a
conveniently simple method to introduce Doppler broadening and binding effects in the
simulation of Compton scattering.

In penelope, the maximum number of electron shells for each material is limited.
For heavy elements, and also for compounds, the number of shells may be fairly large.
In this case, outer shells with similar ionization energies are grouped together and re-
placed by a single shell with a Ji,0 value and an effective ionization energy equal to the
corresponding averages of the grouped shells. This grouping does not alter the average
effects of Doppler broadening and binding.

2.3.2 Simulation of incoherent scattering events

Compton events are simulated on the basis of the DCS given by eq. (2.46) with the
analytical Compton profiles (2.57). The sampling algorithm adopted here is due to
Brusa et al. (1996). It is similar to the one described by Namito et al. (1994), but has
a higher efficiency.

The PDF of the polar deflection cos θ and the energy E ′ of the scattered photon is
given by (apart from normalization constants, which are irrelevant here)

PCo(cos θ,E
′) =

(
EC

E

)2 (EC

E
+

E

EC
− sin2 θ

)

× F (pz)

(
∑

i

fi Ji(pz)Θ(E − E ′ − Ui)

)
dpz

dE ′
. (2.60)

Integration of expression (2.60) over E ′, using the approximation (2.50), yields the PDF
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of the polar deflection

Pθ(cos θ) =
(
EC

E

)2 (EC

E
+

E

EC
− sin2 θ

)
S(E, θ), (2.61)

where S(E, θ) is the incoherent scattering function, eq. (2.53).

Random values of cos θ from the PDF (2.61) can be generated by using the following
algorithm (Baró et al., 1994a). Let us introduce the quantity

τ ≡ EC

E
=

1

1 + κ(1 − cos θ)
. (2.62)

The minimum and maximum values of τ are

τmin =
1

1 + 2κ
and τmax = 1, (2.63)

which correspond to backward (θ = π) and forward (θ = 0) scattering, respectively.
The PDF of this variable is (again ignoring normalization constants)

Pτ (τ ) = Pθ(cos θ)
d(cos θ)

dτ
=

(
1

τ 2
+
κ2 − 2κ − 2

τ
+ (2κ+ 1) + κ2τ

)
S(E, θ). (2.64)

This distribution can be rewritten in the form (Nelson et al., 1985)

Pτ (τ ) = [a1 P1(τ ) + a2P2(τ )]T (cos θ), (2.65)

where

a1 = ln(1 + 2κ), a2 =
2κ(1 + κ)

(1 + 2κ)2
, (2.66)

P1(τ ) =
1

ln(1 + 2κ)

1

τ
, P2(τ ) =

(1 + 2κ)2

2κ(1 + κ)
τ (2.67)

and

T (cos θ) =

{
1 − (1− τ ) [(2κ+ 1)τ − 1]

κ2τ (1 + τ 2)

}
S(E, θ)

S(E, θ = π)
. (2.68)

The function in braces is positive, it equals 1 at the end points of the interval (τmin,1),
and is less than unity inside this interval. Moreover, the ratio of incoherent scattering
functions is also less than unity for any value of θ < π. Hence, the function T (cos θ) is
a valid rejection function. The functions Pi(τ ) (i = 1, 2) are normalized PDFs in the
interval (τmin, 1), which can be easily sampled by using the inverse transform method.
The generation of random values of τ according to the PDF given by eq. (2.64) can then
be performed by combining the composition and rejection methods (section 1.2). The
algorithm to sample cos θ proceeds as follows:

(i) Sample a value of the integer i (=1, 2) according to the point probabilities

π(1) =
a1

a1 + a2
and π(2) =

a2

a1 + a2
. (2.69)



54 Chapter 2. Photon interactions

(ii) Sample τ from Pi(τ ) using the sampling formulae

τ =






τ ξ
min if i = 1,

[τ 2
min + ξ (1 − τ 2

min)]
1/2

if i = 2,
(2.70)

which can be easily derived by the inverse transform method (section 1.2.2).

(iii) Determine cos θ using eq. (2.62),

cos θ = 1 − 1− τ
κτ

, (2.71)

and compute the quantities pi,max(E, θ), eq. (2.49), and

S(E, θ) =
∑

i

fi Θ(E − Ui)n
A
i (pi,max). (2.72)

(iv) Generate a new random number ξ.

(v) If ξ > T (cos θ), go to step (i).

(vi) Deliver cos θ.

The efficiency of this algorithm, i.e. the probability of accepting a generated cos θ-value,
increases monotonically with photon energy and is nearly independent of Z; typical
values are 35%, 80% and 95% for E = 1 keV, 1 MeV and 10 MeV, respectively.

Once the direction of the emerging photon has been set, the active electron shell i
is selected with relative probability equal to Zi Θ(E − Ui)n

A
i (pi,max(E, θ)). A random

value of pz is generated from the analytical Compton profile (2.57) using the sampling
formula (2.59). If pz is less than −mec, it is rejected and a new shell and a pz-value
are sampled3. Finally, the factor F (pz) in the PDF (2.46) is accounted for by means of
a rejection procedure. It should be noted that the approximation F ' 1 is valid only
when the DCS is integrated over E ′; otherwise the complete expression (2.44) must be
used. Let Fmax denote the maximum value of F (pz), which occurs at pz = 0.2mec or
−0.2mec; a random number ξ is generated and the value pz is accepted if ξFmax < F (pz),
otherwise the process of selecting a shell and a pz-value is reinitiated. The energy E ′ of
the emerging photon is then calculated from eq. (2.36), which gives

E ′ = E
τ

1− tτ 2

[
(1 − tτ cos θ) + sign(pz)

√
(1 − tτ cos θ)2 − (1− tτ 2)(1− t)

]
, (2.73)

where
t ≡ (pz/mec)

2 and sign(pz) ≡ pz/|pz|. (2.74)

For photons with energy larger than 5 MeV, for which Doppler broadening is negligible,
we set E ′ = EC (which amounts to assuming that pz = 0). In this case, the active

3Notice that, due to the approximation introduced in eq. (2.36), a value pz < −mec would yield a
negative energy for the scattered photon.



2.4. Electron-positron pair production 55

electron shell i is sampled with relative probability fi and binding effects are accounted
for by simply rejecting E ′-values such that E −E ′ < Ui.

The azimuthal scattering angle φ of the photon is sampled uniformly in the interval
(0, 2π). We assume that the Compton electron is emitted with energy Ee = E−E ′−Ui

in the direction of the momentum transfer vector q = h̄k− h̄k′, with polar angle θe and
azimuthal angle φe = φ + π, relative to the direction of the incident photon. cos θe is
given by

cos θe =
E − E ′ cos θ√

E2 + E ′2 − 2EE ′ cos θ
. (2.75)

When E ′ = EC, this expression simplifies to

cos θe =
E + mec

2

E

(
E − EC

2mec2 + E − EC

)1/2

, (2.76)

which coincides with the result (A.20). Since the active electron shell is known, char-
acteristic x rays and Auger electrons emitted in the de-excitation of the ionized atom
can also be followed. This is important, for instance, to account for escape peaks in
scintillation or solid state detectors

Table 2.1: Average number nr of random numbers ξ needed to simulate a single incoherent

scattering event for photons with energy E in aluminium, silver and gold.

E (eV) Al Ag Au

103 16.6 11.9 13.4

104 11.0 11.4 11.5

105 9.5 9.8 10.0

106 8.2 8.2 8.3

107 7.5 7.5 7.5

As a measure of the efficiency of the sampling algorithm, we may consider the average
number nr of random numbers ξ required to simulate an incoherent scattering event.
nr is practically independent of the atomic number and decreases with photon energy
(see table 2.1). The increase of nr at low energies stems from the loss of efficiency
of the algorithm used to sample cos θ. Although the simulation of incoherent events
becomes more laborious as the photon energy decreases, this has only a small influence
on the speed of practical photon transport simulations since low-energy photons interact
predominantly via photoelectric absorption (see fig. 2.10 below).

2.4 Electron-positron pair production

Electron-positron pairs can be created by absorption of a photon in the vicinity of a
massive particle, a nucleus or an electron, which absorbs energy and momentum so that
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these two quantities are conserved. The threshold energy for pair production in the field
of a nucleus (assumed of infinite mass) is 2mec

2. When pair production occurs in the
field of an electron, the target electron recoils after the event with appreciable kinetic
energy; the process is known as “triplet production” because it causes three visible
tracks when observed, e.g. in a cloud chamber. If the target electron is at rest, triplet
production is only possible for photons with energy larger than 4mec

2.

For the simulation of pair production events in the field of an atom of atomic number
Z, we shall use the following semiempirical model (Baró et al., 1994a). Our starting
point is the high-energy DCS for arbitrary screening, which was derived by Bethe and
Heitler from the Born approximation (Motz et al., 1969; Tsai, 1974). The Bethe-Heitler
DCS for a photon of energy E to create an electron-positron pair, in which the electron
has a kinetic energy E− = εE −mec

2, can be expressed as (Tsai, 1974)

dσ(BH)
pp

dε
= r2

eαZ[Z + η]
{[
ε2 + (1 − ε)2

]
(Φ1 − 4fC) +

2

3
ε(1− ε)(Φ2 − 4fC)

}
. (2.77)

Notice that the “reduced energy” ε = (E− + mec
2)/E is the fraction of the photon

energy that is taken away by the electron. The screening functions Φ1 and Φ2 are
given by integrals that involve the atomic form factor and, therefore, must be computed
numerically when a realistic form factor is adopted (e.g. the analytical one described in
section 2.1). To obtain approximate analytical expressions for these functions, we shall
assume that the Coulomb field of the nucleus is exponentially screened by the atomic
electrons (Schiff, 1968; Tsai, 1974), i.e. the electrostatic potential of the atom is assumed
to be (Wentzel model)

ϕW(r) =
Ze

r
exp(−r/R), (2.78)

with the screening radius R considered as an adjustable parameter (see below). The
corresponding atomic electron density is obtained from Poisson’s equation,

ρW(r) =
1

4πe
∇2ϕ(r) =

1

4πe

1

r

d2

dr2
[rϕ(r)] =

Z

4πR2r
exp(−r/R), (2.79)

and the atomic form factor is

FW(q, Z) = 4π
∫ ∞

0
ρW(r)

sin(qr/h̄)

qr/h̄
r2 dr =

Z

1 + (Rq/h̄)2
. (2.80)

The screening functions for this particular form factor take the following analytical
expressions (Tsai, 1974)

Φ1 = 2− 2 ln(1 + b2)− 4b arctan(b−1) + 4 ln(Rmec/h̄)

Φ2 =
4

3
− 2 ln(1 + b2) + 2b2

[
4 − 4b arctan(b−1)− 3 ln(1 + b−2)

]

+ 4 ln(Rmec/h̄), (2.81)

where

b =
Rmec

h̄

1

2κ

1

ε(1− ε) . (2.82)
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The quantity η in eq. (2.77) accounts for pair production in the field of the atomic
electrons (triplet production), which is considered in detail by Hubbell et al. (1980) and
Tsai (1974). In order to simplify the calculations, the dependence of the triplet cross
section on the electron reduced energy, ε, is assumed to be the same as that of the pair
cross section. The function fC in (2.77) is the high-energy Coulomb correction of Davies,
Bethe and Maximon (1954) given by

fC(Z) = a2
[
(1 + a2)−1 + 0.202059 − 0.03693a2 + 0.00835a4

− 0.00201a6 + 0.00049a8 − 0.00012a10 + 0.00003a12
]
, (2.83)

with a = αZ. The total atomic cross section for pair (and triplet) production is obtained
as

σ(BH)
pp =

∫ εmax

εmin

dσ(BH)
pp

dε
dε, (2.84)

where

εmin = mec
2/E = κ−1 and εmax = 1 −mec

2/E = 1− κ−1. (2.85)

Extensive tables of pair production total cross sections, evaluated by combining dif-
ferent theoretical approximations, have been published by Hubbell et al. (1980). These
tables give the separate contributions of pair production in the field of the nucleus and
in that of the atomic electrons for Z = 1 to 100 and for photon energies from threshold
up to 105 MeV. Following Salvat and Fernández-Varea (1992), the screening radius R
has been determined by requiring that eq. (2.77) with η = 0 exactly reproduces the total
cross sections given by Hubbell et al. (1980) for pair production in the nuclear field by
105 MeV photons (after exclusion of radiative corrections, which only amount to ∼ 1%
of the total cross section). The screening radii for Z = 1–92 obtained in this way are
given in table 2.2.

Actually, the triplet contribution, η, varies with the photon energy. It increases
monotonically from zero at E ' 4mec

2 and reaches a saturation value, η∞, at high
energies. It can be obtained, for all elements and energies up to 105 MeV, as

η(E) = Z σHGO
triplet(E)/σHGO

pair (E), (2.86)

where σHGO
pair and σHGO

triplet are the total pair and triplet production cross sections given by
Hubbell et al. (1980). At 105 MeV, the high-energy limit is reached, i.e.

η∞ ' Z σHGO
triplet(10

5 MeV)/σHGO
pair (105 MeV). (2.87)

The values of η∞ for the elements Z = 1–92 are given in table 2.2. The average depen-
dence of η on the photon energy is approximated by the following empirical expression

η = [1− exp(−v)]η∞, (2.88)
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Table 2.2: Reduced screening radius, Rmec/h̄, and high-energy triplet contribution, η∞, for

electron-positron pair production obtained from the tables of Hubbell et al. (1980) as described

in the text. Notice that h̄/mec = 3.8616×10−13 m is the Compton wavelength of the electron.

Z Rmec/h̄ η∞ Z Rmec/h̄ η∞ Z Rmec/h̄ η∞

1 122.81 1.157 32 33.422 1.158 63 26.911 1.194

2 73.167 1.169 33 33.068 1.157 64 26.705 1.196

3 69.228 1.219 34 32.740 1.158 65 26.516 1.197

4 67.301 1.201 35 32.438 1.158 66 26.304 1.196

5 64.696 1.189 36 32.143 1.158 67 26.108 1.197

6 61.228 1.174 37 31.884 1.166 68 25.929 1.197

7 57.524 1.176 38 31.622 1.173 69 25.730 1.198

8 54.033 1.169 39 31.438 1.174 70 25.577 1.198

9 50.787 1.163 40 31.142 1.175 71 25.403 1.200

10 47.851 1.157 41 30.950 1.170 72 25.245 1.201

11 46.373 1.174 42 30.758 1.169 73 25.100 1.202

12 45.401 1.183 43 30.561 1.172 74 24.941 1.204

13 44.503 1.186 44 30.285 1.169 75 24.790 1.205

14 43.815 1.184 45 30.097 1.168 76 24.655 1.206

15 43.074 1.180 46 29.832 1.164 77 24.506 1.208

16 42.321 1.178 47 29.581 1.167 78 24.391 1.207

17 41.586 1.175 48 29.411 1.170 79 24.262 1.208

18 40.953 1.170 49 29.247 1.172 80 24.145 1.212

19 40.524 1.180 50 29.085 1.174 81 24.039 1.215

20 40.256 1.187 51 28.930 1.175 82 23.922 1.218

21 39.756 1.184 52 28.721 1.178 83 23.813 1.221

22 39.144 1.180 53 28.580 1.179 84 23.712 1.224

23 38.462 1.177 54 28.442 1.180 85 23.621 1.227

24 37.778 1.166 55 28.312 1.187 86 23.523 1.230

25 37.174 1.169 56 28.139 1.194 87 23.430 1.237

26 36.663 1.166 57 27.973 1.197 88 23.331 1.243

27 35.986 1.164 58 27.819 1.196 89 23.238 1.247

28 35.317 1.162 59 27.675 1.194 90 23.139 1.250

29 34.688 1.154 60 27.496 1.194 91 23.048 1.251

30 34.197 1.156 61 27.285 1.194 92 22.967 1.252

31 33.786 1.157 62 27.093 1.194
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where

v = (0.2840 − 0.1909a) ln(4/κ) + (0.1095 + 0.2206a) ln2(4/κ)

+ (0.02888 − 0.04269a) ln3(4/κ) + (0.002527 + 0.002623a) ln4(4/κ). (2.89)

Then, the single quantity η∞ characterizes the triplet production for each element.

The approximation given by eq. (2.77) with the fitted value of the screening radius,
fails at low energies where it systematically underestimates the total cross section (it
can even become negative). To compensate for this fact we introduce an empirical
correcting term F0(κ,Z), which acts in a way similar to the Coulomb correction. To
facilitate the random sampling, the Bethe-Heitler DCS, eq. (2.77), including this low-
energy correction and a high-energy radiative correction, is written in the form

dσpp

dε
= r2

eαZ[Z + η]Cr
2

3

[
2
(

1

2
− ε

)2

φ1(ε) + φ2(ε)

]
, (2.90)

where

φ1(ε) = g1(b) + g0(κ)

φ2(ε) = g2(b) + g0(κ) (2.91)

with

g1(b) =
1

2
(3Φ1 −Φ2)− 4 ln(Rmec/h̄) =

7

3
− 2 ln(1 + b2)− 6b arctan(b−1)

− b2
[
4 − 4b arctan(b−1)− 3 ln(1 + b−2)

]
,

g2(b) =
1

4
(3Φ1 + Φ2)− 4 ln(Rmec/h̄) =

11

6
− 2 ln(1 + b2)− 3b arctan(b−1)

+
1

2
b2
[
4− 4b arctan(b−1)− 3 ln(1 + b−2)

]
,

g0(κ) = 4 ln(Rmec/h̄)− 4fC(Z) + F0(κ,Z). (2.92)

Cr = 1.0093 is the high-energy limit of Mork and Olsen’s radiative correction (Hubbell
et al., 1980).

The correcting factor F0(κ,Z) has been determined by requiring that the total cross
section for pair production obtained from the expression given in eq. (2.90) (with η = 0)
coincides with the total cross sections for pair production in the field of the nucleus tab-
ulated by Hubbell et al. (1980). By inspection and numerical fitting, we have obtained
the following analytical approximation

F0(κ,Z) = (−0.1774 − 12.10a + 11.18a2)(2/κ)1/2

+ (8.523 + 73.26a − 44.41a2)(2/κ)

− (13.52 + 121.1a − 96.41a2)(2/κ)3/2

+ (8.946 + 62.05a − 63.41a2)(2/κ)2. (2.93)
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The functions φ1 and φ2 are now positive except for ε-values very near the endpoints
of the allowed interval, given by eq. (2.85), for high atomic number elements. To avoid
inconsistencies, these functions are set equal to zero when they take negative values.

The relative differences between the total atomic cross sections obtained from the
DCS given by eq. (2.90) and the total cross sections tabulated by Hubbell et al. (1980) are
appreciable near the threshold [actually, (2.90) shifts the threshold for pair production
to values slightly larger than 2mec

2], but decrease rapidly with increasing photon energy.
At E = 3 MeV, the differences reduce to 4% and do not exceed 2% for energies larger
than 6 MeV, for almost all the elements. Although these differences are not important,
they may be larger than the uncertainties in the cross sections given by Hubbell et al.
(1980). To avoid systematic errors, the mean free paths for pair production used in
penelope are obtained by interpolation in a table generated with the xcom program
(Berger and Hubbell, 1987). The Bethe-Heitler DCS is only used to sample the kinetic
energies of the produced pair.

It is also worth noting that the Bethe-Heitler theory predicts that the pair-production
DCS, considered as a function of the electron reduced energy ε, is symmetrical about
ε = 1/2 (see fig. 2.9). This dependence on ε is reasonably accurate only for photon
energies larger than ∼5 MeV. For lower photon energies, the effect of the electrostatic
field of the atom (which slows down the electron and accelerates the positron) becomes
increasingly important, with the result that the actual DCS becomes asymmetrical and
the mean value of ε becomes less than 1/2 (see e.g. Motz et al., 1969). At these relatively
low energies, however, pair production is not dominant and, moreover, the produced
particles have ranges that are much less than the mean free path of the absorbed photon.
Therefore, no appreciable simulation errors are incurred by using the Bethe-Heitler DCS,
eq. (2.90), for energies down to the threshold.

2.4.1 Simulation of pair production events

The Bethe-Heitler DCS, eq. (2.90), only depends on the kinetic energy E− = εE−mec
2

of the produced electron, so that E− can be directly sampled from eq. (2.90); the kinetic
energy of the positron is obtained as E+ = E −E− − 2mec

2. Notice that, although the
Bethe-Heitler total atomic cross section accounts for pair and triplet production, all the
events are simulated as if they were pairs. This approximation is justified by the fact
that, in triplet production, the recoiling electron has a range that is much smaller than
the mean free path of the incident photon.

The electron reduced energy ε is distributed in the interval (κ−1,1 − κ−1), see eq.
(2.85), according to the PDF given by eq. (2.90) (normalization is again irrelevant)

ppp(ε) = 2
(

1

2
− ε

)2

φ1(ε) + φ2(ε), (2.94)

which is symmetrical about the point ε = 1/2. Fig. 2.9 shows this PDF for lead and
various photon energies. The following algorithm for sampling ε is based on the fact
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that the functions φ1(ε) and φ2(ε) are non-negative and attain their maximum values at
ε = 1/2.
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Figure 2.9: Pair production DCS in lead as a function of the electron reduced energy, ε =

(E− + mec
2)/E. (Adapted from Baró et al., 1994a.)

Except for a normalization constant, the PDF (2.94) can be written in the form

ppp(ε) = u1U1(ε)π1(ε) + u2U2(ε)π2(ε) (2.95)

with

u1 =
2

3

(
1

2
− 1

κ

)2

φ1(1/2), u2 = φ2(1/2), (2.96)

π1(ε) =
3

2

(
1

2
− 1

κ

)−3 (1

2
− ε

)2

, π2(ε) =
1

2

(
1

2
− 1

κ

)−1

(2.97)

and
U1(ε) = φ1(ε)/φ1(1/2), U2(ε) = φ2(ε)/φ2(1/2). (2.98)

The functions πi(ε) are normalized PDFs in the interval (κ−1,1 − κ−1), from which
random values of ε can be easily sampled by using the inverse transform method. In this
interval, the functions Ui(ε) are positive and less than unity, i.e. they are valid rejection
functions. The generation of random values of ε from the distribution (2.95) can now
be performed by combining the composition and rejection methods (see section 1.2)
according to the following algorithm:

(i) Sample a value of the integer i (=1, 2) according to the point probabilities

p(1) =
u1

u1 + u2
and p(2) =

u2

u1 + u2
. (2.99)
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(ii) Sample ε from πi(ε) using the sampling formulae (inverse transform method, see
section 1.2.2)

ε =






1

2
+
(

1

2
− 1

κ

)
(2ξ − 1)

1/3
if i = 1,

1

κ
+
(

1

2
− 1

κ

)
2ξ if i = 2.

(2.100)

(iii) Generate a new random number ξ.

(iv) If ξ > Ui(ε), go to step (i).

(v) Deliver ε.

Notice that the quantity 2ξ− 1 may be negative and, therefore, taking its cube root
will lead to a computer error; provision of this fact must be made when programming
the algorithm. The efficiency of the algorithm is greater than 70% for energies near the
threshold, and increases with increasing photon energies. For E = 1 GeV it is of the
order of 95% for all the elements in the periodic table.

Angular distribution of the produced particles

Actually, the complete DCS for pair production is a function of the directions of the
pair of particles. As the final state involves three bodies (the nucleus and the produced
pair), the directions of the produced particles cannot be obtained from only their kinetic
energies. The polar angles of the directions of movement of the electron and positron
(θ− and θ+, fig. 2.1) relative to the direction of the incident photon are sampled from the
leading term of the expression obtained from high-energy theory (Heitler, 1954; Motz
et al., 1969)

p(cos θ±) = a (1 − β± cos θ±)
−2
, (2.101)

where a is a normalization constant and

β± =

√
E±(E± + 2mec2)

E± + mec2
(2.102)

is the particle velocity in units of the speed of light. Random values of cos θ± are
obtained by using the inverse transform method (see section 1.2.2), which leads to the
sampling formula

cos θ± =
2ξ − 1 + β±

(2ξ − 1)β± + 1
. (2.103)

As the directions of the produced particles and the incident photon are not necessarily
coplanar, the azimuthal angles φ− and φ+ of the electron and the positron are sampled
independently and uniformly in the interval (0, 2π).

It is worth stressing the fact that the produced charged particles have ranges that
are much smaller than the mean free path of the photons. Moreover, the charged
particles immediately enter a multiple elastic scattering process which randomizes their
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directions of movement. As a consequence, there should be little difference between
simulation results obtained with the present method and with exact random sampling
from a more accurate DCS, differential in the energies and directions of the generated
particles.

Compound materials

Let us consider a compound XxYy, in which the molecules consist of x atoms of the
element X and y atoms of the element Y. The number of electrons per molecule is
ZM = xZ(X) + yZ(Y) and the molecular weight is AM = xAw(X) + yAw(Y), where
Z(X) and Aw(X) stand for the atomic number and atomic weight of element X.

In the simulation of pair-production events, we could use the molecular DCSs ob-
tained from the additivity rule. The simulation of each event would then consist of 1)
sampling the atom which participates in the interaction and 2) generating a random
value of the electron reduced energy ε from the corresponding atomic DCS. To save
computer time, penelope generates ε by considering an “equivalent” single element
material of the same mass density ρ as the actual medium, atomic number Zeq and
atomic weight Aeq given by

ZeqAM = ZMAeq = xZ(X)Aw(X) + yZ(Y)Aw(Y), (2.104)

i.e. its atomic number (weight) is the mass-average (Z-average) of the atomic numbers
(weights) of the constituent atoms. The reduced energy is sampled from the DCS of the
element with the atomic number closest to Zeq. Usually, this approximation does not
alter the simulation results appreciably and permits a considerable simplification of the
program and a reduction of the simulation time.

2.5 Attenuation coefficients

The photon inverse mean free path for a given mechanism is known as the partial
attenuation coefficient of that mechanism. Thus, the partial attenuation coefficient for
photoelectric absorption is

µph = Nσph, (2.105)

where N = NAρ/AM is the number of atoms or molecules per unit volume and σph is
the atomic or molecular photoelectric cross section. The photoelectric mass attenuation
coefficient is defined as µph/ρ and, therefore, is independent of the density of the ma-
terial. Analogous definitions apply for the other interaction processes. The total mass
attenuation coefficient is obtained as

µ

ρ
=
NA

AM

(σRa + σCo + σph + σpp) . (2.106)

As mentioned above, penelope uses tables of total cross sections for photoelectric
absorption and pair production obtained from the database EPDL (Cullen et al., 1997)



64 Chapter 2. Photon interactions

and the program xcom (Berger and Hubbell, 1987), respectively. Photoelectric cross
sections for energies different from those in the tables are calculated by linear log-log
interpolation. Total cross sections for pair production are evaluated by cubic spline
log-log interpolation of the function (1 − 2mec

2/E)−3σpp, which varies slowly with the
photon energy.
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Figure 2.10: Partial and total mass attenuation coefficients of water and lead as functions of

the photon energy.

Mean free paths for coherent and incoherent scattering are computed from the DCSs
described in sections 2.1 and 2.3. The resulting values are virtually identical to those
given by the xcom program for E greater than ∼ 50 keV. At lower energies, our mean
free paths for Compton scattering deviate from those given by xcom; these were calcu-
lated from a different theoretical model (Hubbell et al., 1975), which neglects Doppler
broadening (see e.g. Brusa et al., 1996). The evaluation of the total atomic cross section
for these processes [see eqs. (2.10) and (2.54)] involves a numerical quadrature, which is
performed by using the function SUMGA (appendix B). Notice that for high-energy pho-
tons, the integrand in the coherent scattering cross section, eq. (2.10), is sharply peaked
at θ = 0. In such a case, the numerical integration method is not effective. For energies
larger than ∼ Z/2 MeV, we take advantage of the asymptotic behaviour shown by eq.
(2.12) to avoid time-consuming integration. Partial and total mass attenuation coeffi-
cients for water and lead, as representatives of low- and high-Z materials, are displayed
in fig. 2.10.
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2.6 Atomic relaxation

Atoms are primarily ionized by photon interactions and by electron or positron impact.
There is a fundamental difference between the ionizing effects of photons and of charged
particles. A photon is only able to directly ionize a few atoms. In the case of pho-
toabsorption, when the photon energy is larger than the K-shell binding energy, about
80% of photoabsorptions occur in the K shell, i.e. the resulting ion with a vacancy in
the K shell is highly excited. Incoherent scattering is not as highly preferential, but
still the probability that an inner shell is ionized is nearly proportional to the number
of electrons in the shell. Conversely, fast electrons and positrons (and other charged
particles) ionize many atoms along their paths; the ionizations occur preferentially in
the less tightly bound atomic shells, or the conduction band in the case of metals (see
section 3.2), so that most of the produced ions are only weakly excited.

Excited ions with a vacancy in an inner shell relax to their ground state through a
sequence of radiative and non-radiative transitions. In a radiative transition, the vacancy
is filled by an electron from an outer shell and an x ray with characteristic energy is
emitted. In a non-radiative transition, the vacancy is filled by an outer electron and
the excess energy is released through emission of an electron from a shell that is farther
out (Auger effect). Each non-radiative transition generates an additional vacancy that,
in turn, migrates “outwards”. The production of vacancies in inner shells and their
subsequent relaxation must be simulated in detail, since the energetic x rays and/or
electrons emitted during the process may transport energy quite a distance from the
excited ion.
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Figure 2.11: Relative probabilities for radiative and non-radiative (Auger) transitions that

fill a vacancy in the K-shell of atoms.
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penelope simulates the emission of characteristic radiation and Auger electrons that
result from vacancies produced in K shells and L subshells by photoelectric absorption,
Compton scattering and electron/positron impact (see chapter 3). The relaxation of
these vacancies is followed until the K and L shells are filled up, i.e. until the vacancies
have migrated to M and outer shells. Vacancies in these outer shells originate much less
energetic secondary radiation, whose main effect is to spread out the excitation energy
of the ion within the surrounding material. To get a reliable description of the dose
distribution, and other macroscopic transport characteristics, we only have to follow
secondary radiation that is able to propagate to distances of the order of, say, 1% of
the penetration distance (or range) of the primary radiation. Radiation with lower
energy does not need to be followed, since its only effect is to blur the “primary” dose
distribution on a small length scale.

To simplify the description of the ionization processes of outer shells (i.e. photoelec-
tric absorption, Compton scattering and electron/positron impact), we simply assume
that, when ionization occurs in M or outer shells, a secondary (delta) electron is emit-
ted from the parent ion with a kinetic energy Es equal to the energy deposited by the
primary particle,

Edep =





E − E ′ in Compton scattering,

E in photoelectric absorption,

W in electron/positron impact (see chapter 3).

(2.107)

That is, the whole excitation energy of the ion is taken up by the ejected electron and
no fluorescent radiation is simulated. In reality, the emitted electrons have energies less
than the values (2.107) and can be followed by characteristic x rays, which have mean free
paths that are usually much larger than the Bethe range of photoelectrons. By giving
an artificially increased initial energy to the electron we allow it to transport energy
farther from the ion so as to partially compensate for the neglect of other radiation
emitted during the de-excitation cascade.

In the case of ionization of an inner shell i, i.e. a K shell or an L shell, we consider
that the electron is ejected with kinetic energy

Es = Edep − Ui, (2.108)

where Ui is the ionization energy of the active shell, and that the target atom is left with
a vacancy in shell i. As mentioned above, we consider only characteristic x-rays and
Auger electrons emitted in the first stages of the relaxation process. These secondary
radiations are assumed to be emitted isotropically from the excited atom. We use the
following notation to designate the possible transitions
• Radiative: S0-S1 (an electron from the S1 shell fills the vacancy in the S0 shell, leaving
a hole in the S1 shell). The considered radiative transitions (for elements with Z > 18
with the M-shell filled) are shown in fig. 2.3.
• Non-radiative: S0-S1-S2 (an electron from the S1 shell fills the vacancy in the S0 shell,
and the released energy is taken away by an electron in the S2 shell; this process leaves
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two vacancies, in the S1 and S2 shells).
Non-radiative transitions of the type LI-LJ -Xq, which involve an electron transition
between two L-subshells and the ejection of an electron from an outer shell Xq are
known as L-shell Coster-Kronig transitions.

The information furnished to penelope for each element consists of a table of pos-
sible transitions, transition probabilities and energies of the emitted x-rays or electrons
for ionized atoms with a single vacancy in the K-shell or in an L-subshell. These data
are entered through the material definition file. The transition probabilities are ex-
tracted from the LLNL Evaluated Atomic Data Library (Perkins et al., 1991). Fig.
2.11 displays transition probabilities for the transitions that fill a vacancy in the K shell
as functions of the atomic number Z; the curve labelled “Auger” corresponds to the
totality of non-radiative transitions. We see that for low-Z elements, the relaxation
proceeds mostly through non-radiative transitions. It is worth noting that the ratio of
probabilities of the radiative transitions K-S2 and K-S3 (where S stands for L, M or N)
is approximately 1/2, as obtained from the dipole approximation (see e.g. Bransden and
Joachain, 1983); radiative transitions K-S1 are strictly forbidden (to first order) within
the dipole approximation.

The energies of x-rays emitted in radiative transitions are taken from Bearden’s
(1967) review and reevaluation of experimental x-ray wavelengths. The energy of the
electron emitted in the non-radiative transition S0-S1-S2 is set equal to

Ee = US0 − US1 − US2, (2.109)

where USi is the binding energy of an electron in the shell Si of the neutral atom, which
is taken from the penelope database. These emission energies correspond to assuming
that the presence of the vacancy (or vacancies) does not alter the ionization energies
of the active electron shells, which is an approximation. It should be noted that these
prescriptions are also used to determine the energies of the emitted radiation at any
stage of the de-excitation cascade, which means that we neglect the possible relaxation
of the ion (see e.g. Sevier, 1972). Therefore, our approach will not produce Lα and Lβ

x-ray satellite lines; these arise from the filling of a vacancy in a doubly-ionized L-shell
(generated e.g. by a Coster-Kronig transition), which releases an energy that is slightly
different from the energy liberated when the shell contains only a single vacancy. It is
also worth recalling that the adopted transition probabilities are approximate. For K
shells they are expected to be accurate to within one per cent or so, but for other shells
they are subject to much larger uncertainties. Even the L-shell fluorescence yield (the
sum of radiative transition probabilities for an L-shell vacancy) is uncertain by about
20% (see e.g. Hubbell, 1989; Perkins et al., 1991).

The simulation of the relaxation cascade is performed by subroutine RELAX. The
transition that fills the initial vacancy is randomly selected according to the adopted
transition probabilities, by using Walker’s aliasing method (section 1.2.3). This transi-
tion leaves the ion with one or two vacancies. If the energy of the emitted characteristic
x ray or Auger electron is larger than the corresponding absorption energy, the state
variables of the particle are stored in the secondary stack (which contains the initial



68 Chapter 2. Photon interactions

states of all particles produced during the current shower that have not yet been sim-
ulated). The generation of the cascade continues by repeating the process for each
remaining vacancy. It ends either when the K shell and L subshells have been filled up
or when there is not enough energy to produce “active” radiation (with energy larger
than the absorption energy). The excitation energy of the residual ion is assumed to be
deposited locally.

It is important to bear in mind that we are disregarding the emission and transport
of soft x-rays and slow electrons. This sets a lower limit to the photon energies for which
penelope is applicable. In principle, simulation results are expected to be reliable only
for photons with energies larger than the ionization energy of the M1 subshell of the
heaviest element present (125 eV for copper, 720 eV for silver, 3.4 keV for gold and 5.5
keV for uranium).



Chapter 3

Electron and positron interactions

In this chapter we consider the interactions of fast electrons and positrons of kinetic
energy E with matter. For the sake of simplicity, we start by assuming that the particles
move in a single-element medium of atomic number Z and density ρ, with N atoms per
unit volume. The extension to compounds, and mixtures, is normally done on the
basis of the additivity approximation, i.e. the molecular DCS is approximated as the
incoherent sum of the atomic DCSs of all the atoms in a molecule.
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Figure 3.1: Basic interactions of electrons and positrons with matter.
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The possible interactions of electrons and positrons with the medium are elastic
scattering, inelastic collisions and bremsstrahlung emission; positrons can also undergo
annihilation, either in flight or at rest. The atomic DCSs adopted in penelope are
defined either as analytical functions or by means of numerical tables, or as a combina-
tion of both. These DCSs, which are sufficiently accurate for most practical simulation
purposes, allow fast and accurate random sampling of the individual interactions. It
is worth pointing out that multiple scattering distributions are quite insensitive to the
fine details of the single scattering DCSs. If the adopted DCSs have a physically rea-
sonable shape, only the values of a few integrals of the DCS have a direct influence
on the simulation results (Liljequist, 1987; Fernández-Varea et al., 1993b). As a con-
sequence, a general-purpose simulation procedure can be made fairly simple by using
approximate DCSs with the proviso that they exactly reproduce the correct values of
the relevant integrals. The DCSs described below represent a compromise between reli-
ability and simplicity; they are simple enough to allow the use of fast sampling methods
and, at the same time, they are flexible enough to account for the relevant features of
the interactions.

Owing to the large number of interactions suffered by a fast electron or positron
before coming to rest, detailed simulation is unfeasible at high energies. In penelope

we overcome this practical difficulty by using a mixed simulation procedure (see chapter
4) instead of the habitual condensed simulation schemes adopted in other high-energy
simulation codes —e.g. etran (Berger and Seltzer, 1988), its3 (Halbleib et al., 1992),
egs4 (Nelson et al., 1985), geant3 (Brun et al., 1986). The formulation of mixed
simulation is complicated by the fact that the sampling of hard interactions is done from
restricted DCSs, with cutoffs that vary with the particle energy during the evolution
of a track. This limits the complexity of the DCSs that can be efficiently used in a
simulation code.

3.1 Elastic collisions

In this section we consider the theoretical description of elastic collisions of electrons and
positrons with isolated neutral atoms of atomic number Z at rest. By definition, elastic
interactions are those in which the initial and final quantum states of the target atom
are the same, normally the ground state. The angular deflections of electron trajectories
in matter are mainly (but not completely) due to elastic scattering. Notice that there
is a certain energy transfer from the projectile to the target, which causes the recoil of
the latter (see section A.1.1). Because of the large mass of the target (∼ 3600Zme), the
average energy lost by the projectile is a very small fraction of its initial energy (a few
meV for scattering of 30 keV electron by aluminium atoms) and is usually neglected,
which is equivalent to assuming that the target has an infinite mass and does not recoil.

For a wide energy range (say from a few hundred eV to ∼1 GeV), elastic interactions
can be described as scattering of the projectile by the electrostatic field of the target
(Mott and Massey, 1965). The charge distribution of the target atom consists of the
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nucleus and the electron cloud. The density of atomic electrons ρ(r) can be calculated
by using available Hartree-Fock codes (e.g. the one of Desclaux, 1975). For atoms
with closed shell configurations, the electron distribution is spherically symmetrical; for
atoms with open shells, we assume that an average over directions is performed to give
a spherical density ρ(r). To account for the effect of the finite size of the nucleus on the
elastic DCS (which is appreciable only for projectiles with energy E larger than a few
MeV), we can represent the nucleus as a uniformly charged sphere of radius

Rnuc = 1.05 × 10−15A1/3
w m, (3.1)

where Aw is the atomic mass (in g/mol). The electrostatic potential of the target atom
is

ϕ(r) = ϕnuc(r)− e 4π
[
1

r

∫ r

0
ρ(r′)r′2 dr′ +

∫ ∞

r
ρ(r′)r′ dr′

]
, (3.2)

where

ϕnuc(r) =






1

2

Ze

Rnuc

[
3 −

(
r

Rnuc

)2
]

if r ≤ Rnuc,

Ze

r
if r > Rnuc

(3.3)

is the potential of the nucleus.

Within the static-field approximation (Mott and Massey, 1965; Walker, 1971), the
DCS for elastic scattering of electrons or positrons is obtained by solving the partial-
wave expanded Dirac equation for the motion of the projectile in the field of the target
atom. The interaction energy is given by

V (r) = z0eϕ(r) + Vex(r), (3.4)

where z0 is the charge of the projectile in units of e (−1 for electrons, +1 for positrons).
The term Vex(r), which applies only for electrons, represents a local approximation to
the exchange interaction between the projectile and the atomic electrons (see e.g. Salvat,
1998). We shall limit our considerations to the case of spin unpolarized projectiles, i.e.
their spin is randomly oriented. Then, the effect of elastic interactions can be described
as a deflection of the projectile trajectory, characterized by the polar and azimuthal
scattering angles θ and φ. For a central field, the angular distribution of singly scattered
electrons is axially symmetric about the direction of incidence, i.e. independent of φ.
The DCS (per unit solid angle) for elastic scattering of a projectile with kinetic energy
E into the solid angle element dΩ about the direction (θ, φ) is given by (Walker, 1971)

dσel

dΩ
= |f(θ)|2 + |g(θ)|2, (3.5)

where

f(θ) =
1

2ik

∞∑

`=0

{(`+ 1) [exp(2iδ`+)− 1] + ` [exp(2iδ`−)− 1]}P`(cos θ),

g(θ) =
1

2ik

∞∑

`=0

{exp(2iδ`−)− exp(2iδ`+)}P 1
` (cos θ) (3.6)
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are the direct and spin-flip scattering amplitudes, respectively.

k ≡ p

h̄
=

1

h̄c

[
E(E + 2mec

2)
]1/2

(3.7)

is the wave number of the projectile, P`(cos θ) are Legendre polynomials, P 1
` (cos θ) are

associated Legendre functions and δ`± are the phase shifts. These are determined from
the asymptotic behaviour of the Dirac radial functions for large r (Walker, 1971). Thus,
to determine each phase shift we must solve the radial Dirac equations for the potential
V (r). The convergence of the partial-wave series (3.6) slows down when the energy of the
projectile increases. This makes the calculation difficult for energies larger than a few
MeV (in the case of scattering by gold atoms, about 10,000 phase shifts are required at
E = 10 MeV). The partial-wave DCS, eq. (3.5), rigourously accounts for spin and other
relativistic effects, as well as finite nuclear size effects. A computer code to calculate
elastic scattering cross sections by this method has been written by Salvat (2000).

Single elastic collisions are determined by the values of the polar and azimuthal
scattering angles, θ and φ, respectively. Owing to the assumed spherical symmetry of
the scattering centres, single and multiple scattering angular distributions are axially
symmetrical about the direction of incidence, i.e. they are independent of the azimuthal
scattering angle φ. For simulation purposes, it is convenient to measure polar angular
deflections produced by single scattering events in terms of the variable [see eq. (1.61)]

µ = (1− cos θ)/2 (3.8)

instead of the scattering angle θ. Notice that µ varies from 0 (forward scattering) to 1
(backward scattering). The DCS per unit angular deflection is

dσel

dµ
= 4π

dσel

dΩ
. (3.9)

Fig. 3.2 displays DCSs for elastic scattering of electrons and positrons of various en-
ergies by aluminium and gold atoms. These numerical results illustrate the variation
of the DCS with the atomic number Z, the charge of the projectile and the energy E.
Since the interaction V (r) is attractive for electrons and repulsive for positrons, the
scattering is more intense for electrons (which can fall deeply into the potential well of
the atom) than for positrons (which are repelled from the nucleus and cannot “see” the
inner part of the atom). The DCS for low-energy electrons exhibits a diffraction-like
structure, while the DCS for positrons decreases monotonously with the deflection µ.
The Born approximation (see e.g. Mott and Massey, 1965) predicts a structureless DCS
that decreases with µ and is proportional to the squared charge of the projectile (i.e. the
same for electrons and positrons). This approximation considers the scattering field as a
perturbation (to first order) and, hence, it is valid only for weak fields (low-Z elements).
The difference between the (partial wave) DCSs for electrons and positrons gives a clear
indication of the applicability of the Born approximation.

The total elastic cross section is given by

σel =
∫

dσel

dΩ
dΩ =

∫
dσel

dµ
dµ. (3.10)
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Figure 3.2: DCS for elastic scattering of electrons and positrons by aluminium and gold

atoms as a function of the deflection µ = (1− cos θ)/2. Notice the change from logarithmic to

linear scale at µ = 0.05.
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Notice that we can write
dσel

dµ
= σel pel(µ), (3.11)

where pel(µ) is the normalized PDF of µ in a single collision. The mean free path
between consecutive elastic events in a homogeneous single-element medium is

λel = 1/(Nσel), (3.12)

where N is the number of atoms per unit volume.

Other important quantities (see section 4.1) are the transport cross sections1

σel,` ≡
∫

[1 − P`(cos θ)]
dσel

dΩ
dΩ. (3.13)

The `-th transport mean free path is defined by

λel,` ≡ 1/(Nσel,`). (3.14)

The first and second transport cross sections, σel,1 and σel,2, are given by

σel,1 =
∫

(1 − cos θ)
dσel

dΩ
dΩ = 2σel

∫ 1

0
µpel(µ) dµ = 2σel 〈µ〉 (3.15)

and

σel,2 =
∫

3

2
(1−cos2 θ)

dσel

dΩ
dΩ = 6σel

∫ 1

0
(µ−µ2)pel(µ) dµ = 6σel

(
〈µ〉 − 〈µ2〉

)
, (3.16)

where 〈· · ·〉 indicates the average value in a single collision. The quantities λel,1 and
λel,2, eq. (3.14), determine the first and second moments of the multiple scattering
distributions (see section 4.1). The inverse of the first transport mean free path,

λ−1
el,1 = Nσel,1 =

2

λel
〈µ〉, (3.17)

gives a measure of the average angular deflection per unit path length. By analogy with
the “stopping power”, which is defined as the mean energy loss per unit path length
(see section 3.2.3), the quantity 2λ−1

el,1 is sometimes called the “scattering power”2.

Fig. 3.3 shows elastic mean free paths and transport mean free paths for electrons
in aluminium and gold. At low energies, the differences between the DCS of the two
elements (see fig. 3.2) produce very visible differences between the transport mean free

1The Legendre polynomials of lowest orders are

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1).

2At high energies, where the scattering is concentrated at very small angles, 〈µ〉 ' 〈θ2〉/4 and
λ−1

el,1
' 〈θ2〉/(2λel).
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paths. When E increases, the DCS becomes strongly peaked in the forward direction
and 〈µ2〉 becomes much smaller than 〈µ〉. In the high-energy limit, σel,2 ' 3σel,1 (λel,2 '
λel,1/3). The total cross section, ∝ 1/(ρλel), decreases monotonously with E to reach a
constant value at high energies. This saturation is a relativistic effect: the total cross
section measures the interaction probability, which is proportional to the time spent
by the projectile within the region where the scattering field is appreciable. This time
is determined by the speed of the projectile, which approaches c from below when the
projectile energy increases. In the non-relativistic theory, the speed vn.r. = (2E/me)

1/2

increases without limit with E and the calculated non-relativistic total cross section
tends to zero at high energies.
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Figure 3.3: Elastic mean free path, λel, and first and second transport mean free paths, λel,1

and λel,2, for electrons scattered in aluminium and gold as functions of the kinetic energy of

the projectile.

3.1.1 The modified Wentzel (MW) model

Although it is possible to do Monte Carlo simulation of electron and positron trans-
port using numerical partial-wave DCSs (Benedito et al., 2001), this procedure is too
laborious to be adopted as the basis of a simulation code for general purposes (mostly
because of the large volume of required numerical information). It is more convenient to
use suitable analytical approximate DCSs that may differ in detail from the partial-wave
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DCSs but lead to nearly the same multiple scattering distributions. In penelope we
use a model in which the DCS is expressed as

dσ
(MW)
el

dµ
= σel pMW(µ). (3.18)

The single scattering distribution pMW(µ) is defined by a simple analytical expression,
with a physically plausible form, depending on two adjustable parameters. These pa-
rameters are determined in such a way that the values of 〈µ〉 and 〈µ2〉 obtained from
pMW(µ) are equal to those of the actual (partial-wave) DCS:

〈µ〉MW ≡
∫ 1

0
µpMW(µ) dµ = 〈µ〉 =

1

2

σel,1

σel
(3.19)

and

〈µ2〉MW ≡
∫ 1

0
µ2pMW(µ) dµ = 〈µ2〉 =

1

2

σel,1

σel
− 1

6

σel,2

σel
. (3.20)

Thus, the MW model will give the same mean free path and the same first and second
transport mean free paths as the partial-wave DCS. As a consequence (see chapter
4), detailed simulations using this model will yield multiple scattering distributions
that do not differ significantly from those obtained from the partial wave DCS, quite
irrespectively of other details of the “artificial” distribution pMW(µ).

To set the distribution pMW(µ), we start from the Wentzel (1927) angular distribu-
tion,

pW,A0
(µ) ≡ A0(1 +A0)

(µ+A0)2
, (A0 > 0) (3.21)

which describes the scattering by an exponentially screened Coulomb field within the
Born approximation (see e.g. Mott and Massey, 1965), that is, it provides a physically
plausible angular distribution, at least for light elements or high-energy projectiles. It
is also worth mentioning that the multiple scattering theory of Molière (1947, 1948) can
be derived by assuming that electrons scatter according to the Wentzel distribution (see
Fernández-Varea et al., 1993b). The first moments of the Wentzel distribution are

〈µ〉W,A0
=
∫ 1

0
µ
A0(1 +A0)

(µ +A0)2
dµ = A0

[
(1 +A0) ln

(
1 +A0

A0

)
− 1

]
(3.22)

and

〈µ2〉W,A0
=
∫ 1

0
µ2 A0(1 +A0)

(µ+A0)2
dµ = A0 [1− 2〈µ〉W,A0

] . (3.23)

Let us define the value of the screening constant A0 so that 〈µ〉W,A0
= 〈µ〉. The value

of A0 can be easily calculated by solving eq. (3.22) numerically, e.g. by the Newton-
Raphson method. Usually, we shall have 〈µ2〉W,A0

6= 〈µ2〉. At low energies, the Wentzel
distribution that gives the correct average deflection is too “narrow” [〈µ2〉W,A0

< 〈µ2〉
for both electrons and positrons and for all the elements]. At high energies, the angular
distribution is strongly peaked in the forward direction and the Wentzel distribution
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becomes too “wide”. This suggests using a modified Wentzel (MW) model obtained by
combining a Wentzel distribution with a simple distribution, which takes different forms
in these two cases,
• Case I. If 〈µ2〉W,A0

> 〈µ2〉 (the Wentzel distribution is too wide), we take pMW(µ) as a
statistical admixture of the Wentzel distribution and a delta distribution (a zero-width,
fixed scattering angle process)

pMW,I(µ) = (1−B) pW,A(µ) +B δ(µ− 〈µ〉) (3.24)

with

A = A0 and B =
〈µ2〉W,A − 〈µ2〉
〈µ2〉W,A − 〈µ〉2

. (3.25)

Notice that in this case we usually have 〈µ〉 � 1, so that the delta distribution is at
very small angles. Although we have introduced a discrete peak in the DCS, its effect
is smeared out by the successive collisions and not visible in the multiple scattering
angular distributions.
• Case II. If 〈µ2〉W,A0

< 〈µ2〉 (the Wentzel distribution is too narrow), we express pMW(µ)
as a statistical admixture of a Wentzel distribution (with A not necessarily equal to A0)
and a triangle distribution in the interval (1/2,1),

pMW,II(µ) = (1−B) pW,A(µ) +B 8 (µ− 1/2) Θ (µ− 1/2) . (3.26)

The parameters A and B are obtained from the conditions (3.19) and (3.20), which give

(1 −B) 〈µ〉W,A +B
5

6
= 〈µ〉

(1 −B) 〈µ2〉W,A +B
17

24
= 〈µ2〉. (3.27)

From the first of these equations,

B =
〈µ〉 − 〈µ〉W,A

(5/6) − 〈µ〉W,A
. (3.28)

Inserting this value in the second of eqs. (3.27), we obtain

(
17

24
− 〈µ2〉

)
〈µ〉W,A −

(
5

6
− 〈µ〉

)
〈µ2〉W,A =

17

24
〈µ〉 − 5

6
〈µ2〉. (3.29)

For all situations of interest, this equation has a single root A in the interval (0, A0) and
can be easily solved by means of a bipartition procedure. The value of B given by eq.
(3.28) is then positive and less than unity, as required.

In fig. 3.4 we compare partial-wave DCSs and MW model DCSs for elastic scattering
of electrons of various energies by gold atoms. The considered energies correspond to
the case-II MW model [so that the distribution pMW(µ) is continuous]. We see that
the MW model does imitate the partial wave DCSs, but the differences are significant.
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Figure 3.4: Partial-wave and MW model DCSs for elastic scattering of electrons by gold

atoms.

Nevertheless, the important fact here is that both DCSs give exactly the same values of
σel, 〈µ〉 and 〈µ2〉.

The information needed to determine the parameters of the MW model reduces to the
characteristic functions σel(E), σel,1(E) and σel,2(E). penelope reads these functions
from a precalculated database for electrons and positrons, for the elements Z = 1–92
and for a grid of energies that is dense enough to permit accurate cubic spline log-
log interpolation. This elastic scattering database was generated by using the partial-
wave code of Salvat (2000); the atomic electron densities were obtained from the Dirac-
Hartree-Fock code of Desclaux (1975), which correspond to free atoms. Before starting
the simulation, penelope evaluates a table of the parameters A and B, and stores it in
the computer memory. Instead of B, penelope tabulates the quantity B ′ = +B (case
I) and B ′ = −B (case II); this avoids the need to specify the case, which can be inferred
from the sign of B ′. It is worth noting that A and B ′ are continuous functions of energy
and, therefore, can be rapidly evaluated, for any energy, by interpolation in the stored
table. In case I, 〈µ〉 concides with 〈µ〉W,A, which is determined by A, eq. (3.22). Fig.
3.5 displays the MW model parameters for aluminium and gold, as representative of
low- and high-Z elements. Notice that at high energies, where the case I model applies,
the strength of the delta contribution increases rapidly with energy, indicating that the
partial-wave DCS is much narrower than the Wentzel distribution.

The MW model is directly applicable to compounds (and mixtures) by using the
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Figure 3.5: Parameters of the MW model for scattering of electrons and positrons by alu-

minium and gold atoms. The scale of the energy axes is logarithmic.

appropriate values of the total cross section and the first and second transport cross
sections. In penelope, these are calculated from atomic total and transport cross sec-
tions by means of the additivity approximation (incoherent sum of scattered intensities).
This amounts to neglecting chemical binding effects. A more accurate approach, which
yields a good estimate of these effects, is provided by the following independent-atom
approximation (Walker, 1968; Yates, 1968). Assume that the interaction of the projec-
tile with each atom is still given by the free-atom static potential (3.4). The molecular
DCS may then be evaluated by adding the waves (not the currents) scattered from the
various atoms in the molecule and averaging over molecular orientations. The resulting
DCS is given by

dσel

dΩ
=
∑

i,j

sin(qaij/h̄)

qaij/h̄

[
fi(θ)f

∗
j (θ) + gi(θ)g

∗
j (θ)

]
, (3.30)

where q = 2h̄k sin(θ/2) is the momentum transfer, aij is the distance between the
atoms i and j and fi, gi are the scattering amplitudes, eq. (3.6), for the atom i. It
has been claimed that DCSs obtained from this formulation agree with experiments to
within ∼2% (Walker, 1968; Yates, 1968). DCSs for scattering of 100 eV and 2.5 keV
electrons in water vapour, obtained from the simple additivity rule and computed from
eq. (3.30), are compared in fig. 3.6. It is seen that, for energies above a few keV, chemical
binding causes a slight distortion of the DCS at small angles, and a slight rippling for
intermediate angles. Therefore, the use of the additivity approximation (i.e. neglecting
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chemical binding effects) in Monte Carlo simulation at these energies is justified.
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Figure 3.6: DCSs for elastic scattering of electrons by water molecules, calculated as the

coherent sum of scattered waves, eq. (3.30), and from the additivity approximation (incoherent

sum).

3.1.2 Simulation of single elastic events with the MW model

As mentioned above, the angular distribution in single elastic events is axially symmetri-
cal about the direction of incidence. Hence, the azimuthal scattering angle φ is sampled
uniformly in the interval (0, 2π) using the sampling formula φ = 2πξ. In detailed sim-
ulations, µ is sampled in the whole interval (0,1). However, we shall also make use of
the MW model for mixed simulation (see chapter 4), in which only hard events, with
deflection µ larger than a given cutoff value µc, are sampled individually. In this section
we describe analytical (i.e. exact) methods for random sampling of µ in the restricted
interval (µc, 1).

• Case I. The cumulative distribution function of pMW,I(µ) is

PMW,I(µ) ≡
∫ µ

0
pMW,I(µ

′) dµ′ =





(1−B)
(1 +A)µ

A+ µ
if 0 ≤ µ < 〈µ〉,

B + (1 −B)
(1 +A)µ

A+ µ
if 〈µ〉 ≤ µ ≤ 1.

(3.31)

Owing to the analytical simplicity of this function, the random sampling of µ can be
performed by using the inverse transform method (section 1.2.2). The sampling equation
for µ in (0,1) reads

µ = P−1
MW,I(ξ), (3.32)
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where P−1
MW,I(ξ) is the inverse of the cumulative distribution function, which is given by

P−1
MW,I(ξ) =






ξA

(1 −B)(1 +A)− ξ if 0 ≤ ξ < ξ0,

〈µ〉 if ξ0 ≤ ξ < ξ0 +B,

(ξ −B)A

(1 −B)(1 +A)− (ξ −B)
if ξ0 +B ≤ ξ ≤ 1,

(3.33)

with

ξ0 = (1−B)
(1 +A)〈µ〉
A+ 〈µ〉 . (3.34)

To sample µ in the restricted interval (µc,1), we can still use the inverse transform
method, eq. (3.32), but with the random number ξ sampled uniformly in the interval
(ξc,1) with

ξc = PMW,I(µc). (3.35)

• Case II. The cumulative distribution function is

PMW,II(µ) ≡
∫ µ

0
pMW,II(µ

′) dµ′

=





(1−B)
(1 +A)µ

A+ µ
if 0 ≤ µ < 1

2
,

(1−B)
(1 +A)µ

A+ µ
+B 4

[
µ2 − µ +

1

4

]
if 1

2
≤ µ ≤ 1.

(3.36)

In principle, to sample µ in (0,1), we can adopt the inverse transform method. The
sampling equation

ξ = PMW,II(µ) (3.37)

can be cast in the form of a cubic equation. This equation can be solved either by using
the analytical solution formulas for the cubic equation, which are somewhat complicated,
or numerically, e.g. by the Newton-Raphson method. We employ this last procedure
to determine the cutoff deflection (see section 4.1) for mixed simulation. To sample µ
in the restricted interval (µc,1) we use the composition method, which is easier than
solving eq. (3.37). Notice that the sampling from the (restricted) Wentzel and from the
triangle distributions can be performed analytically by the inverse transform method.

3.2 Inelastic collisions

The dominant energy loss mechanisms for electrons and positrons with intermediate and
low energies are inelastic collisions, i.e. interactions that produce electronic excitations
and ionizations in the medium. The quantum theory of inelastic collisions of charged
particles with individual atoms and molecules was first formulated by Bethe (1930, 1932)
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on the basis of the first-order (plane-wave) Born approximation. The extension of the
theory to inelastic collisions in condensed materials has been discussed by Fano (1963).
The formal aspects of the quantum theory for condensed matter are quite complicated.
Fortunately, the results are essentially equivalent to those from classical dielectric theory.

The effect of individual inelastic collisions on the projectile is completely specified
by giving the energy loss W and the polar and azimuthal scattering angles θ and φ,
respectively. For amorphous media with randomly oriented atoms (or molecules), the
DCS for inelastic collisions is independent of the azimuthal scattering angle φ. Instead
of the polar scattering angle θ, it is convenient to use the recoil energy Q [see eqs. (A.29)
and (A.30)], defined by

Q(Q+ 2mec
2) = (cq)2. (3.38)

The quantity q is the magnitude of the momentum transfer q ≡ p−p′, where p and p′

are the linear momenta of the projectile before and after the collision. Notice that Q is
the kinetic energy of an electron that moves with a linear momentum equal to q.

Let us first consider the inelastic interactions of electrons or positrons (z2
0 = 1) with

an isolated atom (or molecule) containing Z electrons in its ground state. The DCS
for collisions with energy loss W and recoil energy Q, obtained from the first Born
approximation, can be written in the form (Fano, 1963)

d2σin

dW dQ
=

2πz2
0e

4

mev2

(
2mec

2

WQ(Q+ 2mec2)
+

β2 sin2 θrW2mec
2

[Q(Q+ 2mec2)−W 2]2

)
df(Q,W )

dW
, (3.39)

where v = βc is the velocity of the projectile. θr is the angle between the initial
momentum of the projectile and the momentum transfer, which is given by eq. (A.42),

cos2 θr =
W 2/β2

Q(Q+ 2mec2)

(
1 +

Q(Q+ 2mec
2)−W 2

2W (E + mec2)

)2

. (3.40)

The result (3.39) is obtained in the Coulomb gauge (Fano, 1963); the two terms on the
right-hand side are the contributions from interactions through the instantaneous (lon-
gitudinal) Coulomb field and through the exchange of virtual photons (transverse field),
respectively. The factor df(Q,W )/dW is the atomic generalized oscillator strength
(GOS), which completely determines the effect of inelastic interactions on the projectile,
within the Born approximation. Notice, however, that knowledge of the GOS does not
suffice to describe the energy spectrum and angular distribution of secondary knock-on
electrons (delta rays).

The GOS can be represented as a surface over the (Q,W ) plane, which is called the
Bethe surface (see Inokuti, 1971; Inokuti et al., 1978). Unfortunately, the GOS is known
in analytical form only for two simple systems, namely, the (non-relativistic) hydrogenic
ions (see fig. 3.7) and the free-electron gas. Even in these cases, the analytical expressions
of the GOSs are too complicated for simulation purposes. For ionization of inner shells,
the GOS can be computed numerically from first principles (see e.g. Manson, 1972), but
using GOSs defined through extensive numerical tables is impractical for Monte Carlo
simulation. Fortunately, the physics of inelastic collisions is largely determined by a few
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global features of the Bethe surface. Relatively simple GOS models can be devised that
are consistent with these features and, therefore, lead to a fairly realistic description of
inelastic interactions (see e.g. Salvat and Fernández-Varea, 1992).
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Figure 3.7: The GOS for ionization of the hydrogen atom (Z = 1) in the ground state.

All energies are in units of the ionization energy Ui = 13.6 eV. The GOS for ionization of

(non-relativistic) hydrogenic ions is independent of Z if energies are expressed in units of the

ionization energy.

As mentioned above, the “atomic” DCS for inelastic interactions in dense media
can be obtained from a semiclassical treatment in which the medium is considered as
a dielectric, characterized by a complex dielectric function ε(k, ω), which depends on
the wave number k and the frequency ω. In the classical picture, the (external) electric
field of the projectile polarizes the medium producing an induced electric field that
causes the slowing down of the projectile. The dielectric function relates the Fourier
components of the total (external+induced) and the external electric potentials. It is
convenient to interpret the quantities q = h̄k and W = h̄ω as the momentum and energy
transfers and consider that the dielectric function depends on the variables Q [defined
by eq. (3.38)] and W . The DCSs obtained from the dielectric and quantum treatments
are consistent (i.e. the former reduces to the latter for a low-density medium) if one
assumes the identity

df(Q,W )

dW
≡WQ+ mec

2

mec2
2Z

πΩ2
p

Im

(
−1

ε(Q,W )

)
, (3.41)

where Ωp is the plasma energy of a free-electron gas with the electron density of the
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medium, given by
Ω2

p = 4πNZh̄2e2/me. (3.42)

Eq. (3.41) establishes the connection between the atomic GOS (a property of individual
atoms) and the dielectric function (a macroscopic concept). The DCS for the condensed
medium can be expressed in the form [cf. eq. (3.39)],

d2σin

dW dQ
=

2πz2
0e

4

mev2

df(Q,W )

dW

(
2mec

2

WQ(Q+ 2mec2)

+

{
β2 sin2 θrW2mec

2

[Q(Q+ 2mec2)−W 2]2
−D(Q,W )

})
, (3.43)

where the termD(Q,W ), which is appreciable only for smallQ, accounts for the so-called
density-effect correction (Sternheimer, 1952). The origin of this term is the polarizability
of the medium, which “screens” the distant transverse interaction causing a net reduction
of its contribution to the stopping power. The density-effect correction D(Q,W ) is
determined by the dielectric function that, in turn, is related to the GOS. Thus, the
GOS contains all the information needed to compute the DCS for electron/positron
inelastic interactions in condensed media.

In the limit of very large recoil energies, the binding and momentum distribution
of the target electrons have a small effect on the interaction. Therefore, in the large-
Q region, the target electrons behave as if they were essentially free and at rest and,
consequently, the GOS reduces to a ridge along the line W = Q, which was named the
Bethe ridge by Inokuti (1971). In the case of hydrogenic ions in the ground state, fig.
3.7, the Bethe ridge becomes clearly visible at relatively small recoil energies, of the
order of the ionization energy Ui. For smaller Q’s, the structure of the Bethe surface
is characteristic of the material. In the limit Q → 0, the GOS reduces to the optical
oscillator strength (OOS),

df(W )

dW
≡ df(Q = 0,W )

dW
, (3.44)

which is closely related to the (dipole) photoelectric cross section for photons of energy
W (Fano, 1963). Experimental information on the OOS is provided by measurements
of either photoelectric cross sections or dielectric functions (see e.g. Fernández-Varea et
al., 1993a). The GOS satisfies the Bethe sum rule (Inokuti, 1971)

∫ ∞

0

df(Q,W )

dW
dW = Z for any Q. (3.45)

This sum rule, which is a result from non-relativistic theory (see e.g. Mott and Massey,
1965), is assumed to be generally satisfied. It leads to the interpretation of the GOS as
the effective number of electrons per unit energy transfer that participate in interactions
with given recoil energy Q. The mean excitation energy I, defined by (Fano, 1963;
Inokuti, 1971)

Z ln I =
∫ ∞

0
lnW

df(W )

dW
dW, (3.46)
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plays a central role in the Bethe stopping power formula [eq. (3.103) below]. This
quantity has been determined empirically for a large number of materials (see Berger
and Seltzer, 1982, and references therein) from measurements of the stopping power of
heavy charged particles and/or from experimental optical dielectric functions. In the
following, we shall assume that the mean excitation energy of the stopping medium is
known.

3.2.1 GOS model

The simulation of inelastic collisions of electrons and positrons in penelope is per-
formed on the basis of the following GOS model, which is tailored to allow fast random
sampling of W and Q. We assume that the GOS splits into contributions from the dif-
ferent atomic electron shells. Each atomic shell k is characterized by the number Zk of
electrons in the shell and the ionization energy Uk. To model the contribution of a shell
to the GOS, we refer to the example of the hydrogen atom (fig. 3.7) and observe that for
Q > Uk the GOS reduces to the Bethe ridge, whereas for Q < Uk it is nearly constant
with Q and decreases rapidly with W ; a large fraction of the OOS concentrates in a
relatively narrow W -interval. Consideration of other well-known systems, such as inner
shells of heavy atoms (Manson, 1972) and the free-electron gas (Lindhard and Winther,
1964), shows that these gross features of the GOS are universal. Liljequist (1983) pro-
posed modelling the GOS of each atomic electron shell as a single “δ-oscillator”, which
is an entity with a simple GOS given by (see fig. 3.8)

F (Wk;Q,W ) = δ(W −Wk)Θ(Wk −Q) + δ(W −Q)Θ(Q−Wk), (3.47)

where δ(x) is the Dirac delta function and Θ(x) is the step function. The first term
represents resonant low-Q (distant) interactions, which are described as a single reso-
nance at the energy Wk. The second term corresponds to large-Q (close) interactions,
in which the target electrons react as if they were free and at rest (W = Q). Notice
that the oscillator GOS satisfies the sum rule

∫ ∞

0
F (Wk;Q,W ) dW = 1 for any Q (3.48)

and, consequently, a δ-oscillator corresponds to one electron in the target. The Liljequist
GOS model for the whole atom is given by

df(Q,W )

dW
=
∑

k

fk [δ(W −Wk)Θ(Wk −Q) + δ(W −Q)Θ(Q−Wk)] . (3.49)

where the summation in k extends over all bound electron shells (and the conduction
band, in the case of conductors) and the partial oscillator strength fk is identified with
the number of electrons in the k-th shell, i.e. fk = Zk. The corresponding OOS reduces
to

df(W )

dW
=
∑

k

fk δ(W −Wk), (3.50)
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which has the same form (a superposition of resonances) as the OOS used by Sternheimer
(1952) in his calculations of the density effect correction. In order to reproduce the
high-energy stopping power given by the Bethe formula (Berger and Seltzer, 1982), the
oscillator strengths must satisfy the Bethe sum rule (3.45),

∑
k
fk = Z, (3.51)

and the excitation energies must be defined in such a way that the GOS model leads,
through eq. (3.46), to the accepted value of the mean excitation energy I,

∑
k
fk lnWk = Z ln I. (3.52)

As the partial oscillator strength fk has been set equal to the number of electrons in the
k-th shell, the Bethe sum rule is automatically satisfied.
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Figure 3.8: Oscillator model for the GOS of an inner shell with Uk = 2 keV. The continuous

curve represents the maximum allowed energy loss as a function of the recoil energy, Wm(Q),

for electrons/positrons with E = 10 keV. For distant interactions the possible recoil energies lie

in the interval from Q− to Wk. Recoil energies larger than Wk correspond to close interactions.

The largest allowed energy loss Wmax is E/2 for electrons and E for positrons (see text).

The largest contribution to the total cross section arises from low-W (soft) excita-
tions. Therefore, the total cross section is mostly determined by the OOS of weakly
bound electrons, which is strongly dependent on the state of aggregation. In the case
of conductors and semiconductors, electrons in the outermost shells form the conduc-
tion band (cb). These electrons can move quite freely through the medium and, hence,
their binding energy is set to zero, Ucb = 0. Excitations of the conduction band will be
described by a single oscillator, with oscillator strength fcb and resonance energy Wcb.
These parameters should be identified with the effective number of electrons (per atom
or molecule) that participate in plasmon excitations and the plasmon energy, respec-
tively. They can be estimated e.g. from electron energy-loss spectra or from measured
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optical data. When this information is not available, we will simply fix the value of fcb

(as the number of electrons with ionization energies less than, say, 15 eV) and set the
resonance energy Wcb equal to the plasmon energy of a free-electron gas with the same
density as that of conduction electrons,

Wcb =
√

4πNfcbh̄
2e2/me =

√
fcb

Z
Ωp. (3.53)

This gives a fairly realistic model for free-electron-like metals (such as aluminium),
because the resonance energy is set equal to the plasmon energy of the free-electron
gas (see e.g. Kittel, 1976). A similar prescription, with fcb set equal to the lowest
chemical valence of an element, was adopted by Sternheimer et al. (1982, 1984) in their
calculations of the density effect correction for single-element metals.

Following Sternheimer (1952), the resonance energy of a bound-shell oscillator is
expressed as

Wj =

√

(aUj)2 +
2

3

fj

Z
Ω2

p, (3.54)

where Uj is the ionization energy and Ωp is the plasma energy corresponding to the
total electron density in the material, eq. (3.42). The term 2fjΩ

2
p/3Z under the square

root accounts for the Lorentz-Lorenz correction (the resonance energies of a condensed
medium differ from those of a free atom/molecule. The empirical adjustment factor a
in eq. (3.54) (the same for all bound shells) is determined from the condition (3.52), i.e.
from

Z ln I = fcb lnWcb +
∑

j

fj ln

√

(aUj)2 +
2

3

fj

Z
Ω2

p. (3.55)

For a one-shell system, such as the hydrogen atom, relations (3.51) and (3.52) imply
that the resonance energy Wi is equal to I. Considering the ∼ W−3 dependence of
the hydrogenic OOS, it is concluded that a should be of the order of exp(1/2) = 1.65
(Sternheimer et al., 1982). It is worth noting that the Sternheimer adjustment factor
a is a characteristic of the considered medium; therefore, the DCSs for ionization of a
shell of a given element in two different compounds may be slightly different.

It should be mentioned that the oscillator model gives a Bethe ridge with zero width,
i.e. the broadening caused by the momentum distribution of the target electrons is ne-
glected. This is not a serious drawback for light projectiles (electrons and positrons),
but it can introduce sizeable errors in the computed cross sections for slow heavy pro-
jectiles with m � me. The oscillator model also disregards the fact that, for low-Q
interactions, there is a transfer of oscillator strength from inner to outer shells (see e.g.
Shiles et al., 1980). As a consequence, the shell ionization cross sections obtained from
this GOS model are only roughly approximate. Their use in a Monte Carlo code is
permissible only because the ionization of inner shells is a low-probability process (see
fig. 3.9 below) that has a very weak effect on the global transport properties.

In mixed (class II) simulations, only hard collisions, with energy loss larger than a
specified cutoff value Wcc, are simulated (see chapter 4). The effect of soft interactions
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(with W < Wcc) is described by means of a multiple scattering approximation, which
does not require detailed knowledge of the shell DCSs. Hard collisions may produce
ionizations in deep electron shells, which leave the target atom in a highly excited
state (with a vacancy in an inner shell) that decays by emission of energetic x-rays and
Auger electrons. In penelope we use the GOS model only to describe the effect of the
interactions on the projectile and the emission of knock-on secondary electrons. K and
L shells with ionization energy Uj larger than max(200 eV,Wcc) will be referred to as
“inner” shells. The production of vacancies in these inner shells is simulated by means
of more accurate ionization cross sections (see section 3.2.6). Electron shells other than
K and L shells, or with Uj < max(200 eV,Wcc), will be referred to as “outer” shells.

The present theory is directly applicable to compounds (and mixtures), since the
oscillators may pertain either to atoms or molecules. When the value of the mean
excitation energy of the compound is not known, it may be estimated from Bragg’s
additivity rule as follows. Consider a compound XxYy, in which the molecules consist
of x atoms of the element X and y atoms of the element Y. The number of electrons
per molecule is ZM = xZX + yZY, where ZX stands for the atomic number of element
X. According to the additivity rule, the GOS of the compound is approximated as the
sum of the atomic GOSs of the atoms so that

ZM ln I = xZX ln IX + yZY ln IY, (3.56)

where IX denotes the mean excitation energy of element X.

For heavy elements, and also for compounds and mixtures with several elements, the
number of electron shells may be fairly large (of the order of sixty for an alloy of two
heavy metals). In these cases, it would be impractical to treat all shells with the same
detail/accuracy. In fact, the description of the outer shells can be simplified without
sacrificing the reliability of the simulation results. In penelope, the maximum number
of oscillators for each material is limited. When the number of actual shells is too large,
oscillators with similar resonance energies are grouped together and replaced by a single
oscillator with oscillator strength equal to the sum of strengths of the original oscillators.
The resonance energy of the group oscillator is set by requiring that the contribution to
the mean excitation energy I equals the sum of contributions of the grouped oscillators;
this ensures that grouping will not alter the stopping power of fast particles (with E
substantially greater than the ionization energy of the grouped oscillators).

3.2.2 Differential cross sections

The DCS for inelastic collisions obtained from our GOS model can be split into contri-
butions from distant longitudinal, distant transverse and close interactions,

d2σin

dW dQ
=

d2σdis,l

dW dQ
+

d2σdis,t

dW dQ
+

d2σclo

dW dQ
. (3.57)
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The DCS for distant longitudinal interactions is given by the first term in eq. (3.43),

d2σdis,l

dW dQ
=

2πe4

mev2

∑

k

fk
1

W

2mec
2

Q(Q+ 2mec2)
δ(W −Wk)Θ(Wk −Q). (3.58)

As mentioned above, the DCS for distant transverse interactions has a complicated
expression. To simplify it, we shall ignore the (very small) angular deflections of the
projectile in these interactions and replace the expression in curly brackets in eq. (3.43)
by an averaged W -independent value that gives the exact contribution of the distant
transverse interactions to the high-energy stopping power (Salvat and Fernández-Varea,
1992). This yields the following approximate expression for the DCS of distant transverse
interactions,

d2σdis,t

dW dQ
=

2πe4

mev2

∑

k

fk
1

W

{
ln

(
1

1 − β2

)
− β2 − δF

}

× δ(W −Wk)Θ(Wk −Q) δ(Q−Q−), (3.59)

where Q− is the minimum recoil energy3 for the energy transfer W , eq. (A.31), and δF

is the Fermi density effect correction on the stopping power, which has been studied
extensively in the past (Sternheimer, 1952; Fano, 1963). δF can be computed as (Fano,
1963)

δF ≡
1

Z

∫ ∞

0

df(Q = 0,W )

dW
ln

(
1 +

L2

W 2

)
dW − L2

Ω2
p

(
1− β2

)
, (3.60)

where L is a real-valued function of β2 defined as the positive root of the following
equation (Inokuti and Smith, 1982):

F(L) ≡ 1

Z
Ω2

p

∫ ∞

0

1

W 2 + L2

df(Q = 0,W )

dW
dW = 1 − β2. (3.61)

The function F(L) decreases monotonically with L, and hence, the root L(β2) exists
only when 1 − β2 < F(0); otherwise it is δF = 0. Therefore, the function L(β2) starts
with zero at β2 = 1−F(0) and grows monotonically with increasing β2. With the OOS,
given by eq. (3.50), we have

F(L) =
1

Z
Ω2

p

∑

k

fk

W 2
k + L2

(3.62)

and

δF ≡
1

Z

∑

k

fk ln

(
1 +

L2

W 2
k

)
− L2

Ω2
p

(
1− β2

)
. (3.63)

In the high-energy limit (β → 1), the L value resulting from eq. (3.61) is large (L �
Wk) and can be approximated as L2 = Ω2

p/(1 − β2). Then, using the Bethe sum rule

3The recoil energy Q
−

corresponds to θ = 0, i.e. we consider that the projectile is not deflected by
distant transverse interactions.
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(
∑
fk = Z) and the relation (3.52), we obtain

δF ' ln

(
Ω2

p

(1 − β2)I2

)
− 1, when β → 1. (3.64)

The DCS for close collisions is given by

d2σclo

dW dQ
=

2πe4

mev2

∑

k

fk
1

W

(
2mec

2

W (W + 2mec2)
+
β2 sin2 θclo

2mec2

)
δ(W −Q)Θ(W −Wk),

where θclo is the recoil angle, defined by eq. (3.40) with Q = W ,

cos2 θclo =
W

E

E + 2mec
2

W + 2mec2
. (3.65)

We have

d2σclo

dW dQ
=

2πe4

mev2

∑

k

fk
1

W 2

(
1 +

β2(E −W )W − EW
E(W + 2mec2)

)
δ(W −Q)Θ(W −Wk). (3.66)

DCS for close collisions of electrons

When the projectile is an electron, the DCS must be corrected to account for the indis-
tinguishability of the projectile and the target electrons. For distant interactions, the
effect of this correction is small (much smaller than the distortion introduced by our
modelling of the GOS) and will be neglected. The energy loss DCS for binary collisions
of electrons with free electrons at rest, obtained from the Born approximation with
proper account of exchange, is given by the Møller (1932) formula,

d2σM

dWdQ
=

2πe4

mev2

1

W 2

[
1 +

(
W

E −W
)2

− W

E −W

+a

(
W

E −W +
W 2

E2

)]
δ(W −Q), (3.67)

where

a =
(

E

E + mec2

)2

=

(
γ − 1

γ

)2

. (3.68)

To introduce exchange effects in the DCS for close interactions of electrons, we replace
the factor in parenthesis in eq. (3.66) by the analogous factor in Møller’s formula , i.e.
we take

d2σ
(−)
clo

dW dQ
=

2πe4

mev2

∑

k

fk
1

W 2
F (−)(E,W )δ(W −Q)Θ(W −Wk), (3.69)

with

F (−)(E,W ) ≡ 1 +
(

W

E −W
)2

− W

E −W + a

(
W

E −W +
W 2

E2

)
. (3.70)
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In the final state we have two indistinguishable free electrons, and it is natural to consider
the fastest one as the “primary”. Accordingly, the maximum allowed energy transfer in
close collisions is

Wmax = E/2. (3.71)

DCS for close collisions of positrons

Positrons in matter are unstable particles that annihilate with electrons giving photons
(see section 3.4). On the other hand, electron-positron pairs can be created if enough
electromagnetic energy (> 2mec

2) is available (either from real or virtual photons). A
positron does not interact with matter as a usual (stable) positively charged particle,
since the competing process of annihilation followed by re-creation can cause the same
transitions as “direct” scattering (see e.g. Sakurai, 1967). The DCS for binary collisions
of positrons with free electrons at rest, obtained from the first Born approximation in-
cluding the “annihilation/creation” mechanism, is given by the Bhabha (1936) formula,

d2σB

dWdQ
=

2πe4

mev2

1

W 2

[
1− b1

W

E
+ b2

(
W

E

)2

− b3
(
W

E

)3

+ b4

(
W

E

)4
]
δ(W −Q), (3.72)

where

b1 =

(
γ − 1

γ

)2
2(γ + 1)2 − 1

γ2 − 1
, b2 =

(
γ − 1

γ

)2
3(γ + 1)2 + 1

(γ + 1)2
,

b3 =

(
γ − 1

γ

)2
2γ(γ − 1)

(γ + 1)2
, b4 =

(
γ − 1

γ

)2
(γ − 1)2

(γ + 1)2
. (3.73)

To account approximately for the effect of annihilation/creation on the DCS for close
inelastic interactions of positrons, we shall use the expression (3.66), with the factor in
parenthesis replaced by the Bhabha factor,

F (+)(E,W ) = 1 − b1
W

E
+ b2

(
W

E

)2

− b3
(
W

E

)3

+ b4

(
W

E

)4

. (3.74)

That is,

d2σ
(+)
clo

dW dQ
=

2πe4

mev2

∑

k

fk
1

W 2
F (+)(E,W )δ(W −Q)Θ(W −Wk). (3.75)

Notice that the maximum energy loss in collisions of positrons with energy E is Wmax =
E.

3.2.3 Integrated cross sections

The energy-loss DCS is defined as

dσin

dW
≡
∫ Q+

Q
−

d2σin

dW dQ
dQ =

dσdis,l

dW
+

dσdis,t

dW
+

dσclo

dW
, (3.76)
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where Q− and Q+ are the minimum and maximum kinematically allowed recoil ener-
gies given by eq. (A.31). The contributions from distant longitudinal and transverse
interactions are

dσdis,l

dW
=

2πe4

mev2

∑

k

fk
1

Wk
ln

(
Wk

Q−

Q− + 2mec
2

Wk + 2mec2

)
δ(W −Wk)Θ(Wk −Q−) (3.77)

and

dσdis,t

dW
=

2πe4

mev2

∑

k

fk
1

Wk

{
ln

(
1

1 − β2

)
− β2 − δF

}
δ(W −Wk)Θ(Wk −Q−), (3.78)

respectively. The energy-loss DCS for close collisions is

dσ
(±)
clo

dW
=

2πe4

mev2

∑

k

fk
1

W 2
F (±)(E,W )Θ(W −Wk). (3.79)

Our analytical GOS model provides quite an accurate average description of inelastic
collisions (see below). However, the continuous energy loss spectrum associated with
single distant excitations of a given atomic electron shell is approximated here as a single
resonance (a δ-distribution). As a consequence, the simulated energy loss spectra show
unphysically narrow peaks at energy losses that are multiples of the resonance energies.
These spurious peaks are automatically smoothed out after multiple inelastic collisions
and also when the bin width used to tally the energy loss distributions is larger than
the difference between resonance energies of neighbouring oscillators.

The PDF of the energy loss in a single inelastic collision is given by

pin(W ) =
1

σin

dσin

dW
, (3.80)

where

σin =
∫ Wmax

0

dσin

dW
dW (3.81)

is the total cross section for inelastic interactions. It is convenient to introduce the
quantities

σ
(n)
in ≡

∫ Wmax

0
W n dσin

dW
dW = σin

∫ Wmax

0
W npin(W ) dW = σin 〈W n〉, (3.82)

where 〈W n〉 denotes the n-th moment of the energy loss in a single collision (notice

that σ
(0)
in = σin). σ

(1)
in and σ

(2)
in are known as the stopping cross section and the energy

straggling cross section (for inelastic collisions), respectively.

The mean free path λin for inelastic collisions is

λ−1
in = Nσin, (3.83)
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where N is the number of scattering centres (atoms or molecules) per unit volume. The
stopping power Sin and the energy straggling parameter Ω2

in are defined by

Sin = Nσ(1)
in =

〈W 〉
λin

(3.84)

and

Ω2
in = Nσ(2)

in =
〈W 2〉
λin

. (3.85)

Notice that the stopping power gives the average energy loss per unit path length4. The
physical meaning of the straggling parameter is less direct. Consider a monoenergetic
electron (or positron) beam of energy E that impinges normally on a foil of material
of (small) thickness ds, and assume that the electrons do not scatter (i.e. they are
not deflected) in the foil. The product Ω2

in ds then gives the variance of the energy
distribution of the beam after traversing the foil (see also section 4.2).

The integrated cross sections σ
(n)
in can be calculated as

σ
(n)
in = σ

(n)
dis,l + σ

(n)
dis,t + σ

(n)
clo . (3.86)

The contributions from distant longitudinal and transverse interactions are

σ
(n)
dis,l =

2πe4

mev2

∑

k

fkW
n−1
k ln

(
Wk

Q−

Q− + 2mec
2

Wk + 2mec2

)
Θ(Wmax −Wk) (3.87)

and

σ
(n)
dis,t =

2πe4

mev2

∑

k

fkW
n−1
k

{
ln

(
1

1 − β2

)
− β2 − δF

}
Θ(Wmax −Wk), (3.88)

respectively. Notice that for distant interactions Wmax = E, for both electrons and
positrons.

The integrated cross sections for close collisions are

σ
(n)
clo =

2πe4

mev2

∑

k

fk

∫ Wmax

Wk

W n−2F (±)(E,W ) dW. (3.89)

In the case of electrons, the integrals in this formula are of the form

J (−)
n =

∫
W n−2

[
1 +

(
W

E −W
)2

− (1 − a)W
E −W +

aW 2

E2

]
dW (3.90)

and can be calculated analytically. For the orders 0, 1 and 2 we have

J
(−)
0 = − 1

W
+

1

E −W +
1− a
E

ln
(
E −W
W

)
+
aW

E2
, (3.91)

4The term “stopping power” is somewhat misleading; in fact, Sin has the dimensions of force.
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J
(−)
1 = lnW +

E

E −W + (2 − a) ln(E −W ) +
aW 2

2E2
(3.92)

and

J
(−)
2 = (2− a)W +

2E2 −W 2

E −W + (3− a)E ln(E −W ) +
aW 3

3E2
. (3.93)

For positrons, the integrals in (3.89),

J (+)
n ≡

∫
W n−2

[
1− b1

W

E
+ b2

(
W

E

)2

− b3
(
W

E

)3

+ b4

(
W

E

)4
]

dW, (3.94)

can also be evaluated analytically as

J
(+)
0 = − 1

W
− b1

lnW

E
+ b2

W

E2
− b3

W 2

2E3
+ b4

W 3

3E4
, (3.95)

J
(+)
1 = lnW − b1

W

E
+ b2

W 2

2E2
− b3

W 3

3E3
+ b4

W 4

4E4
(3.96)

and

J
(+)
2 = W − b1

W 2

2E
+ b2

W 3

3E2
− b3

W 4

4E3
+ b4

W 5

5E4
. (3.97)

Fig. 3.9 displays total inelastic cross sections for electrons in aluminium and gold,
as well as contributions from various groups of shells, as functions of the kinetic energy
of the projectile. The curves labelled “K” and “L1+. . . ” represent cross sections for
ionization in these shells. The cross section for ionization in a bound shell decreases
rapidly with the shell ionization energy Ui (since energy transfers less than Ui, which
would promote the target electron to occupied states, are forbidden). As a consequence,
collisions occur preferentially with electrons in the conduction band and in outer bound
shells. Inner-shell ionization by electron/positron impact is a relatively unlikely process.
It should be noted that our GOS model is too crude to provide an accurate description
of inner-shell ionization. To illustrate this, fig. 3.9 includes K- and L-shell ionization
cross sections obtained from the optical-data model described in section 3.2.6, which are
known to agree reasonably well with experimental data (Mayol and Salvat, 1990). We
see that there are significant differences between the cross sections from the optical-data
model and the predictions of our simple GOS model, which is designed to yield accurate
stopping powers only. To get a realistic picture of inner-shell ionization, we have to rely
on much more elaborate physical schemes. In fact, even the Born approximation ceases
to be appropriate for projectiles with kinetic energies near the ionization threshold.

Collision stopping powers for electrons in aluminium, silver and gold obtained from
the present analytical model are compared with sample values from the ICRU37 (1984)
stopping power tables [given also in Berger and Seltzer (1982)] for E ≥ 10 keV in fig.
3.10. Our results practically coincide with the values in the tables of reference. In fig.
3.11, inelastic mean free paths and stopping powers for low-energy electrons (E = 100
eV to 100 keV) in aluminium and gold obtained from the present model are compared
with experimental data from several authors. We see that the theory predicts the
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Figure 3.9: Total inelastic cross sections for electrons in aluminium and gold and contribu-

tions from the K shell, L shell, conduction band (cb) and outer shells, calculated from our

model GOS ignoring density effect corrections (i.e. with δF = 0). The short-dashed curves

represent K- and L-shell ionization cross sections calculated from the optical-data model de-

scribed in section 3.2.6, which yields results in close agreement with experimental data. Note:

1 barn=10−24 cm2.

energy variation of total integrated cross sections down to relatively low energies. It
should be noted that the adopted value of Wcb, the resonance energy of conduction
band electrons, has a strong effect on the calculated mean free paths. In the case of
free-electron-like materials such as aluminium, Wcb can be identified with the energy of
plasmon excitations (which is the dominant energy-loss mechanism). For other solids,
the outermost electrons have a broad energy loss spectrum and there is no simple way
of predicting this parameter. Fortunately, the stopping power (and, hence, the global
stopping process) is practically independent of the adopted value of Wcb. To generate
the data for aluminium, fig. 3.11, we have set Wcb = 15 eV, which is the measured
energy of volume plasmons in the metal [eq. (3.53) with fcb = 3 conduction electrons
per atom gives Wcb = 15.8 eV]; in this case, the calculated mean free paths are seen
to agree fairly well with measured data. In the case of gold, eq. (3.53) with fcb = 11
conduction electrons per atom gives Wcb = 30 eV. Fig. 3.11 shows stopping powers and
mean free paths for electrons in gold obtained with Wcb = 30 and 40 eV. We see that,
as indicated above, the mean free path varies strongly with this parameter, but the
stopping power is practically insensitive to it.
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Figure 3.10: Collision stopping power Sin/ρ for electrons and positrons in aluminium, silver

(×10) and gold (×100) as a function of the kinetic energy. Continuous and dashed curves are

results from the present model. Crosses are data from the ICRU37 tables (1984) [also, Berger

and Seltzer, 1982)]. The dotted curves are predictions from the Bethe formula (3.103), for

electrons and positrons.

3.2.4 Stopping power of high-energy electrons and positrons

It is of interest to evaluate explicitly the stopping power for projectiles with high energies
(E � Uk). We shall assume that Uk � 2mec

2 (for the most unfavourable case of the
K shell of heavy elements, Uk is of the order of 2mec

2/10). Under these circumstances,
Q− � 2mec

2 and we can use the approximation [see eq. (A.35)]

Q− ' W 2
k /(2mec

2β2). (3.98)

The contribution from distant (longitudinal and transverse) interactions to the stopping
cross section is then [see eqs. (3.77) and (3.78)]

σ
(1)
dis '

2πe4

mev2

∑

k

fk

{
ln

(
2mec

2

Wk

)
+ ln

(
1

1 − β2

)
− β2 − δF

}
. (3.99)

The contribution of close interactions is given by

σ
(1)
clo =

2πe4

mev2

∑

k

fk

∫ Wmax

Wk

W−1F (±)(E,W ) dW. (3.100)
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Figure 3.11: Collision mean free path and stopping power for low-energy electrons in alu-

minium and gold. The plotted quantities are ρλin and Sin/ρ. Special symbols are experimental

data from different sources (see Fernández-Varea et al., 1993a); closed symbols for mean free

paths and open symbols for stopping powers.

Recalling that E � Uk, we have

σ
(1)
clo '

2πe4

mev2

∑

k

fk

{
ln
(
E

Wk

)
+ 1−

[
1 + β2 + 2

√
1 − β2

]
ln 2

+
1

8

(
1−

√
1 − β2

)2
}

(3.101)

for electrons and

σ
(1)
clo '

2πe4

mev2

∑

k

fk

{
ln
(
E

Wk

)
− b1 +

b2
2
− b3

3
+
b4
4

}
(3.102)

for positrons. Adding the distant and close stopping cross sections, and using the relation
(3.52), we arrive at the familiar Bethe formula for the stopping power,

Sin ≡ N
(
σ

(1)
dis + σ

(1)
clo

)
= N 2πe4

mev2
Z

{
ln

(
E2

I2

γ + 1

2

)
+ f (±)(γ)− δF

}
, (3.103)

where

f (−)(γ) = 1− β2 − 2γ − 1

γ2
ln 2 +

1

8

(
γ − 1

γ

)2

(3.104)
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and

f (+)(γ) = 2 ln 2 − β2

12

[
23 +

14

γ + 1
+

10

(γ + 1)2
+

4

(γ + 1)3

]
(3.105)

for electrons and positrons, respectively. This formula can be derived from very general
arguments that do not require knowing the fine details of the GOS; the only information
needed is contained in the Bethe sum rule (3.45) and in the definition (3.46) of the mean
excitation energy (see e.g. Fano, 1963). Since our approximate analytical GOS model is
physically motivated, it satisfies the sum rule and reproduces the adopted value of the
mean ionization energy, it yields (at high energies) the exact Bethe formula.

It is striking that the “asymptotic” Bethe formula is in fact valid down to fairly small
energies, of the order of 10 keV for high-Z materials (see fig. 3.10). It also accounts
for the differences between the stopping powers of electrons and positrons (to the same
degree as our GOS model approximation).

For ultrarelativistic projectiles, for which the approximation (3.64) holds, the Bethe
formula simplifies to

Sin ' N
2πe4

mev2
Z

{
ln

(
E2

Ω2
p

γ + 1

2γ2

)
+ f (±)(γ) + 1

}
. (3.106)

The mean excitation energy I has disappeared from this formula, showing that at
very high energies the stopping power depends only on the electron density NZ of
the medium.

3.2.5 Simulation of hard inelastic collisions

The DCSs given by expressions (3.76)-(3.79) permit the random sampling of the energy
loss W and the angular deflection θ by using purely analytical methods. In the following
we consider the case of mixed (class II) simulation, in which only hard collisions, with
energy loss larger than a specified cutoff value Wcc, are simulated (see chapter 4). As
the value of the cutoff energy loss can be selected arbitrarily, the sampling algorithm
can also be used in detailed (interaction-by-interaction) simulations (Wcc = 0).

The first stage of the simulation is the selection of the active oscillator, for which we
need to know the restricted total cross section,

σ(Wcc) ≡
∫ Wmax

Wcc

dσin

dW
dW = σdis,l(Wcc) + σdis,t(Wcc) + σclo(Wcc)

=
∑

k

σk(Wcc), (3.107)

as well as the contribution of each oscillator, σk(Wcc). The active oscillator is sampled
from the point probabilities pk = σk(Wcc)/σ(Wcc). Since these probabilities are calcu-
lated analytically, the sampling algorithm is relatively slow. In mixed simulations, the
algorithm can be sped up by using a larger cutoff energy loss Wcc, which eliminates all
the oscillators with Wk < Wcc from the sum.
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After selecting the active oscillator, the oscillator branch (distant or close) is deter-
mined and, finally, the variables W and Q (or cos θ) are sampled from the associated
DCS. For close collisions, Q = W and, therefore, the scattering angle is obtained directly
from the energy loss.

Hard distant interactions

In distant interactions with the k-th oscillator, W = Wk. The contributions of trans-
verse and longitudinal interactions to the restricted cross section define the relative
probabilities of these interaction modes. If the interaction is (distant) transverse, the
angular deflection of the projectile is neglected, i.e. cos θ = 1. For distant longitudinal
collisions, the (unnormalized) PDF of Q is given by [see eq. (3.58)]

Pdk(Q) =






1

Q [1 +Q/(2mec2)]
if Q− < Q < Wk,

0 otherwise,

(3.108)

where Q− is the minimum recoil energy, eq. (A.31). Random sampling from this PDF
can be performed by the inverse transform method, which gives the sampling formula

Q = QS

{[
QS

Wk

(
1 +

Wk

2mec2

)]ξ
− QS

2mec2

}−1

, (3.109)

where

QS ≡
Q−

1 +Q−/ (2mec2)
. (3.110)

Once the energy loss and the recoil energy have been sampled, the polar scattering angle
θ is determined from eq. (A.40),

cos θ =
E(E + 2mec

2) + (E −W )(E −W + 2mec
2)−Q(Q+ 2mec

2)

2
√
E(E + 2mec2) (E −W )(E −W + 2mec2)

. (3.111)

The azimuthal scattering angle φ is sampled uniformly in the interval (0, 2π).

Hard close collisions of electrons

For the formulation of the sampling algorithm, it is convenient to introduce the reduced
energy loss κ ≡ W/E. The PDF of κ in close collisions of electrons with the k-th
oscillator is given by [see eqs. (3.69) and (3.70)]

P
(−)
k (κ) ≡ κ−2F (−)(E,W )Θ(κ− κc)Θ

(
1

2
− κ

)
=

[
1

κ2
+

1

(1− κ)2

− 1

κ(1− κ) + a

(
1 +

1

κ(1− κ)

)]
Θ(κ− κc)Θ

(
1

2
− κ

)
, (3.112)
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with κc ≡ max(Wk,Wcc)/E. Notice that the maximum allowed value of κ is 1/2. Here,
normalization is irrelevant.

We introduce the distribution

Φ(−)(κ) ≡ (κ−2 + 5a) Θ(κ− κc) Θ
(

1

2
− κ

)
, a ≡

(
γ − 1

γ

)2

. (3.113)

It may be shown that Φ(−) > P
(−)
k in the interval (κc,

1
2
). Therefore, we can sample the

reduced energy loss κ from the PDF (3.112) by using the rejection method (see section
1.2.4) with trial values sampled from the distribution (3.113) and acceptance probability

P
(−)
k /Φ(−).

Random sampling from the PDF (3.113), can be performed by using the composition
method (section 1.2.5). We consider the following decomposition of the (normalized)
PDF given by eq. (3.113):

Φ(−)
norm(κ) =

1

1 + 5aκc/2
[p1(κ) + (5aκc/2)p2(κ)] , (3.114)

where

p1(κ) =
κc

1 − 2κc
κ−2, p2(κ) =

2

1 − 2κc
(3.115)

are normalized PDFs in the interval (κc,
1
2
). Random values of κ from the PDF (3.113)

can be generated by using the following algorithm:

(i) Generate ξ.

(ii) Set ζ = (1 + 5aκc/2)ξ.

(iii) If ζ < 1, deliver the value κ = κc/[1 − ζ(1− 2κc)].

(iv) If ζ > 1, deliver the value κ = κc + (ζ − 1)(1 − 2κc)/(5aκc).

The rejection algorithm for random sampling of κ from the PDF (3.112) proceeds
as follows:

(i) Sample κ from the distribution given by eq. (3.113).

(ii) Generate a random number ξ.

(iii) If ξ(1 + 5aκ2) < κ2P
(−)
k (κ), deliver κ.

(iv) Go to step (i).

Notice that in the third step we accept the κ value with probability P
(−)
k /Φ(−), which

approaches unity when κ is small.

The efficiency of this sampling method depends on the values of the energy E and
the cutoff reduced energy loss κc, as shown in table 3.1. For a given energy and for Wcc

values which are not too large, the efficiency increases when Wcc decreases.
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Table 3.1: Efficiency (%) of the random sampling algorithm of the energy loss in close

collisions of electrons and positrons for different values of the energy E and the cutoff energy

loss κc.

E (eV) κc

0.001 0.01 0.1 0.25 0.4

103 99.9 99.9 99.8 99.7 99.6

105 99.7 98 87 77 70

107 99 93 70 59 59

109 99 93 71 62 63

After sampling the energy loss W = κE, the polar scattering angle θ is obtained
from eq. (A.40) with Q = W . This yields

cos2 θ =
E −W
E

E + 2mec
2

E −W + 2mec2
, (3.116)

which agrees with eq. (A.17). The azimuthal scattering angle φ is sampled uniformly in
the interval (0, 2π).

Hard close collisions of positrons

The PDF of the reduced energy loss κ ≡W/E in positron close collisions with the k-th
oscillator is given by [see eqs. (3.74) and (3.75)]

P
(+)
k (κ) = κ−2F

(+)
k (E,W )Θ(κ− κc)Θ(1 − κ)

=

[
1

κ2
− b1
κ

+ b2 − b3κ+ b4κ
2

]
Θ(κ− κc)Θ(1 − κ) (3.117)

with κc ≡ max(Wk,Wcc)/E. The maximum allowed reduced energy loss is 1. Again,
normalization is not important.

Consider the distribution

Φ(+)(κ) ≡ κ−2Θ(κ− κc)Θ(1 − κ). (3.118)

It is easy to see that Φ(+) > P
(+)
k in the interval (κc, 1). Therefore, we can generate κ

from the PDF, eq. (3.117), by using the rejection method with trial values sampled from

the distribution of eq. (3.118) and acceptance probability P
(+)
k /Φ(+). Sampling from the

PDF Φ(+) can easily be performed with the inverse transform method.

The algorithm for random sampling from the PDF (3.117), is:
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(i) Sample κ from the PDF (3.118), as κ = κc/[1− ξ(1 − κc)].

(ii) Generate a new random number ξ.

(iii) If ξ < κ2P
(+)
k (κ), deliver κ.

(iv) Go to step (i).

The efficiency of this algorithm, for given values of the kinetic energy and the cutoff
reduced energy loss κc, practically coincides with that of the algorithm for electron
collisions described above (see table 3.1).

Secondary electron emission

According to our GOS model, each oscillator Wk corresponds to a shell with fk elec-
trons and ionization energy Uk. After a hard collision with an inner-shell electron, the
primary electron/positron has kinetic energy E −W , the “secondary” electron (delta
ray) is ejected with kinetic energy Es = W −Ui, and the residual ion is left in an excited
state, with a vacancy in shell i, which corresponds to an excitation energy equal to
Ui. This energy is eventually released by emission of energetic x rays and Auger elec-
trons. However, in penelope the relaxation of ions produced in hard collisions is not
followed. The production of vacancies in inner shells and their relaxation is simulated
by an independent, more accurate, scheme (see section 3.2.6) that is free from the crude
approximations involved in our GOS model. To avoid double counting, the excitation
energy Ui of the residual ion is deposited locally. On the other hand, when the impact
ionization occurs in an outer shell or in the conduction band, the initial energy of the
secondary electron is set equal to W and no fluorescent radiation from the ionized atom
is followed by the simulation program. This is equivalent to assuming that the secondary
electron carries away the excitation energy of the target atom.

To set the initial direction of the delta ray, we assume that the target electron was
initially at rest, i.e. the delta ray is emitted in the direction of the momentum transfer
q. This implies that the polar emission angle θs (see fig. 3.1) coincides with the recoil
angle θr [which is given by eq. (A.42)],

cos2 θs =
W 2/β2

Q(Q+ 2mec2)

(
1 +

Q(Q+ 2mec
2)−W 2

2W (E + mec2)

)2

. (3.119)

In the case of close collisions (Q = W ), this expression simplifies to

cos θs (Q = W ) =

(
W

E

E + 2mec
2

W + 2mec2

)1/2

, (3.120)

which agrees with the result for binary collisions with free electrons at rest, see eq.
(A.18). Since the momentum transfer lies on the scattering plane (i.e. on the plane
formed by the initial and final momenta of the projectile), the azimuthal emission angle
is φs = π + φ.
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In reality, the target electrons are not at rest and, therefore, the angular distribution
of emitted delta rays is broad. Since the average momentum of bound electrons is
zero, the average direction of delta rays coincides with the direction of q. Thus, our
simple emission model correctly predicts the average initial direction of delta rays, but
disregards the “Doppler broadening” of the angular distribution. This is not a serious
drawback, because secondary electrons are usually emitted with initial kinetic energies
that are much smaller than the initial energy of the projectile. This means that the
direction of motion of the delta ray is randomized, by elastic and inelastic collisions,
after a relatively short path length (much shorter than the transport mean free path of
the projectile).

3.2.6 Ionization of inner shells

As indicated above, the theory presented in sections 3.2.1 and 3.2.2 does not give realis-
tic values of the cross sections for ionization of inner shells. Hence, it is not appropriate
to simulate inner-shell ionization by electron and positron impact and the subsequent
emission of fluorescent radiation, i.e. Auger electrons and characteristic x rays. Never-
theless, the GOS model does provide an appropriate description of the average (stopping
and scattering) effect of inelastic collisions on the projectile.

A consistent model for the simulation of inner-shell ionization and relaxation must
account for the following features of the process: 1) space distribution of inner-shell ion-
izations along the projectile’s track, 2) relative probabilities of ionizing various atomic
electron shells and 3) energies and emission probabilities of the electrons and x rays re-
leased through the de-excitation cascade of the ionized atom. The correlation between
energy loss/scattering of the projectile and ionization events is of minor importance and
may be neglected (it is observable only in single-scattering experiments where the in-
elastically scattered electrons and the emitted x rays or Auger electrons are observed in
coincidence). Consequently, we shall consider inner-shell ionization as an independent
interaction process that has no effect on the state of the projectile. Accordingly, in the
simulation of inelastic collisions the projectile is assumed to cause only the ejection of
knock-on electrons (delta rays); in these collisions the target atom is considered to re-
main unaltered to avoid double counting of ionizations. Thus, to determine the location
of ionizing events and the atomic shell that is ionized we only need to consider cross
sections for ionization of individual inner shells, which can be obtained from elaborate
theoretical models. The relaxation of the vacancies produced by inner-shell ionizations
is simulated as described in section 2.6. This kind of simulation scheme is trivial to
implement, but it may cause artifacts (in the form of small negative doses) in space re-
gions where the simulated dose distributions have large relative statistical uncertainties.
The reason is that simulated Auger electrons and x rays remove energy from their site
(volume bin) of birth, in quantities that may exceed the actual energy deposited by the
projectile.

To simulate the ionization of K shells and L subshells (with ionization energies
larger than 200 eV) by electron and positron impact, penelope uses total ionization
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cross sections obtained from an optical-data model of the GOS (Mayol and Salvat,
1990). This model assumes the following relationship between the optical oscillator
strength (OOS) of the i-th inner shell, dfi(W )/dW , and the photoelectric cross section
σph,i(Z,W ) for absorption of a photon with energy W ,

dfi(W )

dW
=

mec

2π2e2h̄
σph,i(Z,W ). (3.121)

This equality holds when the dipole approximation is applicable, i.e. when the wave-
length of the photon is much larger than the “size” of the active electron shell. In
the calculations we use the photoelectric cross sections from the penelope database,
which were extracted from the EPDL (Cullen et al., 1997). The GOS is modelled as a
continuous superposition of δ-oscillators weighted by the OOS,

dfi(Q,W )

dW
=
∫ ∞

Ui

dfi(W
′)

dW ′
F (W ′;Q,W ) dW ′ + Zr δ(W −Q)Θ(W − Ui) (3.122)

with

Zr = Zi −
∫ ∞

Ui

dfi(W
′)

dW ′
dW ′. (3.123)

This GOS model satisfies the Bethe sum rule

∫ ∞

Ui

dfi(Q,W )

dW
dW = Zi if Q > Ui. (3.124)

For Q < Ui the integral of the GOS over W is less than the number Zi of electrons in
the active shell (because there is a transfer of oscillator strength to outer shells). As
shown by Mayol and Salvat (1990), this model is formally equivalent to the Weizsäcker-
Williams method of virtual quanta (see e.g. Jackson, 1975).

To compute the inner-shell ionization (“si”) cross section for electrons or positrons
of energy E we first consider the energy-loss DCS, which is given by

dσ
(±)
si,i (E)

dW
=

2πe4

mev2

{
dfi(W )

dW

1

W

[
ln

(
W

Q−

Q− + 2mec
2

W + 2mec2

)
+ ln

(
1

1− β2

)
− β2

]

+

(
Zr +

∫ W

Ui

dfi(W
′)

dW ′
dW ′

)
1

W 2
F (±)(E,W )

}
Θ(W − Ui)Θ(Wmax − Ui), (3.125)

whereQ− is the minimumrecoil energy for the energy lossW , eq. (A.31), and F (±)(E,W )
are the Møller (−) and Bhabha (+) factors, eqs. (3.70) and (3.74).

It is well known that the Born approximation overestimates the ionization cross
sections for incident electrons with kinetic energies near the ionization threshold. This
is mainly due to the distortion of the projectile wave function by the electrostatic field
of the target atom. This field produces an increase in the effective kinetic energy of
the projectile, which is expected to be important in close collisions. To account for this
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Figure 3.12: Cross sections for ionization of the K shell and the L subshells of argon, silver,

gold and uranium atoms by electron impact as functions of the kinetic energy of the projectiles.

Solid curves are results from the present optical data model. Circles represent cross-section

values calculated by Scofield (1978) using the relativistic plane-wave Born approximation.

The dashed curves are cross sections for ionization by impact of positrons calculated from eq.

(3.126b).
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effect we assume that the incident electron gains a kinetic energy5 2Ui before it interacts
with a target electron, which is bound with binding energy Ui. The maximum energy
loss is assumed to be Wmax = (E + Ui)/2, because the final energies of the projectile
(E −W ) and the knock-on secondary electron (W − Ui) are equal when W equals that
value. With this “Coulomb” correction, the ionization cross section for electrons is

σ
(−)
si,i (E) =

∫ (E+Ui)/2

Ui

dσ
(−)
si,i (E + 2Ui)

dW
dW. (3.126a)

The Coulomb correction reduces the ionization cross section near the threshold and
yields values in better agreement with experimental data. For positrons the effect of the
Coulomb distortion is introduced empirically by simply multiplying the ionization cross
section by a global factor (1 + Ui/E)−3. That is,

σ
(+)
si,i (E) =

(
E

E + Ui

)3 ∫ E

Ui

dσ
(+)
si,i (E)

dW
dW. (3.126b)

This correction gives positron ionization cross sections that are smaller than those of
electrons near the ionization threshold, in qualitative agreement with available exper-
imental data (see e.g. Hippler, 1990; Schneider et al., 1993). Fig. 3.12 displays cross
sections for ionization of K shells and L subshells of atoms of the elements argon, silver,
gold and uranium by impact of electrons obtained from the present optical-data model,
eq. (3.126a), together with results from the relativistic plane-wave first Born approx-
imation (Scofield, 1978). The differences at relatively low energies are mostly due to
exchange and Coulomb corrections, which were not included in Scofield’s calculations.
The dashed curves in fig. 3.12 represent cross sections for ionization by positron im-
pact, eq. (3.126b). The relative differences between the cross sections for electrons and
positrons are seen to increase with the binding energy of the active shell. It is worth
mentioning that the present optical-data model disregards the influence of the polar-
izability of the medium (density effect) on inner-shell ionization. This effect causes a
reduction of the ionization cross sections for projectiles with very high energies, which
decreases with the binding energy of the knock-on electron.

The molecular cross section for ionization of inner shells is evaluated as (additivity
approximation)

σ
(±)
si,mol(E) =

∑

i

σ
(±)
si,i (E), (3.127)

where the summation extends over all inner shells of the atoms in the molecule.

3.3 Bremsstrahlung emission

As a result of the acceleration caused by the electrostatic field of atoms, swift electrons
(or positrons) emit bremsstrahlung (braking radiation). In each bremsstrahlung event,

5For one-electron atoms and ions, the virial theorem implies that the average potential energy of
the bound electron is equal to 2Ui. In close collisions, for which the projectile reaches the position of
the target electron, the gain in kinetic energy should be of the order of 2Ui.
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an electron with kinetic energy E generates a photon of energy W , which takes values
in the interval from 0 to E. The process is described by an atomic DCS, differential in
the energy loss W , the final direction of the projectile and the direction of the emitted
photon (Koch and Motz, 1959; Tsai, 1974). The habitual practice in Monte Carlo
simulation is to sample the energy loss from the single-variable distribution obtained by
integrating the DCS over the other variables. This permits the generation of W easily,
but information on the angular distributions is completely lost and has to be regained
from suitable approximations. Angular deflections of the projectile are considered to be
accounted for by the elastic scattering DCS and, consequently, the direction of movement
of the projectile is kept unaltered in the simulation of radiative events.

3.3.1 The energy-loss scaled DCS

A simple description of the bremsstrahlung DCS is provided by the Bethe-Heitler for-
mula with screening, which is derived within the Born approximation (Bethe and Heitler,
1934; Tsai, 1974). Although this formula is valid only when the kinetic energy of the
electron before and after photon emission is much larger than its rest energy mec

2, it
accounts for the most relevant features of the emission process. Within the Born approx-
imation, bremsstrahlung emission is closely related to electron-positron pair production.
In particular, the Bethe-Heitler DCS formulae for pair production and bremsstrahlung
emission involve the same screening functions. Considering the exponential screening
model (2.78), the Bethe-Heitler DCS for bremsstrahlung emission by electrons in the
field of an atom of atomic number Z and screening radius R can be expressed as (Salvat
and Fernández-Varea, 1992)

dσ
(BH)
br

dW
= r2

eαZ(Z + η)
1

W

[
ε2ϕ1(b) +

4

3
(1− ε)ϕ2(b)

]
, (3.128)

where α is the fine-structure constant, re is the classical electron radius,

ε =
W

E + mec2
=

W

γmec2
, b =

Rmec

h̄

1

2γ

ε

1 − ε , (3.129)

and

ϕ1(b) = 4 ln(Rmec/h̄) + 2 − 2 ln(1 + b2)− 4b arctan(b−1),

ϕ2(b) = 4 ln(Rmec/h̄) +
7

3
− 2 ln(1 + b2)− 6b arctan(b−1)

− b2
[
4− 4b arctan(b−1)− 3 ln(1 + b−2)

]
. (3.130)

The quantity η in eq. (3.128) accounts for the production of bremsstrahlung in the field
of the atomic electrons (see e.g. Seltzer and Berger, 1985); in the high-energy limit
η ' 1.2.
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The Bethe-Heitler formula indicates that, for a given value of Z, the quantity
Wdσbr/dW varies smoothly with E and W . It is therefore customary to express the
DCS for bremsstrahlung emission by electrons in the form

dσbr

dW
=
Z2

β2

1

W
χ(Z,E, κ), (3.131)

where W is the energy of the emitted photon, κ is the reduced photon energy, defined
as

κ ≡W/E, (3.132)

which takes values between 0 and 1. The quantity

χ(Z,E, κ) = (β2/Z2)W
dσbr

dW
(3.133)

is known as the “scaled” bremsstrahlung DCS; for a given element Z, it varies smoothly
with E and κ. Seltzer and Berger (1985, 1986) produced extensive tables of the scaled
DCS for all the elements (Z =1–92) and for electron energies from 1 keV to 10 GeV.
They tabulated the scaled DCSs for emission in the (screened) field of the nucleus
(electron-nucleus bremsstrahlung) and in the field of atomic electrons (electron-electron
bremsstrahlung) separately, as well as their sum, the total scaled DCS. The electron-
nucleus bremsstrahlung DCS was calculated by combining analytical high-energy theo-
ries with results from partial-wave calculations by Pratt et al. (1977) for bremsstrahlung
emission in screened atomic fields and energies below 2 MeV. The scaled DCS for
electron-electron bremsstrahlung was obtained from the theory of Haug (1975) com-
bined with a screening correction that involves Hartree-Fock incoherent scattering func-
tions. Seltzer and Berger’s scaled DCS tables constitute the most reliable theoretical
representation of bremsstrahlung energy spectra available at present.

The penelope database of scaled bremsstrahlung DCSs consists of 92 files, one
for each element from hydrogen to uranium, which were generated from the origi-
nal database of Seltzer and Berger. The file of the element Z contains the values of
χ(Z,Ei, κj) for a set of electron kinetic energies Ei, which covers the range from 1 keV
to 10 GeV and is suitably spaced to allow accurate natural cubic spline interpolation in
lnE. For each energy Ei in this grid, the table contains the values of the scaled DCS
for a given set of 32 reduced photon energies κj (the same for all elements), which span
the interval (0,1), with a higher density at the upper end of this interval to reproduce
the structure of the bremsstrahlung “tip” (see fig. 3.13). The spacing of the κ-grid is
dense enough to allow linear interpolation of χ(Z,Ei, κj) in κ.

In the case of compounds (or mixtures) we use the additivity rule and compute the
molecular DCS as the sum of the DCSs of all the atoms in a molecule. Consider a
compound XxYy, whose molecules consist of x atoms of the element X and y atoms of
the element Y. The molecular DCS is

dσbr,mol

dW
= x

Z2
X

β2

1

W
χ(ZX, E, κ) + y

Z2
Y

β2

1

W
χ(ZY, E, κ). (3.134)
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Figure 3.13: Numerical scaled bremsstrahlung energy-loss DCSs of aluminium and gold for

electrons with the indicated energies (Seltzer and Berger, 1986).

To simulate each radiative event in a compound, we should first select the element (X
or Y) where the emission occurs and then sample the photon energy and direction from
the corresponding atomic DCS. This is a lengthy process and requires storing the scaled
DCSs for all the elements present. To simplify the simulation, we shall express the
molecular DCS in the same form as the atomic DCS, eq. (3.131),

dσbr,mol

dW
=
Z2

eq

β2

1

W
χmol(Zeq, E, κ), (3.135)

where

Z2
eq ≡

1

x + y

(
xZ2

X + yZ2
Y

)
(3.136)

is the “equivalent” atomic number Zeq and

χmol(Zeq, E, κ) =
xZ2

X

Z2
eq

χ(ZX, E, κ) +
yZ2

Y

Z2
eq

χ(ZY, E, κ) (3.137)

is the molecular scaled DCS. Radiative events will be sampled directly from the molec-
ular DCS (3.135). This method may introduce slight inconsistencies in the angular
distribution of the emitted photons (see below), which usually have a negligible effect
on the simulation results.
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The radiative DCS for positrons reduces to that of electrons in the high-energy limit
but is smaller for intermediate and low energies. Owing to the lack of more accurate
calculations, the DCS for positrons is obtained by multiplying the electron DCS by a
κ-independent factor, i.e.

dσ
(+)
br

dW
= Fp(Z,E)

dσ
(−)
br

dW
. (3.138)

The factor Fp(Z,E) is set equal to the ratio of the radiative stopping powers for positrons
and electrons, which has been calculated by Kim et al. (1986) (cf. Berger and Seltzer,
1982). In the calculations we use the following analytical approximation

Fp(Z,E) = 1− exp(−1.2359 × 10−1 t+ 6.1274 × 10−2 t2 − 3.1516 × 10−2 t3

+ 7.7446 × 10−3 t4 − 1.0595 × 10−3 t5 + 7.0568 × 10−5 t6

− 1.8080 × 10−6 t7), (3.139)

where

t = ln

(
1 +

106

Z2

E

mec2

)
. (3.140)

Expression (3.139) reproduces the values of Fp(Z,E) tabulated by Kim et al. (1986) to
an accuracy of about 0.5%.

3.3.2 Integrated cross sections

The total cross section for bremsstrahlung emission is infinite due to the divergence of
the DCS (3.131) for small reduced photon energies. Nevertheless, the cross section for
emission of photons with reduced energy larger than a given cutoff value Wcr is finite.
The corresponding mean free path is

λ−1
br (E;Wcr) ≡ N

∫ E

Wcr

dσbr

dW
dW = N Z2

β2

∫ 1

κcr

1

κ
χ(Z,E, κ) dκ, (3.141)

where κcr = Wcr/E. The radiative stopping power and the radiative energy straggling
parameter, defined by

Sbr(E) ≡ N
∫ E

0
W

dσbr

dW
dW = N Z2

β2
E
∫ 1

0
χ(Z,E, κ) dκ (3.142)

and

Ω2
br(E) ≡ N

∫ E

0
W 2 dσbr

dW
dW = N Z2

β2
E2

∫ 1

0
κχ(Z,E, κ) dκ, (3.143)

are both finite. For the kinetic energies Ei of the grid, these quantities are easily calcu-
lated from the tabulated scaled DCS by using linear interpolation in κ. For positrons,
the definitions (3.141)-(3.143) must be multiplied by the factor Fp(Z,E) [eq. (3.139)].

Radiative stopping powers of aluminium, silver and gold for electrons and positrons
are shown as functions of the kinetic energy in fig. 3.14. The stopping powers computed



3.3. Bremsstrahlung emission 111

1Ε+4 1Ε+5 1Ε+6 1Ε+7 1Ε+8 1Ε+9

E  (eV)

1Ε+4

1Ε+5

1Ε+6

1Ε+7

1Ε+8

1Ε+9

1Ε+10

S
b

r 
/ρ

  
 (

e
V

 c
m

2
/g

)

���
� �
	

��
���

� �
	
� ��

���

1Ε+4 1Ε+5 1Ε+6 1Ε+7 1Ε+8 1Ε+9

E  (eV)

1Ε+4

1Ε+5

1Ε+6

1Ε+7

1Ε+8

1Ε+9

1Ε+10

S
b

r 
/ρ

  
 (

e
V

 c
m

2
/g

)

���
� ���

���
���

� ���
� ��

���

positrons
e l e c trons

Figure 3.14: Radiative stopping power Sbr/ρ for electrons and positrons in aluminium, silver

(×10) and gold (×100) as a function of the kinetic energy. Solid and dashed curves are results

from the present model. Crosses are data from the ICRU37 report (1984) (also in Berger and

Seltzer, 1982).

from the DCS given by eq. (3.131) practically coincide with ICRU37 (1984) values
(also Berger and Seltzer, 1982). To leave room for future improvements, penelope

reads the radiative stopping power for electrons from the input material data file, and
renormalizes the DCS, eq. (3.131), (i.e. multiplies it by a κ-independent factor) so as to
exactly reproduce the input radiative stopping power.

CSDA range

As mentioned above, the stopping power gives the average energy loss per unit path
length. Thus, when an electron/positron with kinetic energy E advances a small distance
ds within a medium, it loses an (average) energy dE = −S(E)ds, where

S(E) = Sin(E) + Sbr(E) = −dE

ds
(3.144)

is the total (collisional+radiative) stopping power. Many electron transport calculations
and old Monte Carlo simulations are based on the so-called continuous slowing down
approximation (CSDA), which assumes that particles lose energy in a continuous way
and at a rate equal to the stopping power. Evidently, the CSDA disregards energy-loss
fluctuations and, therefore, it should be used with caution.
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Figure 3.15: CSDA ranges for electrons and positrons in aluminium and gold as functions of

the kinetic energy of the particle.

A parameter of practical importance is the so-called CSDA range (or Bethe range),
which is defined as the path length travelled by a particle (in an infinite medium) before
being absorbed and is given by

R(E) =
∫ E

Eabs

dE ′

S(E ′)
, (3.145)

where we have considered that particles are effectively absorbed when they reach the
energy Eabs. Notice that the CSDA range gives the average path length, actual (or
Monte Carlo generated) path lengths fluctuate about the mean R(E); the distribution
of ranges has been studied by Lewis (1952). Fig. 3.15 displays CSDA ranges for electrons
and positrons in aluminium and gold, this information is useful e.g. in estimating the
maximum penetration depth of a beam and for range rejection (a variance-reduction
method). Compare fig. 3.15 with figs. 3.10 and 3.14 (right plots only) to get a feeling of
how differences in stopping power between electrons and positrons are reflected on the
CSDA ranges of these particles.

3.3.3 Angular distribution of emitted photons

The direction of the emitted bremsstrahlung photon is defined by the polar angle θ (see
fig. 3.1) and the azimuthal angle φ. For isotropic media, with randomly oriented atoms
or molecules, the bremsstrahlung DCS is independent of φ and can be expressed as

d2σbr

dW d(cos θ)
=

dσbr

dW
p(Z,E, κ; cos θ) =

Z2

β2

1

W
χ(Z,E, κ) p(Z,E, κ; cos θ), (3.146)
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where p(Z,E, κ; cos θ) is the PDF of cos θ.

Numerical values of the “shape function” p(Z,E, κ; cos θ), calculated by partial-wave
methods, have been published by Kissel et al. (1983) for the following benchmark cases:
Z = 2, 8, 13, 47, 79, 92; E = 1, 5, 10, 50, 100, 500 keV and κ = 0, 0.6, 0.8, 0.95.
These authors also gave a parameterization of the shape function in terms of Legendre
polynomials. Unfortunately, their analytical form is not suited for random sampling
of the photon direction. In penelope we use a different parameterization that allows
the random sampling of cos θ in a simple way. Owing to the lack of numerical data for
positrons, it is assumed that the shape function for positrons is the same as for electrons.

In previous simulation studies of x-ray emission from solids bombarded by electron
beams (Acosta et al., 1998), the angular distribution of bremsstrahlung photons was
described by means of the semiempirical analytical formulae derived by Kirkpatrick
and Wiedmann (1945) [and subsequently modified by Statham (1976)]. These formulae
were obtained by fitting the bremsstrahlung DCS derived from Sommerfeld’s theory.
The shape function obtained from the Kirkpatrick-Wiedmann-Statham fit reads

p(KWS)(Z,E, κ; cos θ) =
σx(1− cos2 θ) + σy(1 + cos2 θ)

(1− β cos θ)2
, (3.147)

where the quantities σx and σy are independent of θ. Although this simple formula
predicts the global trends of the partial-wave shape functions of Kissel et al. (1983)
in certain energy and atomic number ranges, its accuracy is not sufficient for general-
purpose simulations. In a preliminary analysis, we tried to improve this formula and
determined the parameters σx and σy by direct fitting to the numerical partial-wave
shape functions, but the improvement was not substantial. However, this analysis con-
firmed that the analytical form (3.147) is flexible enough to approximate the “true”
(partial-wave) shape.

The analytical form (3.147) is plausible even for projectiles with relatively high
energies, say E larger than 1 MeV, for which the angular distribution of emitted photons
is peaked at forward directions. This can be understood by means of the following
classical argument (see e.g. Jackson, 1975). Assume that the incident electron is moving
in the direction of the z-axis of a reference frame K at rest with respect to the laboratory
frame. Let (θ′, φ′) denote the polar and azimuthal angles of the direction of the emitted
photon in a reference frame K′ that moves with the electron and whose axes are parallel
to those of K. In K′, we expect that the angular distribution of the emitted photons will
not depart much from the isotropic distribution. To be more specific, we consider the
following ansatz (modified dipole distribution) for the shape function in K′,

pd(cos θ
′) = A

3

8
(1 + cos2 θ′) + (1−A)

3

4
(1 − cos2 θ′), (0 ≤ A ≤ 1), (3.148)

which is motivated by the relative success of the Kirkpatrick-Wiedmann-Statham for-
mula at low energies (note that the projectile is at rest in K′). The direction of emission
(θ, φ) in K is obtained by means of the Lorentz transformation

cos θ =
cos θ′ + β

1 + β cos θ′
, φ = φ′. (3.149)
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Thus, the angular distribution in K reads

p(cos θ) = pd(cos θ
′)

d(cos θ′)

d(cos θ)

= A
3

8


1 +

(
cos θ − β

1 − β cos θ

)2

 1− β2

(1− β cos θ)2

+ (1−A)
3

4



1 −
(

cos θ − β
1 − β cos θ

)2


 1− β2

(1− β cos θ)2
. (3.150)

Now, it is clear that when β tends to unity, the shape function concentrates at forward
directions.

We found that the benchmark partial-wave shape functions of Kissel et al. (1983)
can be closely approximated by the analytical form (3.150) if one considers A and β as
adjustable parameters. Explicitly, we write

pfit(cos θ) = A
3

8



1 +

(
cos θ − β ′

1 − β ′ cos θ

)2


 1− β ′2

(1− β ′ cos θ)2

+ (1−A)
3

4



1 −
(

cos θ − β ′

1 − β ′ cos θ

)2


 1− β ′2

(1− β ′ cos θ)2
, (3.151)

with β ′ = β(1 + B). The parameters A and B have been determined, by least squares
fitting, for the 144 combinations of atomic number, electron energy and reduced pho-
ton energy corresponding to the benchmark shape functions tabulated by Kissel et al.
(1983). Results of this fit are compared with the original partial-wave shape functions
in fig. 3.16. The largest differences between the fits and the data were found for the
higher atomic numbers, but even then the fits are very accurate, as shown in fig. 3.16.
The quantities ln(AZβ) and Bβ vary smoothly with Z, β and κ and can be obtained
by cubic spline interpolation of their values for the benchmark cases. This permits the
fast evaluation of the shape function for any combination of Z, β and κ. Moreover, the
random sampling of the photon direction, i.e. of cos θ, can be performed by means of a
simple, fast analytical algorithm (see below). For electrons with kinetic energies larger
than 500 keV, the shape function is approximated by the classical dipole distribution,
i.e. by the analytical form (3.151) with A = 1 and β ′ = β.

3.3.4 Simulation of hard radiative events

Let us now consider the simulation of hard radiative events (W > Wcr) from the DCS
defined by eqs. (3.146) and (3.151). penelope reads the scaled bremsstrahlung DCS
from the database files and, by natural cubic spline interpolation/extrapolation in lnE,
produces a table for a denser logarithmic grid of 200 energies (and for the “standard”
mesh of 32 κ’s), which is stored in memory. This energy grid spans the full energy range
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considered in the simulation and allows accurate (and fast) linear interpolation of the
scaled DCS in the variable lnE, which is more adequate than E when interpolation over
a wide energy interval is required.

Notice that in the Monte Carlo simulation the kinetic energy of the transported
electron (or positron) varies in a random way and may take arbitrary values within
a certain domain. Hence, we must be able to simulate bremsstrahlung emission by
electrons with energies E not included in the grid.

Sampling of the photon energy

The PDF for the reduced photon energy, κ = W/E, is given by [see eq. (3.131)]

p(E, κ) =
1

κ
χ(Z,E, κ)Θ(κ− κcr)Θ(1− κ), (3.152)

where κcr = Wcr/E and χ(Z,E, κ) is calculated by linear interpolation, in both lnE and
κ, in the stored table. That is, χ(Z,E, κ) is considered to be a piecewise linear function
of κ. To sample κ from the PDF (3.152) for an energy Ei in the grid, we express the
interpolated scaled DCS as

χ(Z,Ei, κ) = aj + bjκ if κj ≤ κ ≤ κj+1, (3.153)

and introduce the cumulative distribution function,

Pj =
∫ κj

κcr

p(Ei, κ) dκ, (3.154)

which, for a piecewise linear χ, can be computed exactly. We also define

χmax,j = max
{
χ(Z,E, κ), κ ∈ (κj , κj+1)

}
j = 1, . . . , 32. (3.155)

With all this we can formulate the following sampling algorithm, which combines a
numerical inverse transform and a rejection,

(i) Generate a random number ξ and determine the index j for which Pj ≤ ξP32 ≤
Pj+1 using the binary search method.

(ii) Sample κ from the distribution κ−1 in the interval (κj, κj+1), i.e.

κ = κj (κj+1/κj)
ξ
. (3.156)

(iii) Generate a new random number ξ. If ξχmax,j < aj + bjκ, deliver κ.

(iv) Go to step (i).
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This sampling algorithm is exact and very fast [notice that the binary search in step
(i) requires at most 5 comparisons], but is only applicable for the energies in the grid
where χ is tabulated.

To simulate bremsstrahlung emission by electrons with energies E not included in the
grid, we should first obtain the PDF p(E, κ) by interpolation along the energy axis and
then perform the random sampling of κ from this PDF using the algorithm described
above. This procedure is too time consuming. A faster method consists of assuming
that the grid of energies is dense enough so that linear interpolation in lnE is sufficiently
accurate. If Ei < E < Ei+1, we can express the interpolated PDF as

pint(E, κ) = πi p(Ei, κ) + πi+1 p(Ei+1, κ) (3.157)

with

πi =
lnEi+1 − lnE

lnEi+1 − lnEi

, πi+1 =
lnE − lnEi

lnEi+1 − lnEi

. (3.158)

These “interpolation weights” are positive and add to unity, i.e. they can be interpreted
as point probabilities. Therefore, to perform the random sampling of κ from pint(E, κ)
we can employ the composition method (section 1.2.5), which leads to the following
algorithm:

(i) Sample the integer variable I, which can take the values i or i + 1 with point
probabilities πi and πi+1, respectively.

(ii) Sample κ from the distribution pint(EI , κ).

With this “interpolation by weight” method we only need to sample κ from the tabulated
PDFs, i.e. for the energies Ei of the grid.

Angular distribution of emitted photons

The random sampling of cos θ is simplified by noting that the PDF given by eq. (3.151)
results from a Lorentz transformation, with speed β ′, of the PDF (3.148). This means
that we can sample the photon direction cos θ′ in the reference frame K′ from the PDF
(3.148) and then apply the transformation (3.149) (with β ′ instead of β) to get the
direction cos θ in the laboratory frame.

To generate random values of cos θ from (3.151) we use the following algorithm,
which combines the composition and rejection methods,

(i) Sample a random number ξ1.

(ii) If ξ1 < A, then
1) Sample a random number ξ and set cos θ′ = −1 + 2ξ.
2) Sample a random number ξ.
3) If 2ξ > 1 + cos2 θ′, go to 1).
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(iii) If ξ1 ≥ A, then
4) Sample a random number ξ and set cos θ′ = −1 + 2ξ.
5) Sample a random number ξ.
6) If ξ > 1− cos2 θ′, go to 4).

(iv) Deliver cos θ =
cos θ′ + β ′

1 + β ′ cos θ′
.

The efficiencies of the rejections in steps (ii) and (iii) are both equal to 0.66. That is,
on average, we need 4 random numbers to generate each value of cos θ.

3.4 Positron annihilation

Following Nelson et al. (1985), we consider that positrons penetrating a medium of
atomic number Z with kinetic energy E can annihilate with the electrons in the medium
by emission of two photons. We assume that the target electrons are free and at rest,
thus disregarding electron binding effects, which enable one-photon annihilation (Heitler,
1954). When annihilation occurs in flight, i.e. when the kinetic energy E of the positron
is larger than the “absorption” energy, the two photons may have different energies, say
E− and E+, which add to E+2mec

2. In what follows, quantities referring to the photon
with the lowest energy will be denoted by the subscript “−”. Each annihilation event
is then completely characterized by the quantity

ζ ≡ E−

E + 2mec2
. (3.159)

Assuming that the positron moves initially in the direction of the z-axis, from conserva-
tion of energy and momentum it follows that the two photons are emitted in directions
with polar angles [see eqs. (A.21) and (A.22) in appendix A]

cos θ− = (γ2 − 1)−1/2(γ + 1 − 1/ζ) (3.160)

and

cos θ+ = (γ2 − 1)−1/2[γ + 1− 1/(1 − ζ)], (3.161)

and azimuthal angles φ− and φ+ = φ− + π. The quantity γ = 1 +E/(mec
2) is the total

energy of the positron in units of its rest energy.

The maximum value of ζ is 1/2, its minimum value is found when cos θ− = −1 and
is given by

ζmin =
1

γ + 1 + (γ2 − 1)1/2
. (3.162)

The DCS (per electron) for two-photon annihilation, as observed in the centre-of-
mass system of the positron and the electron, is given by Heitler (1954). Nelson et al.
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(1985) transformed this DCS to the laboratory system (where the electron is at rest),
their result can be written as

dσan

dζ
=

πr2
e

(γ + 1)(γ2 − 1)
[S(ζ) + S(1 − ζ)] , (3.163)

where

S(ζ) = −(γ + 1)2 + (γ2 + 4γ + 1)
1

ζ
− 1

ζ2
. (3.164)

Owing to the axial symmetry of the process, the DCS is independent of the azimuthal
angle φ−, which is uniformly distributed on the interval (0, 2π). For fast positrons,
annihilation photons are emitted preferentially at forward directions. When the kinetic
energy of the positron decreases, the angular distribution of the generated photons
becomes more isotropical (see fig. 3.17).
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Figure 3.17: Left: angular distributions of photons produced by annihilation in flight of

positrons with the indicated kinetic energies. The dashed line represents the isotropic dis-

tribution. Right: Annihilation cross section per target electron as a function of the kinetic

energy of the positron.

The cross section (per target electron) for two-photon annihilation is

σan =
∫ 1/2

ζmin

dσan

dζ
dζ =

πr2
e

(γ + 1)(γ2 − 1)

×
{
(γ2 + 4γ + 1) ln

[
γ +

(
γ2 − 1

)1/2
]
− (3 + γ)

(
γ2 − 1

)1/2
}
. (3.165)
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The annihilation mean free path is given by

λ−1
an = NZσan, (3.166)

where NZ is the density of electrons in the medium. The annihilation cross section is
displayed in fig. 3.17. The cross section decreases with the kinetic energy and, therefore,
high-energy positrons can travel path lengths of the order of the CSDA range before
annihilating.

3.4.1 Generation of emitted photons

The PDF of ζ is given by (normalization is irrelevant here)

pan(ζ) = S(ζ) + S(1− ζ), ζmin ≤ ζ ≤ 1/2. (3.167)

To sample ζ, we may take advantage of the symmetry of this expression under the
exchange of the two photons, which corresponds to exchanging ζ and 1 − ζ. We first
consider the distribution

P (υ) ≡ S(υ), ζmin ≤ υ ≤ 1− ζmin (3.168)

and write it in the form

P (υ) = π(υ)g(υ) (3.169)

with

π(υ) =

[
ln

(
1− ζmin

ζmin

)]−1
1

υ
(3.170)

and

g(υ) =
[
−(γ + 1)2υ + (γ2 + 4γ + 1)− 1

υ

]
. (3.171)

π(υ) is a proper PDF (i.e. it is definite positive and normalized to unity) and g(υ) is a
monotonically decreasing function. Random values of υ from the distribution P (υ) can
be generated by using the following algorithm (rejection method):

(i) Sample a value υ from the distribution π(υ). This is easily done with the inverse
transform method, which yields the following sampling equation

υ = ζmin

(
1 − ζmin

ζmin

)ξ

. (3.172)

(ii) Generate a new random number ξ.

(iii) If ξg(ζmin) > g(υ), go to step (i).

(iv) Deliver υ.
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It is clear that the random value

ζ = min(υ, 1− υ) (3.173)

follows the distribution given by eq. (3.167) when υ is sampled from the distribution
P (υ). The efficiency of this sampling algorithm practically equals 100% for positrons
with kinetic energy E less than 10 keV, decreases when E increases to reach a minimum
value of ∼ 80% at E ∼ 10 MeV and increases monotonically for larger energies.

As the result of annihilation, two photons with energies E− = ζ(E + 2mec
2) and

E+ = (1− ζ)(E+2mec
2) are emitted in the directions given by eqs. (3.160) and (3.161).
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Chapter 4

Electron/positron transport
mechanics

In principle, the scattering model and sampling techniques described in chapter 3 al-
lows the detailed Monte Carlo simulation of electron and positron transport in matter.
However, detailed simulation is feasible only when the mean number of interactions per
track is small (a few hundred at most). This occurs for electrons with low initial kinetic
energies or for thin geometries. The number of interactions experienced by an electron or
positron before being effectively stopped increases with its initial energy and, therefore,
detailed simulation becomes impractical at high energies.

penelope implements a “mixed” simulation scheme (Berger, 1963; Reimer and
Krefting, 1976; Andreo and Brahme, 1984), which combines the detailed simulation of
hard events (i.e. events with polar angular deflection θ or energy loss W larger than
previously selected cutoff values θc and Wc) with condensed simulation of soft events, in
which θ < θc or W < Wc. Owing to the fact that for high-energy electrons the DCSs for
the various interaction processes decrease rapidly with the polar scattering angle and the
energy loss, cutoff values can be selected such that the mean number of hard events per
electron track is sufficiently small to permit their detailed simulation. In general, this
is accomplished by using relatively small cutoff values, so that each soft interaction has
only a slight effect on the simulated track. The global effect of the (usually many) soft
interactions that take place between each pair of consecutive hard events can then be
simulated accurately by using a multiple scattering approach. Hard events occur much
less frequently than soft events, but they have severe effects on the track evolution (i.e.
they cause large angular deflections and lateral displacements or considerable energy
losses), which can only be properly reproduced by detailed simulation. The computer
time needed to simulate each track diminishes rapidly when the cutoff values for the
angular deflection and the energy loss are increased. Mixed simulation algorithms are
usually very stable under variations of the adopted cutoff values, whenever these are
kept below some reasonable limits. Mixed simulation is then preferable to condensed
simulation because 1) spatial distributions are simulated more accurately, 2) tracks in
the vicinity of interfaces are properly handled, and 3) possible dependence of the results
on user-defined parameters is largely reduced.
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4.1 Elastic scattering

Let us start by considering electrons (or positrons) with kinetic energy E moving in a
hypothetical infinite homogeneous medium, with N scattering centres per unit volume,
in which they experience only pure elastic collisions (i.e. with no energy loss).

4.1.1 Multiple elastic scattering theory

Assume that an electron starts off from a certain position, which we select as the origin
of our reference frame, moving in the direction of the z-axis. Let f(s; r, d̂) denote the
probability density of finding the electron at the position r = (x, y, z), moving in the
direction given by the unit vector d̂ after having travelled a path length s. The diffusion
equation for this problem is (Lewis, 1950)

∂f

∂s
+ d̂ · ∇f = N

∫ [
f(s; r, d̂′)− f(s; r, d̂)

] dσel(θ)

dΩ
dΩ, (4.1)

where θ ≡ arccos(d̂ · d̂′) is the scattering angle corresponding to the angular deflection
d̂′ → d̂. This equation has to be solved with the boundary condition f(0; r, d̂) =
(1/π)δ(r)δ(1 − cosχ), where χ is the polar angle of the direction d̂. By expanding
f(s; r, d̂) in spherical harmonics, Lewis (1950) obtained exact expressions for the angular
distribution and for the first moments of the spatial distribution after a given path length
s. The probability density F (s;χ) of having a final direction in the solid angle element
dΩ around a direction defined by the polar angle χ is given by

F (s;χ) =
∫
f(s; r, d̂) dr =

∞∑

`=0

2` + 1

4π
exp(−s/λel,`)P`(cosχ), (4.2)

where P`(cosχ) are Legendre polynomials and λel,` = 1/(Nσel,`) is the `-th transport
mean free path defined by eq. (3.14). The result given by eq. (4.2) coincides with the
multiple scattering distribution obtained by Goudsmit and Saunderson (1940a, 1940b).
Evidently, the distribution F (s;χ) is symmetric about the z-axis, i.e. independent of
the azimuthal angle of the final direction.

From the orthogonality of the Legendre polynomials, it follows that

〈P`(cosχ)〉 ≡ 2π
∫ 1

−1
P`(cosχ)F (s;χ) d(cosχ) = exp(−s/λel,`). (4.3)

In particular, we have

〈cosχ〉 = exp(−s/λel,1) (4.4)

and

〈cos2 χ〉 =
1

3
[1 + 2 exp(−s/λel,2)] . (4.5)
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Lewis (1950) also derived analytical formulae for the first moments of the spatial
distribution and the correlation function of z and cosχ. Neglecting energy losses, the
results explicitly given in Lewis’ paper simplify to

〈z〉 ≡ 2π
∫
zf(s; r, d̂) d(cosχ) dr = λel,1 [1 − exp(−s/λel,1)] , (4.6)

〈x2 + y2〉 ≡ 2π
∫ (

x2 + y2
)
f(s; r, d̂) d(cosχ) dr

=
4

3

∫ s

0
dt exp(−t/λel,1)

∫ t

0
[1− exp(−u/λel,2)] exp(u/λel,1) du, (4.7)

〈z cosχ〉 ≡ 2π
∫
z cosχf(s; r, d̂) d(cosχ) dr

= exp(−s/λel,1)
∫ s

0
[1 + 2 exp(−t/λel,2)] exp(t/λel,1) dt. (4.8)

It is worth observing that the quantities (4.4)–(4.8) are completely determined by the
values of the transport mean free paths λel,1 and λel,2; they are independent of the elastic
mean free path λel.

4.1.2 Mixed simulation of elastic scattering

At high energies, where detailed simulation becomes impractical, λel,1 � λel (see fig.
3.3) so that the average angular deflection in each collision is small. In other words,
the great majority of elastic collisions of fast electrons are soft collisions with very small
deflections. We shall consider mixed simulation procedures (see Fernández-Varea et al.,
1993b; Baró et al., 1994b) in which hard collisions, with scattering angle θ larger than a
certain value θc, are individually simulated and soft collisions (with θ < θc) are described
by means of a multiple scattering approach.

In practice, the mixed algorithm will be defined by specifying the mean free path
λ

(h)
el between hard elastic events, defined by [see eqs. (3.10) and (3.12)]

1

λ
(h)
el

= N2π
∫ π

θc

dσel(θ)

dΩ
sin θ dθ. (4.9)

This equation determines the cutoff angle θc as a function of λ
(h)
el . A convenient recipe

to set the mean free path λ
(h)
el is

λ
(h)
el (E) = max {λel(E), C1λel,1(E)} , (4.10)

where C1 is a pre-selected small constant (say, less than ∼ 0.1). For increasing energies,
λel attains a constant value and λel,1 increases steadily (see fig. 3.3) so that the formula
(4.10) gives a mean free path for hard collisions that increases with energy, i.e. hard
collisions are less frequent when the scattering effect is weaker. The recipe (4.10) also

ensures that λ
(h)
el will reduce to the actual mean free path λel for low energies. In this case,
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soft collisions cease to occur (θc = 0) and mixed simulation becomes purely detailed.

It is worth noticing that, when mixed simulation is effective (i.e. when λ
(h)
el > λel), the

mean angular deflection in a path length λ
(h)
el is [see eq. (4.4)]

1 − 〈cosχ〉 = 1− exp(−λ(h)
el /λel,1) ' C1. (4.11)

Hence, when using the prescription (4.10), the average angular deflection due to all

elastic collisions occurring along a path length λ
(h)
el equals C1.

The PDF of the step length s between two successive hard collisions is

p(s) =
1

λ
(h)
el

exp(−s/λ(h)
el ), (4.12)

and random values of s can be generated by means of the sampling formula, eq. (1.36)

s = −λ(h)
el ln ξ. (4.13)

The (unnormalized) PDF of the polar deflection θ in single hard collisions is

p(h)(θ) =
dσel(θ)

dΩ
sin θΘ(θ − θc), (4.14)

where Θ(x) stands for the step function.

The inverse transport mean free paths λ−1
el,`, see eq. (3.14), for the actual scattering

process can be split into contributions from soft and hard collisions, i.e.

1

λel,`
=

1

λ
(s)
el,`

+
1

λ
(h)
el,`

, (4.15)

where
1

λ
(s)
el,`

= N2π
∫ θc

0
[1− P`(cos θ)]

dσel(θ)

dΩ
sin θ dθ (4.16a)

and
1

λ
(h)
el,`

= N2π
∫ π

θc

[1 − P`(cos θ)]
dσel(θ)

dΩ
sin θ dθ. (4.16b)

Let us assume that an electron starts off from the origin of coordinates moving in
the direction of the z-axis and undergoes the first hard collision after travelling a path
length s. The exact angular distribution produced by the soft collisions along this step
is

F (s)(s;χ) =
∞∑

`=0

2` + 1

4π
exp(−s/λ(s)

el,`)P`(cosχ). (4.17)

The exact average longitudinal and transverse displacements at the end of the step are
given by [see eqs. (4.6) and (4.7)]

〈z〉(s) = λ
(s)
el,1

[
1 − exp(−s/λ(s)

el,1)
]

= s


1− 1

2



 s

λ
(s)
el,1



 +
1

6



 s

λ
(s)
el,1




2

− . . .


 , (4.18)
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〈x2 + y2〉(s) =
2

9

s3

λ
(s)
el,2



1− 1

4



1 +
λ

(s)
el,1

λ
(s)
el,2







 s

λ
(s)
el,1



+ . . .



 , (4.19)

where λ
(s)
el,1, the first transport mean free path for soft collisions, is larger than λel,1. As

the mean free path between hard collisions is normally much less than λ
(s)
el,1 (depending

on the value of C1), the value s/λ
(s)
el,1 is, on average, much less than unity (note that

〈s〉 = λ
(h)
el ). Therefore, the global effect of the soft collisions in the step, i.e. the change in

direction of movement and the lateral displacement, is very small (part of the deflection
is caused by the hard interaction at the end of the step).

In penelope, the angular deflection and the lateral displacement due to the multiple
soft collisions in a step of length s are simulated by means of the random hinge method1

(Fernández-Varea et al., 1993b). The associated algorithm can be formulated as follows
(see fig. 4.1),

(i) The electron first moves a random distance τ , which is sampled uniformly in the
interval (0, s), in the initial direction.

(ii) Then a single artificial soft scattering event (a hinge) takes place, in which the
electron changes its direction of movement according to the multiple scattering
distribution F (s)(s;χ).

(iii) Finally, the electron moves a distance s− τ in the new direction.

χ

sτ

s − τ

�

�

z

Figure 4.1: Simulation of the global effect of soft collisions between two consecutive hard

collisions by the random hinge method.

Obviously, this algorithm leads to the exact angular distribution at the end of the
step. The average longitudinal displacement at the end of the simulated step is

〈z〉(s)sim =
s

2
+
s

2
〈cosχ〉(s) = s


1− 1

2



 s

λ
(s)
el,1



+
1

4



 s

λ
(s)
el,1




2

− . . .


 , (4.20)

which agrees closely with the exact result given by eq. (4.18). Moreover, the average
simulated transverse displacement is

〈x2 + y2〉(s)sim = 〈(s − τ )2 sin2 χ〉(s)sim =
1

3
s2
(
1 − 〈cos2 χ〉(s)

)

1The name was coined by Ron Kensek.
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=
2

9

s3

λ
(s)
el,2



1 − 1

2

λ
(s)
el,1

λ
(s)
el,2



 s

λ
(s)
el,1



 + . . .



 , (4.21)

which does not differ much from the exact value given by eq. (4.19). From these facts,
we may conclude that the random hinge method provides a faithful description of the
transport when the step length s is much shorter than the first transport mean free path
λel,1, so that the global angular deflection and lateral displacement are small. Surpris-
ingly, it does work well also in condensed (class I) simulations, where this requirement
is not met. In spite of its simplicity, the random hinge method competes in accuracy
and speed with other, much more sophisticated transport algorithms (see Bielajew and
Salvat, 2001, and references therein). It seems that the randomness of the hinge posi-
tion τ leads to correlations between the angular deflection and the displacement that
are close to the actual correlations.

�

χ

r+s dr r+τ d

�

� �

^^

�

�

t

Figure 4.2: Simulation of a track near the crossing of an interface.

The random hinge algorithm can be readily adapted to simulate multiple elastic
scattering processes in limited material structures, which may consist of several regions
of different compositions separated by well-defined surfaces (interfaces). In these ge-
ometries, when the track crosses an interface, we simply stop it at the crossing point,
and resume the simulation in the new material. In spite of its simplicity, this recipe
gives a fairly accurate description of interface crossing. To see this, consider that a hard
collision has occurred at the position r in region “1” and assume that the following hard
collision occurs in region “2”. The step length s between these two hard collisions is
larger than the distance t from r to the interface (see fig. 4.2). If the artificial soft elastic
collision occurs in region “1”, the angular deflection in this collision is sampled from the
distribution F (s)(s;χ). Otherwise, the electron reaches the interface without changing

its direction of movement. Assuming s� λ
(s)
el,1, the mean angular deflection due to soft

collisions is
1 − 〈cosχ〉(s) = 1− exp(−s/λ(s)

el,1) '
s

λ
(s)
el,1

. (4.22)

Moreover, when this assumption is valid, lateral displacements due to soft collisions are
small and can be neglected to a first approximation. As the probability for the soft
collision to occur within region “1” equals t/s, the average angular deflection of the
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simulated electron track when it reaches the interface is

1 − 〈cosχ〉 = t

s

(
1 − 〈cosχ〉(s)

)
' t

λ
(s)
el,1

, (4.23)

which practically coincides with the exact mean deviation after the path length t within
region “1”, as required. Thus, by sampling the position of the soft collision uniformly in
the segment (0, s) we make sure that the electron reaches the interface with the correct
average direction of movement.

Angular deflections in soft scattering events

In the random hinge method, the global effect of the soft collisions experienced by
the particle along a path segment of length s between two consecutive hard events is
simulated as a single artificial soft scattering event. The angular deflection follows the
multiple scattering distribution F (s)(s;χ). Unfortunately, the exact Legendre expansion,
eq. (4.17), is not appropriate for Monte Carlo simulation, since this expansion converges
very slowly (because the associated single scattering DCS is not continuous) and the
sum varies rapidly with the path length s.

Whenever the cutoff angle θc is small, the distribution F (s)(s;χ) may be calculated
by using the small angle approximation (see e.g. Lewis, 1950). Notice that θc can be
made as small as desired by selecting a small enough value of C1, see eqs. (4.9) and
(4.10). Introducing the limiting form of the Legendre polynomials

P`(cos θ) ' 1− 1

4
`(` + 1)θ2 (4.24)

into eq. (4.16a) we get

1

λ
(s)
el,`

= N2π
`(` + 1)

4

∫ θc

0
θ2 dσel(θ)

dΩ
sin θ dθ =

`(` + 1)

2

1

λ
(s)
el,1

, (4.25)

i.e. the transport mean free paths λ
(s)
el,` are completely determined by the single value

λ
(s)
el,1. The angular distribution F (s) then simplifies to

F (s)(s;χ) =
∞∑

`=0

2` + 1

4π
exp


−`(` + 1)

2

s

λ
(s)
el,1


P`(cosχ). (4.26)

This expression can be evaluated by using the Molière (1948) approximation for the
Legendre polynomials, we obtain (see Fernández-Varea et al., 1993b)

F (s)(s;χ) =
1

2π

(
χ

sinχ

)1/2 λ
(s)
el,1

s
exp



 s

8λ
(s)
el,1

− λ
(s)
el,1

2s
χ2



 , (4.27)

which does not differ significantly from the Gaussian distribution with variance s/λ
(s)
el,1.

This result is accurate whenever s � λ
(s)
el,1 and θc � 1. It offers a possible method
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of generating the angular deflection in artificial soft events. When the result given by
eq. (4.27) is applicable, the single parameter λ

(s)
el,1 completely determines the multiple

scattering distribution due to soft collisions, i.e. other details of the DCS for scattering
angles less than θc are irrelevant. However, in actual Monte Carlo simulations, the
small-angle approximation is seldom applicable.

In most practical cases the number of hard collisions per electron track can be made
relatively large by simply using a small value of the parameter C1 [see eq. (4.10)]. When
the number of steps is large enough, say larger than ∼ 10, it is not necessary to use the
exact distribution F (s)(s;χ) to sample the angular deflection in artificial soft collisions.
Instead, we may use a simpler distribution, Fa(s;χ), with the same mean and variance,
without appreciably distorting the simulation results. This is so because the details of
the adopted distribution are washed out after a sufficiently large number of steps and
will not be seen in the simulated distributions. Notice that, within the small angle
approximation, it is necessary to keep only the proper value of the first moment to
get the correct final distributions. However, if the cutoff angle θc is not small enough,
the angular distribution F (s)(s;χ) may become sensitive to higher-order moments of
the soft single scattering distribution. Thus, by also keeping the proper value of the
variance, the range of validity of the simulation algorithm is extended, i.e. we can speed
up the simulation by using larger values of C1 (or of λ

(h)
el ) and still obtain the correct

distributions.

We now return to the notation of section 3.1, and use the variable µ ≡ (1− cosχ)/2
to describe angular deflections in soft scattering events. The exact first and second
moments of the multiple scattering distribution F (s)(s;µ) are

〈µ〉(s) ≡
∫ 1

0
µFa(s;µ) dµ =

1

2

[
1 − exp(−s/λ(s)

el,1)
]

(4.28)

and

〈µ2〉(s) ≡
∫ 1

0
µ2Fa(s;µ) dµ = 〈µ〉(s) − 1

6

[
1 − exp(−s/λ(s)

el,2)
]
. (4.29)

The angular deflection in soft scattering events will be generated from a distribution
Fa(s;µ), which is required to satisfy eqs. (4.28) and (4.29), but is otherwise arbitrary.
penelope uses the following,

Fa(s;µ) = aU0,b(µ) + (1 − a)Ub,1(µ), (4.30)

where Uu,v(x) denotes the normalized uniform distribution in the interval (u, v),

Uu,v(x) =






1/(v − u) if u ≤ x ≤ v,
0 otherwise.

(4.31)

The parameters a and b, obtained from the conditions (4.28) and (4.29), are

b =
2〈µ〉(s) − 3〈µ2〉(s)

1− 2〈µ〉(s) , a = 1 − 2〈µ〉(s) + b. (4.32)
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The simple distribution (4.30) is flexible enough to reproduce the combinations of first
and second moments encountered in the simulations [notice that 〈µ〉(s), eq. (4.28), is
always less than 1/2] and allows fast random sampling of µ.

4.1.3 Simulating with the MW model

penelope simulates elastic scattering by using the MW model (see section 3.1), which
allows the formulation of the mixed simulation algorithm in closed analytical form.

The mean free path λ
(h)
el between hard elastic events and the cutoff deflection µc =

(1 − cos θc)/2 are related through [see eqs. (3.18) and (4.9)]

1

λ
(h)
el

=
1

λel

∫ 1

µc

pMW(µ) dµ. (4.33)

This equation can be easily inverted to give

µc = P−1
MW (ξc) , (4.34)

where

ξc ≡ 1− λel

λ
(h)
el

(4.35)

and P−1
MW is the inverse of the single scattering cumulative distribution function given

by eqs. (3.31) and (3.36).

In the following, we assume that the MW distribution is that of case I, eq. (3.24);
the formulae for case II can be derived in a similar way. The random sampling of the
angular deflection µ in hard collisions is performed by the inverse transform method
(section 1.2.2); random values of µ are obtained from the sampling equation

∫ µ

µc

pMW(µ′) dµ′ = ξ
∫ 1

µc

pMW(µ′) dµ′. (4.36)

With the MW distribution, eq. (3.24), this equation can be solved analytically to give

µ = P−1
MW

(
1− λel

λ
(h)
el

(1− ξ)
)
. (4.37)

To determine the angular distribution of soft events Fa(s;µ), eq. (4.30), we need the
first and second transport mean free paths for soft collisions, which are given by

(
λ

(s)
el,1

)−1
=

2

λel
T1(µc) and

(
λ

(s)
el,2

)−1
=

6

λel
[T1(µc)− T2(µc)] (4.38)

with

T1(µc) =
∫ µc

0
µpMW(µ) dµ and T2(µc) =

∫ µc

0
µ2pMW(µ) dµ. (4.39)
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These latter quantities can be computed analytically as

T1(µc) =





(1 −B)I1(µc) if 0 ≤ ξc < ξ0

(1 −B)I1(µ0) + (ξc − ξ0) µ0 if ξ0 ≤ ξc < ξ0 +B

(1 −B)I1(µc) +Bµ0 if ξ0 +B ≤ ξc ≤ 1

(4.40)

and

T2(µc) =





(1 −B)I2(µc) if 0 ≤ ξc < ξ0

(1 −B)I2(µ0) + (ξc − ξ0) µ2
0 if ξ0 ≤ ξc < ξ0 +B

(1 −B)I2(µc) +Bµ2
0 if ξ0 +B ≤ ξc ≤ 1

(4.41)

with

I1(µ) ≡ A

[
(1 +A) ln

(
A+ µ

A

)
− (1 +A)µ

A+ µ

]
(4.42)

and

I2(µ) ≡ A
[
(1 +A)µ2

A+ µ
− 2I1(µ)

]
. (4.43)

The quantities ξ0 and ξc are defined by eqs. (3.34) and (4.35), respectively.

4.2 Soft energy losses

The high-energy codes currently available implement different approximate methods to
simulate inelastic collisions. Thus, etran and its3 make use of the multiple scattering
theories of Landau (1944) and Blunck and Leisegang (1950) to obtain the energy loss
distribution due to inelastic collisions after a given path length; the production of sec-
ondary electrons is simulated by means of the Møller (1932) and Bhabha (1936) DCSs,
which neglect binding effects. This approach accounts for the whole energy straggling,
within the accuracy of the multiple scattering theory, but disregards the correlation
between delta ray emission and energy loss in each track segment. As a consequence,
energetic delta rays can be generated in a track segment where the energy lost by the
primary particle is smaller than the energy of the emitted delta rays. egs4 uses a
mixed procedure to simulate collision energy losses: hard inelastic collisions are sim-
ulated from the Møller and Bhabha DCSs, thus neglecting binding effects, and soft
inelastic collisions are described by means of the continuous slowing down approxima-
tion (CSDA), i.e. energy straggling due to soft inelastic collisions is ignored. As regards
bremsstrahlung emission, egs4 implements a mixed procedure in which hard radiative
events are simulated in detail and use is made of the CSDA to simulate the effect of soft
photon emission; etran uses strictly detailed simulation.

To make the arguments more precise, we introduce the cutoff valuesWcc andWcr, and
consider inelastic collisions with energy loss W < Wcc and emission of bremsstrahlung
photons with W < Wcr as soft stopping interactions. The use of the CSDA to describe
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soft interactions is well justified when the energy straggling due to these interactions
is negligible, as happens when the cutoff energies Wcc and Wcr are both small, so that
the fraction of the stopping power due to soft interactions is also small. To improve the
description of energy straggling one should reduce the cutoff energies, but this enlarges
the number of hard inelastic and radiative events to be simulated along each track and
hence the simulation time. Our purpose is to go beyond the CSDA by introducing energy
straggling in the description of soft stopping interactions. It is clear that, by proceeding
in this way, we will be able to use larger values of the cutoff energies Wcc and Wcr, and
hence speed up the simulation, without distorting the energy distributions.

In previous versions of penelope, soft energy losses were simulated by using the
mixed simulation algorithm described by Baró et al. (1995). The quantities that define

the algorithm are the mean free paths λ
(h)
in and λ

(h)
br between hard collisions and hard ra-

diative events, the stopping power Ss and the energy straggling parameter Ω2
s associated

with soft interactions. These quantities are given by

λ
(h)
in (E) =

(
N
∫ E

Wcc

dσin

dW
dW

)−1

, (4.44)

λ
(h)
br (E) =

(
N
∫ E

Wcr

dσbr

dW
dW

)−1

, (4.45)

Ss(E) = N
∫ Wcc

0
W

dσin

dW
dW +N

∫ Wcr

0
W

dσbr

dW
dW (4.46)

and

Ω2
s (E) = N

∫ Wcc

0
W 2 dσin

dW
dW +N

∫ Wcr

0
W 2dσbr

dW
dW. (4.47)

To prevent λ
(h)
br (E) from vanishing (infrared divergence), in penelope the radiative

cutoff energy Wcr is required to be larger than or equal to 10 eV.

Let us consider that a particle, electron or positron, travels a step of length s be-
tween two consecutive hard events of any kind (i.e. hard elastic or inelastic collisions,
hard bremsstrahlung emissions, and annihilation in the case of positrons). Along this
step, the particle is assumed to interact only through soft inelastic collisions and soft
bremsstrahlung emission. We consider that the average energy loss in this path length,
Ss(E)s, is much less than the initial energy E so that the DCSs can be assumed to
stay essentially constant along the step. Let G(s;ω) denote the PDF of the energy loss
ω along the path length s; this distribution satisfies the transport equation (Landau,
1944)

∂G(s;ω)

∂s
= N

∫ ∞

0
[G(s;ω −W )−G(s;ω)]σs(E;W ) dW (4.48)

with the initial value G(0;ω) = δ(ω). Here, σs(E;W ) stands for the DCS for soft
stopping interactions, i.e.

σs(E;W ) ≡ dσs

dW
=

dσin

dW
Θ(Wcc −W ) +

dσbr

dW
Θ(Wcr −W ), (4.49)
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where Θ(x) is the step function. A closed formal solution of the integral equation (4.48)
may be obtained by considering its Fourier, or Laplace, transform with respect to ω (see
e.g. Landau, 1944, Blunck and Leisegang, 1950). For our purposes it is only necessary
to know the first moments of the energy loss distribution after the path length s,

〈ωn〉 ≡
∫ ∞

0
ωnG(s;ω) dω. (4.50)

From eq. (4.48) it follows that

d

ds
〈ωn〉 = N

∫ ∞

0
dω

∫ ∞

0
dW ωn [G(s;ω −W )−G(s;ω)]σs(E;W )

= N
(∫ ∞

0
dω′

∫ ∞

0
dW (ω′ +W )nG(s;ω′)σs(E;W )− 〈ωn〉

∫ ∞

0
σs(E;W ) dW

)

=
n∑

k=1

n!

k!(n− k)!〈ω
n−k〉N

∫ ∞

0
W kσs(E;W ) dW, (4.51)

where use has been made of the fact that σs(E;W ) vanishes when W < 0. In particular,
we have

d

ds
〈ω〉 = N

∫ ∞

0
Wσs(E;W ) dW = Ss, (4.52)

d

ds
〈ω2〉 = 2〈ω〉N

∫ ∞

0
Wσs(E;W ) dW +N

∫ ∞

0
W 2σs(E;W ) dW

= 2〈ω〉Ss + Ω2
s (4.53)

and, hence,
〈ω〉 = Sss, (4.54)

〈ω2〉 = (Sss)
2 + Ω2

ss. (4.55)

The variance of the energy loss distribution is

var(ω) = 〈ω2〉 − 〈ω〉2 = Ω2
ss, (4.56)

i.e. the energy straggling parameter Ω2
s equals the variance increase per unit path length.

The key point in our argument is that soft interactions involve only comparatively
small energy losses. If the number of soft interactions along the path length s is statisti-
cally sufficient, it follows from the central limit theorem that the energy loss distribution
is Gaussian with mean Sss and variance Ω2

ss, i.e.

G(s;ω) ' 1

(2πΩ2
s (E)s)

1/2
exp

[
−(ω − Ss(E)s)2

2Ω2
s (E)s

]
. (4.57)

This result is accurate only if 1) the average energy loss Ss(E)s is much smaller than
E (so that the DCS dσs/dW is nearly constant along the step) and 2) its standard
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deviation [Ω2
s(E)s]1/2 is much smaller than its mean Ss(E)s (otherwise there would be

a finite probability of negative energy losses), i.e.

[
Ω2

s (E)s
]1/2 � Ss(E)s� E. (4.58)

Requirement 1) implies that the cutoff energies Wcc and Wcr for delta ray production
and photon emission have to be relatively small. The second requirement holds for path
lengths larger than scrit = Ω2

s/S
2
s .

Now, we address ourselves to the problem of simulating the energy losses due to soft
stopping interactions between two consecutive hard events. The distribution (4.57) gives
the desired result when conditions (4.58) are satisfied. In fact, the use of a Gaussian
distribution to simulate the effect of soft stopping interactions was previously proposed
by Andreo and Brahme (1984). Unfortunately, the step lengths found in our simulations
are frequently too short for conditions (4.58) to hold (i.e. s is usually less than scrit). To
get over this problem, we replace the actual energy loss distribution G(s;ω) by a simpler
“equivalent” distribution Ga(s;ω) with the same mean and variance, given by eqs. (4.54)
and (4.56). Other details of the adopted distribution have no effect on the simulation
results, provided that the number of steps along each track is statistically sufficient (say,
larger than ∼ 20). penelope generates ω from the following distributions
• Case I. If 〈ω〉2 > 9 var(ω), we use a truncated Gaussian distribution,

Ga,I(s;ω) =






exp

[
− (ω − 〈ω〉)2

2(1.015387σ)2

]
if |ω − 〈ω〉| < 3σ.

0 otherwise.

(4.59)

where σ = [var(ω)]1/2 is the standard deviation and the numerical factor 1.015387
corrects for the effect of the truncation. Notice that the shape of this distribution is
very similar to that of the “true” energy-loss distribution, eq. (4.57). Random sampling
from (4.59) is performed by means of the Box-Müller method, eq. (1.54), rejecting the
generated ω’s that are outside the interval 〈ω〉 ± 3σ.
• Case II. When 3 var(ω) < 〈ω〉2 < 9 var(ω), the energy loss is sampled from the uniform
distribution

Ga,II(s;ω) = Uω1,ω2
(ω) (4.60)

with

ω1 = 〈ω〉 −
√

3σ, ω2 = 〈ω〉 +
√

3σ. (4.61)

• Case III. Finally, when 〈ω〉2 < 3 var(ω), the adopted distribution is an admixture of a
delta and a uniform distribution,

Ga,III(s;ω) = aδ(ω) + (1− a)U0,ω0
(ω) (4.62)

with

a =
3var(ω)− 〈ω〉2
3var(ω) + 3〈ω〉2 and ω0 =

3var(ω) + 3〈ω〉2
2〈ω〉 . (4.63)
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It can be easily verified that these distributions have the required mean and variance.
It is also worth noticing that they yield ω values that are less than

ωmax =





〈ω〉 + 3σ in case I,

ω2 in case II,

ω0 in case III.

(4.64)

ωmax is normally much less than the kinetic energy E of the transported particle. Energy
losses larger than E might be generated only when the step length s has a value of the
order of the Bethe range, but this never happens in practical simulation (see below). It
is worth noticing that, after a moderately large number of steps, this simple simulation
scheme effectively yields an energy loss distribution that has the correct first and second
moments and is similar in shape to the “true” distribution. Further improvements of
the distribution of soft energy losses would mean considering higher order moments of
the single scattering inelastic DCS given by eq. (4.49).

In spatial-dose calculations, the energy loss ω due to soft stopping interactions can be
considered to be locally deposited at a random position uniformly distributed along the
step. This procedure yields dose distributions identical to those obtained by assuming
that the energy loss is deposited at a constant rate along the step, but is computationally
simpler. According to this, penelope simulates the combined effect of all soft elastic
collisions and soft stopping interactions that occur between a pair of successive hard
events, separated a distance s, as a single event (a hinge) in which the particle changes
its direction of movement according to the distribution Fa(s;µ), eqs. (4.30)-(4.32), and
loses energy ω that is generated from the distribution Ga(s;ω), eqs. (4.59)-(4.63). The
position of the hinge is sampled uniformly along the step, as in the case of purely elastic
scattering (section 4.1.2). When the step crosses an interface (see fig. 4.2), the artificial
event is simulated only when its position lies in the initial material; otherwise the track
is stopped at the interface and restarted in the new material. It can be easily verified
that the particle reaches the interface not only with the correct average direction of
movement, but also with the correct average energy, E − Sst.

4.2.1 Energy dependence of the soft DCS

The simulation model for soft energy losses described above is based on the assumption
that the associated energy-loss DCS does not vary with the energy of the transported
particle. To account for the energy dependence of the DCS in a rigorous way, we have
to start from the transport equation [cf. eq. (4.48)]

∂G(s;ω)

∂s
= N

∫ ∞

0
G(s;ω −W ) σs(E0 − ω +W ;W ) dW

− N
∫ ∞

0
G(s;ω) σs(E0 − ω;W ) dW, (4.65)

where E0 denotes the kinetic energy of the particle at the beginning of the step. We de-
sire to obtain expressions for the first and second moments, 〈ω〉 and 〈ω2〉, of the multiple



4.2. Soft energy losses 137

scattering energy-loss distribution, which define the artificial distribution Ga(s;ω) as de-
scribed above. Unfortunately, for a realistic DCS, these moments can only be obtained
after arduous numerical calculations and we have to rely on simple approximations that
can be easily implemented in the simulation code.

Let us consider that, at least for relatively small fractional energy losses, the DCS
varies linearly with the kinetic energy of the particle,

σs(E0 − ω;W ) ' σs(E0;W )−
[
∂σs(E;W )

∂E

]

E=E0

ω. (4.66)

We recall that we are considering only soft energy-loss interactions (inelastic collisions
and bremsstrahlung emission) for which the cutoff energies, Wcc and Wcr, do not vary
with E. Therefore, the upper limit of the integrals in the right hand side of eq. (4.65)
is finite and independent of the energy of the particle. The stopping power Ss(E0 − ω)
can then be approximated as

Ss(E0 − ω) ≡ N
∫
Wσs(E0 − ω;W ) dW ' Ss(E0)− S ′

s(E0)ω, (4.67)

where the prime denotes the derivative with respect to E. Similarly, for the straggling
parameter Ω2

s (E) we have

Ω2
s(E0 − ω) ≡ N

∫
W 2σs(E0 − ω;W ) dW ' Ω2

s (E0)− Ω2
s
′
(E0)ω. (4.68)

From eq. (4.65) it follows that the moments of the multiple scattering distribution,

〈ωn〉 =
∫
ωnG(s;ω) dω,

satisfy the equations

d

ds
〈ωn〉 = N

∫
dω

∫
dW [(ω +W )nG(s;ω)σs(E0 − ω;W )]

− N
∫

dω
∫

dW ωnG(s;ω)σs(E0 − ω;W )

= N
n∑

k=1

n!

k!(n− k)!
∫

dω
∫

dW ωn−kW kG(s;ω)σs(E0 − ω;W ). (4.69)

By inserting the approximation (4.66), we obtain

d

ds
〈ωn〉 =

n∑

k=1

n!

k!(n− k)!
(〈
ωn−k

〉
Mk −

〈
ωn−k+1

〉
M ′

k

)
, (4.70)

where

Mk ≡ N
∫
W kσs(E0;W ) dW (4.71)
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and

M ′
k ≡ N

∫
W k

[
∂σs(E;W )

∂E

]

E=E0

dW =

[
dMk

dE

]

E=E0

. (4.72)

The equations (4.70) with the boundary conditions 〈ωn〉s=0 = 0 can now be solved
sequentially to any order. For n = 1 we have

d

ds
〈ω〉 = Ss(E0)− S ′

s(E0)〈ω〉, (4.73)

which yields

〈ω〉 =
Ss(E0)

S ′
s(E0)

{
1 − exp [−S ′

s(E0)s]
}
. (4.74)

The equation for n = 2 reads,

d

ds
〈ω2〉 = Ω2

s (E0) +
[
2Ss(E0)− Ω2

s
′
(E0)

]
〈ω〉 − 2S ′

s(E0)〈ω2〉, (4.75)

and its solution is

〈ω2〉 = Ω2
s (E0)

1− exp[−2S ′
s(E0)s]

2S ′
s(E0)

+ s
[
2Ss(E0)− Ω2

s
′
(E0)

]
Ss(E0)

[
1 − exp[−S ′

s(E0)s]

2S ′
s(E0)

]2

. (4.76)

Hence,

var(ω) = 〈ω2〉 − 〈ω〉2

= Ω2
s (E0)

1 − exp[−2S ′
s(E0)s]

2S ′
s(E0)

− 2Ω2
s
′
(E0)Ss(E0)

[
1− exp[−S ′

s(E0)s]

2S ′
s(E0)

]2

. (4.77)

Since these expressions are derived from the linear approximation, eq. (4.66), it is
consistent to evaluate 〈ω〉 and var(ω) from their Taylor expansions to second order,

〈ω〉 = Ss(E0) s
[
1− 1

2
S ′

s(E0) s +O(s2)
]

' Ss(E0) s

{
1− 1

2

[
d lnSs(E)

dE

]

E=E0

Ss(E0) s

}
(4.78)

and

var(ω) = Ω2
s (E0) s−

[
1

2
Ω2

s
′
(E0)Ss(E0) + Ω2

s (E0)S
′
s(E0)

]
s2 +O(s3)

' Ω2
s (0) s

{
1 −

[
1

2

d lnΩ2
s (E)

dE
+

d ln Ss(E)

dE

]

E=E0

Ss(E0) s

}
, (4.79)
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where the logarithmic derivatives have been introduced for numerical convenience. The
factors in curly brackets account for the global effect of the energy dependence of the soft
energy-loss DCS (within the linear approximation). To simulate soft energy losses, we
sample ω from the artificial distributionGa(ω; s), eqs. (4.59) to (4.63), with the “correct”
first moment and variance, given by expressions (4.78) and (4.79). In penelope, we
use step lengths s such that the fractional energy loss along each step is relatively small
(see below) and, consequently, the energy-dependence correction is also small (i.e. the
correcting factors are close to unity).

4.3 Combined scattering and energy loss

Up to this point, soft scattering and energy loss have been regarded as essentially in-
dependent processes, while in reality they coexist. In this section, we consider their
interplay and set the basis of an algorithm that simulates their combined effect.

Ours is a mixed algorithm, where hard interactions are described individually from
the associated DCSs (see chapter 3). These interactions are 1) hard elastic collisions,
“el”, 2) hard inelastic collisions, “in”, 3) hard bremsstrahlung photon emission, “br”,
4) ionization of inner shells, “si”, and, in the case of positrons, 5) positron annihilation,

“an”. The mean free path between consecutive hard events, λ
(h)
T , is given by

[
λ

(h)
T

]−1
= Nσ(h)

T = N
[
σ

(h)
el + σ

(h)
in + σ

(h)
br + σsi (+σan)

]
≡ Σh, (4.80)

where σ
(h)
T is the total atomic cross section for hard interactions. We recall that the

inverse mean free path, Σh, gives the interaction probability per unit path length. In the
absence of soft energy-loss events, the PDF of the step length s between two successive
hard events (or from a given point in the track to the next hard event) is

p(s) = Σh exp (−Σhs) . (4.81)

In each hard event, one and only one interaction (i=“el”, “in”, “br”, “si” or “an”) occurs
with probability

pi = σ
(h)
i /σ

(h)
T . (4.82)

When soft energy-losses are considered, the PDF of the distance s travelled by the
particle to the following hard interaction is not given by eq. (4.81), because the mean

free path λ
(h)
T varies with energy and may change appreciably along a single step. The

simplest way to cope with this problem is to limit the length of the step to make sure
that the average energy loss is much smaller than the kinetic energy E at the beginning
of the step, and consider that λ

(h)
T (E) remains essentially constant along the step. Then,

the mean energy loss in a step is given by

〈∆E〉 = λ
(h)
T S(E), (4.83)
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where
S(E) = Sin(E) + Sbr(E) (4.84)

is the total stopping power. Since the mean free path between consecutive hard events of
any kind is shorter than the mean free path between hard elastic events, the energy loss
per step can be limited by re-defining the hard mean free path. If we wish to tolerate
average fractional energy losses ∆E/E along a step of the order of C2 (a small value,
say, 0.05), we simply take

λ
(h)
el (E) = max

{
λel(E),min

[
C1λel,1(E), C2

E

S(E)

]}
. (4.85)

This effectively limits the average energy loss per step at the expense of increasing the
frequency of hard elastic events. The parameters C1 and C2 in eq. (4.85), to be selected
by the user, determine the computer time needed to simulate each track. Ideally, they
should not have any influence on the accuracy of the simulation results. This happens
only when their values are sufficiently small (see below).
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Figure 4.3: Elastic mean free path λel, first transport mean free path λel,1 and E/S(E) for

electrons in aluminium and lead. The solid line represents the mean free path between hard

elastic events λ
(h)
el obtained from eq. (4.85) with C1 = C2 = 0.05.

It should be noted that C1 and C2 act on different energy domains. This is illustrated
in fig. 4.3, where the lengths λel, λel,1 and E/S for electrons in aluminium and lead are

represented as functions of the kinetic energy. The mean free path λ
(h)
el for hard elastic
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events, determined from the prescription (4.85) with C1 = C2 = 0.05 is also plotted. For

low energies, λ
(h)
el = λel and the simulation is purely detailed (µc = 0). For intermediate

energies, λ
(h)
el = C1λel,1, whereas λ

(h)
el = C2E/S(E) in the high-energy domain. From fig.

4.3 it is clear that increasing the value of C2 does not have any effect on the simulation
of electron tracks with initial energies that are less than ∼ 10 MeV.

4.3.1 Variation of λ
(h)
T with energy

With the definition (4.85) of the hard elastic mean free path, we only set a limit on
the average step length. However, since s is sampled from the exponential distribution,
its realizations fluctuate amply about the average value. On the other hand, the soft
energy loss ω along a step of given length s also fluctuates about the mean value 〈ω〉
given by eq. (4.78). This means that the inverse mean free path Σh(E) varies along the
step in an essentially unpredictable way.

Let us consider for a moment that the CSDA is applicable (i.e. that the effect of
soft energy straggling is negligible). In this case, there is a one-by-one correspondence
between the kinetic energy E of the electron and the travelled path length s,

s =
∫ E0

E

dE ′

Ss(E ′)
, (4.86)

where E0 is the initial energy (at s = 0) and Ss(E) is the soft stopping power, eq. (4.46)
[we consider that no hard interactions occur along the step]. Equivalently,

ds

dE
= − 1

Ss(E)
. (4.87)

Thus, the inverse mean free path Σh can be formally considered as a function of the path
length s. The probability p(s) ds of having the first hard interaction when the particle
has travelled a length in the interval (s, s + ds) is determined by the equation [cf. eq.
(1.87)]

p(s) = Σh(s)
∫ ∞

s
p(s′) ds′, (4.88)

with the normalization condition,

∫ ∞

0
p(s) ds = 1. (4.89)

Instead of the path length s, it is convenient to consider the dimensionless variable

q ≡
∫ E0

E

Σh(E
′)

Ss(E ′)
dE ′ =

∫ s

0
Σh(s

′) ds′, (4.90)

which varies with energy and
dq

dE
= −Σh(E)

Ss(E)
. (4.91)
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The PDF of q is

π(q) = p(s)
ds

dq
= p(s)

ds

dE

dE

dq
= p(s)

1

Σh(s)
. (4.92)

From eq. (4.88) it follows that π(q) satisfies the equation

π(q) =
∫ ∞

q
π(q′) dq′. (4.93)

Therefore, q is distributed exponentially,

π(q) = exp(−q). (4.94)

The PDF of the step length s is obtained by inverting the transformation (4.90),

p(s) = Σh(s) exp
(
−
∫ s

0
Σh(s

′) ds′
)
. (4.95)

It is not practical to sample s from this complicated PDF. It is much more convenient
to sample q [as − ln ξ, cf. eq. (1.36)] and then determine s from (4.90), which can be
inverted numerically (for practical details, see Berger, 1998). Although this sampling
method effectively accounts for the energy dependence of Σs(E), it is applicable only to
simulations in the CSDA.

A more versatile algorithm for sampling the position of hard events, still within the
CSDA, is the following. We let the electron move in steps of maximum length smax, a
value specified by the user. This determines the maximum energy loss along the step,

ωmax =
∫ smax

0
Ss(s) ds. (4.96)

Let Σh,max denote an upper bound for the inverse mean free path of hard events in the
swept energy interval, i.e.

Σh,max > max {Σh(E), E ∈ (E0 − ωmax, E0)} (4.97)

We now assume that the electron may undergo fictitious events in which the energy and
direction remain unaltered (delta interactions). The inverse mean free path of these
interactions is defined as

Σδ(E) = Σh,max − Σh(E), (4.98)

so that the inverse mean free path of the combined process (delta interactions + hard
events) equals Σh,max, a constant. Owing to the Markovian character of the processes,
the introduction of delta interactions does not influence the path-length distribution
between hard events. Therefore, the occurrence of hard events can be sampled by
means of the following simple algorithm,

(i) Sample a distance s from the exponential distribution with inverse mean free path
Σh,max, i.e. s = (− ln ξ)/Σh,max.
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(ii) If s > smax, move the electron a path length smax and determine the soft energy
loss ω along this path length. Modify the electron energy2, E ← E − ω, and
assume that a delta interaction occurs at the end of the step.

(iii) If s < smax, move the electron a step of length s. Determine the energy loss ω and
update the energy, E ← E − ω. Sample a random number ξ.

(1) If ξΣh,max < Σh(E), simulate a hard interaction

(2) Otherwise, assume that the particle undergoes a delta interaction.

(iv) Return to (i).

It is clear that the path-length s to the first hard interaction generated with this algo-
rithm follows the PDF (4.95). The interesting peculiarity of this algorithm is that it
makes no explicit reference to the CSDA. Therefore, it can be adopted in mixed sim-
ulations with soft-energy-loss straggling, provided only that an upper bound exists for
the energy ω lost along the path length smax.
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Figure 4.4: Inverse mean free path (interaction probability per unit path length) for hard

interactions of electrons in aluminium and gold for the indicated values of the simulation

parameters. The plotted curves were calculated with Wcc = Wcr = 100 eV.

Fortunately, the energy loss generated from the artificial distribution Ga(ω; s), eqs.
(4.59)-(4.63), is always less than ωmax, eq. (4.64). Indeed, in case I we use the truncated

2In the description of the algorithms we use the symbol← in expressions such as “a← b” to indicate
that the value b replaces the value of a.
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Gaussian distribution (4.59) just to enforce this property. In our mixed simulation we
shall select a maximum step length smax, which serves to set an upper bound for the
energy that the transported electrons may lose along each step. Since the hard inverse
mean free path Σh(E) has a broad minimum (and no local maxima) in the whole energy
interval of interest (see fig. 4.4), the maximum value of Σh within a certain energy interval
(E1, E2) occurs at one of the end points. This makes the practical implementation of
the above algorithm very easy.

4.3.2 Scattering by atomic electrons

Most of the existing high-energy simulation codes have difficulties in accounting for the
angular deflections of the projectile due to inelastic collisions (see e.g. Jenkins et al.,
1988). The inelastic cross section differential in the scattering angle can be calculated
approximately in terms of the incoherent scattering function (see e.g. Mott and Massey,
1965). This was the approach followed by Fano (1954) in order to introduce electron
scattering effects in the Molière (1948) multiple scattering theory. However, the DCS
calculated in this way accounts for all excitations and, hence, it is not adequate for mixed
simulations, where the part of electron scattering due to hard collisions is explicitly
simulated. Moreover, the calculation of the DCS from the incoherent scattering function
involves an average over excitation energies that cannot be performed exactly; instead
an effective “minimum momentum transfer” is introduced, which must be estimated
empirically. This may cause inconsistencies for low-energy projectiles. A more consistent
approach (Baró et al., 1995) is obtained by simply computing the restricted angular
DCS, for soft collisions with W < Wcc, from our inelastic scattering model (see section
3.2), as follows.

We recall that the recoil energy Q is given by (see appendix B)

Q(Q+ 2mec
2) = c2(p2 + p′2 − 2pp′ cos θ), (4.99)

where p and p′ are the magnitudes of the momentum of the projectile before and after
the collision,

(cp)2 = E(E + 2mec
2) and (cp′)2 = (E −W )(E −W + 2mec

2). (4.100)

In soft distant interactions, the angular deflection µ = (1−cos θ)/2 and the recoil energy
Q are related through

Q(Q+ 2mec
2) = 4cp cpkµ+ (cp − cpk)

2, (4.101)

where pk is the momentum of the projectile after the collision,

(cpk)
2 = (E −Wk)(E −Wk + 2mec

2). (4.102)

The cross section for soft distant interactions3, eq. (3.58), can then be expressed in terms

3Distant transverse interactions do not cause scattering.
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of the variable µ as

dσdis,l

dµ
=

4πe4

mev2

∑

k

fk
1

Wk

mec
2

4 cp cpkµ + (cp− cpk)2

4 cp cpk

2(Q+ mec2)
. (4.103)

Considering that Q� mec
2 for the majority of soft distant collisions, we have

dσdis,l

dµ
=

2πe4

mev2

∑

k

fk
1

Wk

1

Rk + µ
, 0 < µ < µk, (4.104)

where

Rk =
(cp− cpk)

2

4 cp cpk
(4.105)

and

µk = µ(Q = Wk) =
Wk(Wk + 2mec

2)− (cp − cpk)
2

4cp cpk
. (4.106)

On the other hand, the DCS per unit oscillator strength for soft (W < Wcc) close
collisions with the i-th oscillator is given by [see eqs. (3.69) and (3.75)]

dσ
(±)
clo

dW
=

2πe4

mev2

∑

k

fk
1

W 2
F (±)(E,W ). (4.107)

The angular deflection and the energy loss are related by (3.116), which implies that

W =
E(E + 2mec

2)2(µ − µ2)

2E(µ− µ2) + mec2
(4.108)

and
dW

dµ
=
E(E + 2mec

2)mec
22(1 − 2µ)

[2E(µ− µ2) + mec2]2
. (4.109)

Therefore,

dσ
(±)
clo

dµ
=

2πe4

mev2

∑

k

fk
1

W 2
F (±)(E,W )

dW

dµ
, µk < µ < µcc, (4.110)

where

µcc = µ(Q = Wcc) =
Wcc(Wcc + 2mec

2)− (cp − cpcc)
2

4cp cpcc
(4.111)

with
(cpcc)

2 = (E −Wcc)(E −Wcc + 2mec
2). (4.112)

The angular DCS for soft inelastic interactions is then given by

dσs

dµ
=

dσdis,l

dµ
+

dσ
(±)
clo

dµ

=
2πe4

mev2

∑

k

fk

{
1

Wk

1

Rk + µ
+

1

W 2
F (±)(E,W )

dW

dµ

}
, (4.113)
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where the summations extend over the oscillators with resonance energy less than Wcc

and greater than Wmax, and each term contributes only for the µ-intervals indicated
above. The mean free path and the first and second transport mean free paths for soft
inelastic scattering are

[
λ

(s)
in

]−1
= N

∫ µ2

0

dσ
(s)
in

dµ
dµ, (4.114)

[
λ

(s)
in,1

]−1
= N

∫ µ2

0
2µ

dσ
(s)
in

dµ
dµ (4.115)

and
[
λ

(s)
in,2

]−1
= N

∫ µ2

0
6(µ − µ2)

dσ
(s)
in

dµ
dµ. (4.116)

In penelope, soft electronic scattering is simulated together with soft elastic scat-
tering, by means of the artificial distribution (4.30). The combined process is described
by the transport mean free paths

[
λ

(s)
comb,1

]−1
=
[
λ

(s)
el,1

]−1
+
[
λ

(s)
in,1

]−1
(4.117)

and [
λ

(s)
comb,2

]−1
=
[
λ

(s)
el,2

]−1
+
[
λ

(s)
in,2

]−1
. (4.118)

Thus, to account for soft electronic scattering we only have to replace the soft elastic
transport mean free paths by those of the combined process.

4.3.3 Bielajew’s alternate random hinge

Angular deflections due to soft interactions along a step of length s are generated from
the artificial distribution (4.30) with first and second moments given by eqs. (4.28)

and (4.29), which are determined by the transport mean free paths λ
(s)
comb,1 and λ

(s)
comb,2.

To account (at least partially) for the energy dependence of these quantities we use a
trick due to Alex Bielajew. The soft energy loss and angular deflection (which occur
at the hinge) are considered as independent processes and are simulated in random
order. That is, the soft angular deflection is evaluated for the energy at either the
beginning or the end of the step, with equal probabilities. This is equivalent to assuming
that the transport mean free paths λ

(s)
comb,1(E) and λ

(s)
comb,2(E) vary linearly with energy.

The method is fairly accurate and computationally inexpensive provided only that the
fractional energy loss along each step (which is of the order of C2) is sufficiently small.

4.4 Generation of random tracks

Each simulated electron or positron history consists of a chronological succession of
events. These can be either hard events, artificial soft events (hinges) or other relevant
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stages of the particle history (such as its initial state, the crossing of an interface or the
effective absorption after slowing down). The trajectory of the particle between a pair
of successive events is straight and will be referred to as a “segment”. We keep the term
“step” to designate the portion of a track between two hard events, which consists of
two segments and a hinge (when mixed simulation is effective).

Simulation with penelope is controlled by the constants C1 and C2 [see eq. (4.85)]
and the cutoff energies Wcc and Wcr. Hereafter, these four quantities will be referred
to as simulation parameters. The parameter C1, which determines the mean free path
λ

(h)
el between hard elastic events, should be small enough to ensure reliable simulation

results. penelope admits values of C1 from 0 (detailed simulation) up to 0.2, which

corresponds to a mean angular deflection 〈θ〉 ∼ 37 deg after a steplength λ
(h)
el . The

simulation parameter C2 gives the maximum average fractional energy loss in a single
step and it is effective only at high energies. From the discussion in section 4.3, it is
clear that C2 should also be small. penelope allows values of C2 between zero and 0.2.
The cutoff energies Wcc and Wcr mainly influence the simulated energy distributions.
The simulation speeds up by using larger cutoff energies, but if these are too large
the simulated distributions may be somewhat distorted. In practice, simulated energy
distributions are found to be quite insensitive to the adopted values of Wcc and Wcr

when these are less than the bin width used to tally the energy distributions. Thus, the
desired energy resolution determines the maximum allowed cutoff energies.

The combined effect of all soft elastic and stopping interactions in a step is sim-
ulated as a single artificial event or hinge, in which the particle changes its direction
of movement and loses energy. When Wcc is less than the lowest oscillator resonance
energy, the simulation of inelastic collisions becomes purely detailed, i.e. inelastic colli-
sions do not contribute to the soft stopping power. On the other hand, the simulation
of bremsstrahlung emission is only possible by means of a mixed scheme, because of
the divergence of the DCS at W = 0 [see eq. (3.131)]. To test the accuracy of mixed
algorithms, and also in studies of low-energy electron and positron transport (with, say,
E < 100 keV), it may be convenient to perform strictly detailed simulations (see be-
low). For this purpose, penelope allows the user to switch off the emission of soft
bremsstrahlung photons with energy less than 10 eV. This option is activated when the
Wcr value selected by the user is negative, in which case the program sets Wcr = 10 eV,
disregards soft bremsstrahlung events and simulates hard events (with W > 10 eV) in
a detailed way. The generation of the angular deflection in artificial events is discontin-
ued when the simulation of elastic and inelastic scattering becomes detailed (i.e. when

λ
(h)
el = λel, Wcc = 0).

As indicated above, the length of the steps generated by penelope is always less than
smax, an upper bound selected by the user. The simulation code limits the step length
by placing delta interactions along the particle track. These are fictitious interactions
that do not alter the state of the particle. Their only effect is to interrupt the sequence
of simulation operations, which requires altering the values of inner control variables to
permit resuming the simulation in a consistent way. The use of bounded step lengths
is necessary to account for the energy dependence of the DCSs for soft interactions.
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However, this is not the only reason for limiting the step length. Since energy losses
and deflections at the hinges are sampled from artificial distributions, the number of
hinges per primary track must be “statistically sufficient”, i.e. larger than ∼ 10, to
smear off the unphysical details of the adopted artificial distributions. Therefore, when
the particle is in a thin region, it is advisable to use a small value of smax to make
sure that the number of hinges within the material is sufficient. In penelope, the
parameter smax can be varied freely during the course of the simulation of a single
track. To ensure internal consistency, smax is required to be less than 3λ

(h)
T . When

the user-selected value is larger, the code sets smax = 3λ
(h)
T ; in this case, about 5 per

cent of the sampled steps have lengths that exceed smax and are terminated by a delta
interaction. This slows down the simulation a little (∼5%), but ensures that the energy

dependence of λ
(h)
T is correctly accounted for. Instead of the smax value set by the user,

penelope uses a random maximum step length [from a triangle distribution in the
interval (0,smax)] that averages to half the user’s value; this is used to eliminate an
artifact in the depth-dose distribution from parallel electron/positron beams near the
entrance interface. Incidentally, limiting the step length is also necessary to perform
simulation of electron/positron transport in external static electromagnetic fields (see
appendix C).

The state of the particle immediately after an event is defined by its position coor-
dinates r, energy E and direction cosines of its direction of movement d̂, as seen from
the laboratory reference frame. It is assumed that particles are locally absorbed when
their energy becomes smaller than a preselected value Eabs; positrons are considered to
annihilate after absorption. The practical generation of random electron and positron
tracks in arbitrary material structures, which may consist of several homogeneous re-
gions of different compositions separated by well-defined surfaces (interfaces), proceeds
as follows:

(i) Set the initial position r, kinetic energy E and direction of movement d̂ of the
primary particle.

(ii) Determine the maximum allowed soft energy loss ωmax along a step and set the
value of inverse mean free path for hard events (see section 4.3). The results
depend on the adopted smax, which can vary along the simulated track.

(iii) Sample the distance s to be travelled to the following hard event (or delta inter-
action) as

s = − ln ξ/Σh,max. (4.119)

If s > smax, truncate the step by setting s = smax.
(iv) Generate the length τ = sξ of the step to the next hinge. Let the particle advance

this distance in the direction d̂: r← r + τ d̂.
(v) If the track has crossed an interface:

Stop it at the crossing point (i.e. redefine r as equal to the position of this point
and set τ equal to the travelled distance).
Go to (ii) to continue the simulation in the new material, or go to (xi) if the new
material is the outer vacuum.

(vi) Simulate the energy loss and deflection at the hinge. This step consists of two
actions:
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a) Sample the polar angular deflection µ = (1 − cos θ)/2 from the distribution
Fa(s;µ), eq. (4.30), corresponding to the current energy E. Sample the azimuthal
scattering angle as φ = 2πξ. Perform a rotation R(θ, φ) of the vector d̂ according
to the sampled polar and azimuthal angular deflections (as described in section
1.4.2) to obtain the new direction: d̂← R(θ, φ)d̂.
b) Sample the energy loss ω due to soft stopping interactions along the step s
from the distribution Ga(s;ω), eqs. (4.59)-(4.63), and reduce the kinetic energy:
E ← E − ω.
These two actions are performed in random order to account for the energy de-
pendence of the soft transport mean free paths (see section 4.3.3).
Go to (xi) if E < Eabs.

(vii) Let the particle advance the distance s− τ in the direction d̂: r← r + (s− τ )d̂.
(viii) Do as in (v).
(ix) If in step (iii) the step length was truncated, i.e. s = smax, simulate a delta

interaction.
Go to (ii).

(x) Simulate the hard event:
Sample the kind of interaction according to the point probabilities,

pel =
Nσ(h)

el

Σh,max
, pin =

Nσ(h)
in

Σh,max
, pbr =

Nσ(h)
br

Σh,max
, psi =

Nσsi

Σh,max
,

pδ =
Σδ

Σh,max
, and pan =

Nσan

Σh,max
in the case of positrons. (4.120)

If the event is a delta interaction, return to (ii).
If the event is an inner-shell ionization, sample the active shell, simulate the re-
laxation cascade of the residual ion and return to (ii). Notice that in this case the
state of the projectile remains unaltered.
Sample the polar scattering angle θ and the energy loss W from the corresponding
DCS. Generate the azimuthal scattering angle as φ = 2πξ. Perform a rotation
R(θ, φ) of the vector d̂ to obtain the new direction: d̂← R(θ, φ)d̂.
Reduce the kinetic energy of the particle: E ← E −W .
If, as a result of the interaction, a secondary particle is emitted in a direction d̂s,
with energy Es > Eabs, store its initial state (r, Es, d̂s).
Go to (ii) if E > Eabs.

(xi) Simulate the tracks of the secondary electrons and photons produced by the pri-
mary particle (or by other secondaries previously followed) before starting a new
primary track.

4.4.1 Stability of the simulation algorithm

The present simulation scheme for electrons/positrons is relatively stable under varia-
tions of the simulation parameters, due mostly to the effectiveness of the energy-loss
corrections. This implies that the simulation parameters can be varied amply without
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Figure 4.5: Results from the simulations of 500 keV electrons in aluminium described in the

text. Crosses, detailed simulation; continuous curves, mixed simulation. p(z) is the PDF of

the z-coordinate of the final electron position, after travelling the prescribed 200 µm. p(θ) and

p(E) are the PDFs of the direction of motion (specified by the polar angle θ) and the kinetic

energy E of the electrons at the end of the simulated tracks. The function D(z) represents the

“depth-dose” function, i.e. the average energy deposited in the material per unit length along

the z-direction (the residual energy at the end of the track is not included in the dose).
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practically altering the accuracy of the results. For the important case of low-energy
electrons/positrons (with energies of the order of 500 keV or less), the relevant param-
eters are Eabs, C1, Wcc and smax, because C2 is not effective (see fig. 4.3) and radiative
emission is unimportant (hard bremsstrahlung events occur very seldom and, therefore,
Wcr has no influence). The value of the parameter smax is important to ensure the relia-
bility of the results; a safe recipe is to set smax equal to one tenth of the “expected track
length” or less. Since the values of Eabs and Wcc are dictated by the characteristics of
the considered experiment, it follows that the only “critical” parameter, with a direct
influence on the speed of the simulation, is C1. As mentioned above, penelope accepts
values of C1 ranging from 0 (detailed simulation of elastic scattering) to 0.2.

In practice, the value of C1 does not influence the accuracy of the simulation results
when the other parameters are given “safe” values. This is illustrated in fig. 4.5, which
displays results from simulations of 500 keV electrons in aluminium (infinite medium).
Electrons started off from the origin of coordinates moving in the direction of the z axis.
During the generation of each electron track, we scored the energy deposited at different
“depths” (z-coordinate) to get the “depth-dose” distribution. The simulation of a track
was discontinued when the electron had travelled a path length s equal to 200 µm,
and the PDFs of the final electron energy and position coordinates were tallied. Notice
that no secondary radiation was followed and that the kinetic energy of the electrons at
s = 200 µm was not included in the dose distribution (i.e. the calculated “dose” does
not represent the quantity that would be obtained from a measurement).

The results displayed in fig. 4.5 are from equivalent detailed and mixed simulations
with Eabs = 10 keV and smax = 40 µm. The detailed simulation was performed by
setting C1 = C2 = 0, Wcc = 0 and Wcr = −100. Notice that when the user enters a
negative value of the cutoff energy loss for radiative events, penelope sets Wcr = 10 eV,
disregards the emission of soft bremsstrahlung photons with W < 10 eV (which rep-
resents a negligible fraction of the stopping power) and simulates hard bremsstrahlung
events as usually, i.e. in a detailed way. The mixed simulation results shown in fig. 4.5
were generated with C1 = C2 = 0.2, Wcc = 1 keV and Wcr = −100 (i.e. radiative events
were described as in the detailed simulation).

In the detailed simulation, about 15 million electron tracks were generated by running
a modified version of the code PENSLAB.F (see section 6.2.1) on a 666 MHz PII computer
for 85 hours, which corresponds to a simulation speed of 49 tracks/s. The average
numbers of elastic, inelastic and bremsstrahlung interactions that had to be simulated
to produce each detailed track were 1297, 1222 and 0.03, respectively. On the same
computer, the mixed simulation generated 25 million tracks in about 2 hours, which
represents a simulation speed of 3421 tracks/s, 71 times faster than that of detailed
simulation. The reason is that, on average, there were only 2.4 hard elastic collisions,
6.2 hard inelastic collisions, 0.03 hard bremsstrahlung events and 6.8 delta interactions
along each track. From fig. 4.5 we conclude that, in this case, the mixed algorithm is not
only stable under variations of the parameter C1 over the accepted range (0,0.2), but
also provides results that are essentially equivalent to those from the detailed simulation.
It is worth recalling that detailed simulation is nominally exact, the results are affected
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only by statistical uncertainties.

In general, our mixed simulation algorithm yields very accurate results (i.e. agree-
ing with those from detailed simulation) for electron and positron transport in infinite
media, but not necessarily for limited geometries. The existence of interfaces poses
considerable problems to condensed (class I) simulation, for which a satisfactory solu-
tion/approximation is not yet known. The present mixed (class II) algorithm handles
interface crossing in a more accurate, but still approximate way. The rule to ensure
accuracy for transport in the vicinity of interfaces is to use a small enough value of smax.



Chapter 5

Constructive quadric geometry

Practical simulations of radiation transport in material systems involve two different
kinds of operations, namely, physical (determination of the path length to the next
interaction, random sampling of the different interactions) and geometrical (space dis-
placements, interface crossings, . . . ). In the case of material systems with complex ge-
ometries, geometrical operations can take a large fraction of the simulation time. These
operations are normally performed by dedicated subroutine packages, whose character-
istics depend on the kind of algorithm used to simulate the interactions. The material
system is assumed to consist of a number of homogeneous bodies limited by well-defined
surfaces. The evolution of particles within each homogeneous body is dictated by the
physical simulation routines, which operate as if particles were moving in an infinite
medium with a given composition. Normally, the physical routines can handle a number
of different media, whose interaction properties have been previously stored in memory.
The job of the geometry routines is to steer the simulation of particle histories in the
actual material system. They must determine the active medium, change it when the
particle crosses an interface (i.e. a surface that separates two different media) and, for
certain simulation algorithms, they must also keep control of the proximity of interfaces.

In this chapter we describe the fortran subroutine package pengeom, which is
adequate for detailed simulation algorithms (i.e. algorithms where all single interactions
in the history of a particle are simulated in chronological succession). With these algo-
rithms, the description of interface crossings is very simple: when the particle reaches
an interface, its track is stopped just after entering a new material body and restarted
again with the new active medium. This method (stopping and restarting a track when
it crosses an interface) is applicable even when we have the same medium on both sides
of the surface. That is, detailed simulations with a single homogeneous body and with
the same body split into two parts by an arbitrary surface yield the same results (apart
from statistical uncertainties).

As we have seen, detailed simulation is feasible only for photon transport and low-
energy electron transport. For high-energy electrons and positrons, most Monte Carlo
codes [e.g. etran (Berger and Seltzer, 1988), its3 (Halbleib et al., 1992), egs4 (Nel-
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son et al., 1985), egsnrc (Kawrakow and Rogers, 2000), geant3 (Brun et al., 1986)]
have recourse to condensed (class I) or mixed (class II) simulation, where the global
effect of multiple interactions along a path segment of a given length is evaluated using
available multiple scattering theories. To avoid large step lengths that could place the
particle inside a different medium, these condensed procedures require the evaluation
of the distance from the current position to the nearest interface, an operation with a
high computational cost (see e.g. Bielajew, 1995). The mixed procedure implemented
in penelope is, at least computationally, analogous to detailed simulation (it gives a
“jump-and-knock” description of particle tracks). In fact, the structure of penelope’s
tracking algorithm was designed to minimize the influence of the geometry on the trans-
port physics. This algorithm operates independently of the proximity of interfaces and
only requires knowledge of the material at the current position of the particle. As a
consequence, the geometry package pengeom is directly linkable to penelope. How-
ever, since pengeom does not evaluate the distance to the closest interface, it cannot
be used with condensed simulation codes, such as those mentioned above.

Let us mention, in passing, that in simulations of high-energy photon transport
complex geometries can be handled by means of relatively simple methods, which do
not require control of interface crossings (see e.g. Snyder et al., 1969). Unfortunately,
similar techniques are not applicable to electron and positron transport, mainly because
these particles have much shorter track lengths and, hence, the transport process is
strongly influenced by inhomogeneities of the medium. With the analogue simulation
scheme adopted in penelope, it is necessary to determine when a particle track crosses
an interface, not only for electrons and positrons but also for photons.

pengeom evolved from a subroutine package of the same name provided with the
1996.02.29 version of the penelope code system. This package was aimed at describing
simple structures with a small number of homogeneous bodies limited by quadric sur-
faces. Although it was robust and very flexible, its speed deteriorated rapidly when the
number of surfaces increased. The need for developing a more efficient geometry package
became evident when we started to use penelope to simulate radiation transport in
accelerator heads (the description of which requires of the order of 100 surfaces) or in
studies of total body irradiation (the definition of a realistic anthropomorphic phantom
may involve a few hundred surfaces).

With pengeom we can describe any material system consisting of homogeneous
bodies limited by quadric surfaces. To speed up the geometry operations, the bodies
of the material system can be grouped into modules (connected volumes, limited by
quadric surfaces, that contain one or several bodies); modules can in turn form part of
larger modules, and so on. This hierarchic modular structure allows a reduction of the
work of the geometry routines, which becomes more effective when the complexity of
the system increases.

Except for trivial cases, the correctness of the geometry definition is difficult to check
and, moreover, 3D structures with interpenetrating bodies are difficult to visualize.
A pair of programs, named gview2d and gview3d, have been written to display
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the geometry on the computer screen. These programs use specific computer graphics
software and, therefore, they are not portable. The executable files included in the
penelope distribution package run on personal computers under Microsoft Windows;
they are simple and effective tools for debugging the geometry definition file.

5.1 Rotations and translations

The definition of various parts of the material system (quadric surfaces in reduced form
and modules) involves rotations and translations. To describe these transformations,
we shall adopt the active point of view: the reference frame remains fixed and only the
space points (vectors) are translated or rotated.

In what follows, and in the computer programs, all lengths are in cm. The position
and direction of movement of a particle are referred to the laboratory coordinate system,
a Cartesian reference frame which is defined by the position of its origin of coordinates
and the unit vectors x̂ = (1, 0, 0), ŷ = (0, 1, 0) and ẑ = (0, 0, 1) along the directions of
its axes.

A translation T (t), defined by the displacement vector t = (tx, ty, tz), transforms
the vector r = (x, y, z) into

T (t) r = r + t = (x+ tx, y + ty, z + tz). (5.1)

Evidently, the inverse translation T −1(t) corresponds to the displacement vector −t,
i.e. T −1(t) = T (−t).

A rotation R is defined through the Euler angles ω, θ and φ, which specify a sequence
of rotations about the coordinate axes1: first a rotation of angle ω about the z-axis,
followed by a rotation of angle θ about the y-axis and, finally, a rotation of angle φ
about the z-axis. A positive rotation about a given axis would carry a right-handed
screw in the positive direction along that axis. Positive (negative) angles define positive
(negative) rotations.

The rotation R(ω, θ, φ) transforms the vector r = (x, y, z) into a vector

r′ = R(ω, θ, φ) r = (x′, y′, z′), (5.2)

whose coordinates are given by




x′

y′

z′


 = R(ω, θ, φ)




x

y

z


 , (5.3)

1This definition of the Euler angles is the one usually adopted in Quantum Mechanics (see e.g.
Edmonds, 1960).
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where

R(ω, θ, φ) =




Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz


 (5.4)

is the rotation matrix. To obtain its explicit form, we recall that the matrices for
rotations about the z- and y-axes are

Rz(φ) =




cos φ − sinφ 0

sinφ cosφ 0

0 0 1


 and Ry(θ) =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 , (5.5)

respectively. Hence,

R(ω, θ, φ) = Rz(φ)Ry(θ)Rz(ω)

=




cos φ − sinφ 0

sinφ cosφ 0

0 0 1







cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ







cos ω − sin ω 0

sinω cos ω 0

0 0 1




=




cos φ cos θ cos ω − sinφ sinω − cos φ cos θ sinω − sinφ cos ω cosφ sin θ

sinφ cos θ cos ω + cos φ sinω − sin φ cos θ sinω + cos φ cos ω sin φ sin θ

− sin θ cos ω sin θ sinω cos θ


 . (5.6)

The inverse of the rotation R(ω, θ, φ) is R(−φ,−θ,−ω) and its matrix is the transpose
of R(ω, θ, φ), i.e.

R−1(ω, θ, φ) = R(−φ,−θ,−ω) = Rz(−ω)Ry(−θ)Rz(−φ) = RT(ω, θ, φ). (5.7)

Let us now consider transformations C = T (t)R(ω, θ, φ) that are products of a
rotation R(ω, θ, φ) and a translation T (t). C transforms a point r into

r′ = C(r) = T (t)R(ω, θ, φ) r (5.8)

or, in matrix form, 


x′

y′

z′


 = R(ω, θ, φ)




x

y

z


+




tx

ty

tz


 . (5.9)

Notice that the order of the factors does matter; the product of the same factors in
reverse order D = R(ω, θ, φ)T (t) transforms r into a point r′ = D(r) with coordinates




x′

y′

z′


 = R(ω, θ, φ)




x+ tx

y + ty

z + tz


 . (5.10)
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Given a function F (r), the equation F (r) = 0 defines a surface in implicit form. We
can generate a new surface by applying a rotation R(ω, θ, φ) followed by a translation
T (t) (we shall always adopt this order). The implicit equation of the transformed surface
is

G(r) = F
[
R−1(ω, θ, φ)T −1(t) r

]
= 0, (5.11)

which simply expresses the fact that G(r) equals the value of the original function at
the point r′ = R−1(ω, θ, φ)T −1(t) r that transforms into r.

5.2 Quadric surfaces

As already mentioned, the material system consists of a number of homogeneous bodies,
defined by their composition (material) and limiting surfaces. For practical reasons, all
limiting surfaces are assumed to be quadrics given by the implicit equation

F (x, y, z) = Axxx
2 +Axyxy +Axzxz +Ayyy

2 +Ayzyz +Azzz
2

+Axx+Ayy +Azz +A0 = 0, (5.12)

which includes planes, pairs of planes, spheres, cylinders, cones, ellipsoids, paraboloids,
hyperboloids, etc. In practice, limiting surfaces are frequently known in “graphical”
form and it may be very difficult to obtain the corresponding quadric parameters. Try
with a simple example: calculate the parameters of a circular cylinder of radius R such
that its symmetry axis goes through the origin and is parallel to the vector (1,1,1).
To facilitate the definition of the geometry, each quadric surface can be specified either
through its implicit equation or by means of its reduced form, which defines the “shape”
of the surface (see fig. 5.1), and a few simple geometrical transformations.

A reduced quadric is defined by the expression

Fr(x, y, z) = I1x
2 + I2y

2 + I3z
2 + I4z + I5 = 0, (5.13)

where the coefficients (indices) I1 to I5 can only take the values −1, 0 or 1. Notice
that reduced quadrics have central symmetry about the z-axis, i.e. Fr(−x,−y, z) =
Fr(x, y, z). The possible (real) reduced quadrics are given in table 5.1.

A general quadric is obtained from the corresponding reduced form by applying the
following transformations (in the quoted order)2.

(i) An expansion along the directions of the axes, defined by the scaling factors
X-SCALE= a, Y-SCALE= b and Z-SCALE= c. The equation of the scaled quadric is

Fs(x, y, z) = I1

(
x

a

)2

+ I2

(
y

b

)2

+ I3

(
z

c

)2

+ I4
z

c
+ I5 = 0. (5.14)

2Keywords used to denote the various parameters in the geometry definition file are written in
typewriter font, e.g. X-SCALE). See section 5.4.
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1,1,1,0,−1

z
z

1,−1,0,−1,0

1,1,−1,0,0

1,1,0,0,−1 1,−1,0,0,−1

1,1,0,−1,0 1,0,0,−1,0

1,1,−1,0,11,1,−1,0,−1

y
x

Figure 5.1: Non-planar reduced quadric surfaces and their indices [see eq. (5.13)]. In all

cases, the perspective is the same as for the sphere.
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Table 5.1: Reduced quadrics.

Reduced form Indices Quadric

z − 1 = 0 0 0 0 1 −1 plane

z2 − 1 = 0 0 0 1 0 −1 pair of parallel planes

x2 + y2 + z2 − 1 = 0 1 1 1 0 −1 sphere

x2 + y2 − 1 = 0 1 1 0 0 −1 cylinder

x2 − y2 − 1 = 0 1 −1 0 0 −1 hyperbolic cylinder

x2 + y2 − z2 = 0 1 1 −1 0 0 cone

x2 + y2 − z2 − 1 = 0 1 1 −1 0 −1 one sheet hyperboloid

x2 + y2 − z2 + 1 = 0 1 1 −1 0 1 two sheet hyperboloid

x2 + y2 − z = 0 1 1 0 −1 0 paraboloid

x2 − z = 0 1 0 0 −1 0 parabolic cylinder

x2 − y2 − z = 0 1 −1 0 −1 0 hyperbolic paraboloid

. . . and permutations of x, y and z that preserve the central symmetry with respect
to the z-axis.

For instance, this transforms the reduced sphere into an ellipsoid with semiaxes
equal to the scaling factors.

(ii) A rotation, R(ω, θ, φ), defined through the Euler angles OMEGA= ω, THETA= θ and
PHI= φ. Notice that the rotation R(ω, θ, φ) transforms a plane perpendicular to
the z-axis into a plane perpendicular to the direction with polar and azimuthal
angles THETA and PHI, respectively. The first Euler angle, ω has no effect when
the initial (scaled) quadric is symmetric about the z-axis.

(iii) A translation, defined by the components of the displacement vector t (X-SHIFT=
tx, Y-SHIFT= ty, Z-SHIFT= tz).

A quadric is completely specified by giving the set of indices (I1, I2, I3, I4, I5), the scale
factors (X-SCALE, Y-SCALE, Z-SCALE), the Euler angles (OMEGA, THETA, PHI) and the
displacement vector (X-SHIFT, Y-SHIFT, Z-SHIFT).Any quadric surface can be expressed
in this way. The implicit equation of the quadric is obtained as follows. We define the
matrix

A =




Axx
1
2
Axy

1
2
Axz

1
2
Axy Ayy

1
2
Ayz

1
2
Axz

1
2
Ayz Azz




(5.15)

and write the generic quadric equation (5.12) in matrix form

rTA r + ATr +A0 = 0, (5.16)
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where r and A ≡ (Ax, Ay, Az) are considered here as one-column matrices. Notice that
the matrix A is symmetric (AT = A). Expressing the scaled quadric (5.14) in the form
(5.16), the equation for the rotated and shifted quadric is [see eq. (5.11)]

(r− t)TRART (r− t) + (RA)T(r− t) +A0 = 0, (5.17)

which can be written in the generic form (5.16)

rTA′ r + A′Tr +A′
0 = 0 (5.18)

with

A′ = RART, A′ = RA − 2A′t, A′
0 = A0 + tT(A′t−RA). (5.19)

From these relations, the parameters of the implicit equation (5.12) are easily obtained.

A quadric surface F (x, y, z) = 0 divides the space into two exclusive regions that are
identified by the sign of F (x, y, z), the surface side pointer. A point with coordinates
(x0, y0, z0) is said to be inside the surface if F (x0, y0, z0) ≤ 0 (side pointer = −1), and
outside it if F (x0, y0, z0) > 0 (side pointer = +1).

5.3 Constructive quadric geometry

A body is defined as a space volume limited by quadric surfaces and filled with a
homogeneous material. To specify a body we have to define its limiting quadric surfaces
F (r) = 0, with corresponding side pointers (+1 or −1), and its composition (i.e. the
integer label used by penelope to identify the material). It is considered that bodies
are defined in “ascending”, exclusive order so that previously defined bodies effectively
delimit the new ones. This is convenient e.g. to describe bodies with inclusions. The
work of the geometry routines is much easier when bodies are completely defined by their
limiting surfaces, but this is not always possible or convenient for the user. The example
in section 5.7 describes an arrow inside a sphere (fig. 5.2); the arrow is defined first so
that it limits the volume filled by the material inside the sphere. It is impossible to define
the hollow sphere (as a single body) by means of only its limiting quadric surfaces. It
is clear that, by defining a conveniently large number of surfaces and bodies, we can
describe any quadric geometry.

The subroutine package pengeom contains a subroutine, named LOCATE, that “lo-
cates” a point r, i.e. determines the body that contains it, if any. The obvious method
is to compute the side pointers [i.e. the sign of F (r)] for all surfaces and, then, explore
the bodies in ascending order looking for the first one that fits the given side pointers.
This brute force procedure was used in older versions of pengeom; it has the advantage
of being robust (and easy to program) but becomes too slow for complex systems. A
second subroutine, named STEP, “moves” the particle from a given position r0 within
a body B a certain distance s in a given direction d̂. STEP also checks if the particle
leaves the active medium and, when this occurs, stops the particle just after entering
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Figure 5.2: Example of simple quadric geometry; an arrow within a sphere (the corresponding

definition file is given in section 5.7). The solid triangles indicate the outside of the surfaces

(side pointer = +1). Numbers in squares indicate bodies.

the new material. To do this, we must determine the intersections of the track segment
r0 + td̂ (0 < t ≤ s) with all the surfaces that limit the body B (including those that
limit other bodies that limit B), and check if the final position r0 + sd̂ remains in B
or not. The reason for using only quadric surfaces is that these intersections are easily
calculated by solving a quadratic equation.

Notice that bodies can be concave, i.e., the straight segment joining any two points in
a body may not be wholly contained in the body. Hence, even when the final position of
the particle lies within the initial body, we must analyze all the intersections of the path
segment with the limiting surfaces of B and check if the particle has left the body after
any of the intersections. When the particle leaves the initial body, say after travelling a
distance s′ (< s), we have to locate the point r′ = r0+s

′d̂. The easiest method consists of
computing the side pointers of all surfaces of the system at r′, and determining the body
B ′ that contains r′ by analyzing the side pointers of the different bodies in ascending
order. It is clear that, for complex geometries, this is a very slow process. We can speed
it up by simply disregarding those elements of the system that cannot be reached in a
single step (e.g. bodies that are “screened” by other bodies). Unfortunately, as a body
can be limited by all the other bodies that have been defined previously, the algorithm
can be improved only at the expense of providing it with additional information. We
shall adopt a simple strategy that consists of lumping groups of bodies together to form
modules.

A module is defined as a connected volume3, limited by quadric surfaces, that con-
tains one or several bodies. A module can contain other modules, which will be referred
to as submodules of the first. The volume of a module is filled with a homogeneous
medium, which automatically fills the cavities of the module (i.e. volumes that do not

3A space volume is said to be connected when any two points in the volume can be joined by an arc
of curve that is completely contained within the volume.
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correspond to a body or to a submodule); these filled cavities are considered as a single
new body. A body that is connected and limited only by surfaces can be declared either
as a body or as a module. For the sake of simplicity, modules are required to satisfy
the following conditions: 1) the bodies and submodules of a module must be completely
contained within the parent module (i.e. it is not allowed to have portions of bodies or
submodules that lie outside the module) and 2) a submodule of a module cannot overlap
with other submodules and bodies of the same module (this is necessary to make sure
that a particle can only enter or leave a module through its limiting surfaces). Notice
however, that the bodies of a module are still assumed to be defined in ascending order,
i.e. a body is limited by its surfaces and by the previously defined bodies of the same
module, so that inclusions and interpenetrating bodies can be easily defined. Of course,
overlapping bodies must be in the same module.

A module (with its possible submodules) can represent a rigid part (e.g. a radioactive
source, an accelerator head, a detector, a phantom, etc.) of a more complex material
system. To facilitate the definition of the geometry, it is useful to allow free translations
and rotations of the individual modules. The definition of a module (see below) includes
the parameters of a rotation R(ω, θ, φ) and a translation T (t), which are optional and
serve to modify the position and orientation of the module (and its submodules) with
respect to the laboratory reference frame. As before, the rotation is applied first. All
submodules and bodies of the same module are shifted and rotated together.

In practical simulations, it may be useful to limit the region of space where particles
have to be transported. For instance, to simulate the response of a detector with a given
photon source, it is advisable to stop the simulation of a particle when it is far enough
from the detector. This can be done automatically by considering an “enclosure” of
the material system, which is defined as a module that contains the complete system.
If such a covering module is not explicitly defined, the subroutines set the enclosure
as a sphere of 1015 cm radius. It is assumed that there is perfect vacuum outside the
enclosure, and in any inner volume that is not a part of a body or of a filled module.
Hence, particles that leave the enclosure are lost and will never return to the material
system.

For programming purposes, it is useful to imagine each module as the mother of its
bodies and submodules, and as the daughter of the module that contains it. We thus
have a kind of genealogical tree with various generations of modules and bodies (see fig.
5.3). The first generation reduces to the enclosure (which is the only motherless module).
The members of the second generation are bodies and modules that are daughters of
the enclosure. The n-th generation consists of modules and bodies whose mothers
belong to the (n − 1)-th generation. Each module is defined by its limiting surfaces
(which determine the border with the external world) and those of their descendants
(which determine the module’s internal structure); this is not true for bodies (childless
members of the tree), which can be limited either by surfaces, by other sister bodies or
by a combination of both. A body that is limited only by surfaces can be defined as a
module, which has the advantage of allowing free rotation and translation.
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Figure 5.3: Planar cut of a geometry example, showing modules (number labels in circles)

and bodies (number labels in squares), and the associated genealogical tree. Notice that a

module can always be defined as a body limited by their submodules and daughter bodies,

but this affects the structure of the genealogical tree and, therefore, the efficiency (speed) of

the geometry operations.

5.4 Geometry definition file

The geometry is defined from the input file (UNIT=IRD). In principle, this permits the
simulation of different geometries by using the same main program. The input file con-
sists of a series of data sets, which define the different elements (surfaces, bodies and
modules). A data set consists of a number of strictly formatted text lines; it starts and
ends with a separation line filled with zeros. The first line after each separation line must
start with one of the defining 8-character strings “SURFACE-”, “BODY----”, “MODULE--”,
“END-----” or “INCLUDE-” (here, blank characters are denoted by “-”; they are essen-
tial!). Informative text (as many lines as desired) can be written at the beginning of the
file, before the first separation line. A line starting with the string “END-----” after a
separation line discontinues the reading of geometry data. Each element is identified by
its type (surface, body or module) and a three-digit integer label. Although the element
label can be given an arbitrary value (−99 to 999) in the input file, pengeom redefines
it so that elements of a given kind are numbered consecutively, according to their input
order. Notice that bodies and modules are considered as elements of the same kind (i.e.
assigning the same label to a body and to a module will cause an error of the reading
routine).

In the input file, numerical quantities must be written within the parentheses in the
specified format. All lengths are in cm; angles can be given in either degrees (DEG) or
radians (RAD). When angles are in degrees, it is not necessary to specify the unit. The
parameters in each data set can be entered in any order. They can even be defined
several times, in which case, only the last input value is accepted. This is useful, e.g.
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to study variations caused by changing these parameters without duplicating the input
file. Comments can be written at the end of each line, at the right of the last keyword
or after the closing parenthesis of numerical fields.

• The format of the data set of a surface defined in reduced form is the following,

0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( I3) TEXT DESCRIBING THE SURFACE ...
INDICES=(I2,I2,I2,I2,I2)
X-SCALE=( E22.15 , I3) (DEFAULT=1.0)
Y-SCALE=( E22.15 , I3) (DEFAULT=1.0)
Z-SCALE=( E22.15 , I3) (DEFAULT=1.0)
OMEGA=( E22.15 , I3) DEG (DEFAULT=0.0)
THETA=( E22.15 , I3) DEG (DEFAULT=0.0)

PHI=( E22.15 , I3) RAD (DEFAULT=0.0)
X-SHIFT=( E22.15 , I3) (DEFAULT=0.0)
Y-SHIFT=( E22.15 , I3) (DEFAULT=0.0)
Z-SHIFT=( E22.15 , I3) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000
◦ Surface parameters are optional and can be entered in any order. Default values
are assigned to parameters not defined in the input file. Thus, to define an elliptic
cylinder centred on the z-axis, only the parameters X-SCALE and Y-SCALE are
required. Notice that scale parameters must be greater than zero.
◦ The I3 value following each parameter must be set equal to zero (or negative) to
make the parameter value effective. When this field contains a positive integer IP,
the parameter is set equal to the value stored in the IP-th component of the array
PARINP, an input argument of subroutine GEOMIN (see section 5.6). This permits
the user to modify the geometry parameters from the MAIN program.

• Limiting surfaces can also be defined in implicit form. When a quadric surface
is defined in this way, the indices must be set to zero; this switches the reading
subroutine GEOMIN to implicit mode. The format of an implicit surface data set is

0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( I3) TEXT DESCRIBING THE SURFACE ...
INDICES=( 0, 0, 0, 0, 0)

AXX=( E22.15 , I3) (DEFAULT=0.0)
AXY=( E22.15 , I3) (DEFAULT=0.0)
AXZ=( E22.15 , I3) (DEFAULT=0.0)
AYY=( E22.15 , I3) (DEFAULT=0.0)
AYZ=( E22.15 , I3) (DEFAULT=0.0)
AZZ=( E22.15 , I3) (DEFAULT=0.0)
AX=( E22.15 , I3) (DEFAULT=0.0)
AY=( E22.15 , I3) (DEFAULT=0.0)
AZ=( E22.15 , I3) (DEFAULT=0.0)
A0=( E22.15 , I3) (DEFAULT=0.0)

0000000000000000000000000000000000000000000000000000000000000000
◦ Surface parameters are optional and can be entered in any order. The default
value 0.0 is assigned to parameters not defined in the input file.
◦ The I3 value following each parameter must be negative or zero to make the
parameter value effective. Otherwise, its actual value will be set by subroutine
GEOMIN.
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• The format of a body data set is

0000000000000000000000000000000000000000000000000000000000000000
BODY ( I3) TEXT DESCRIBING THE BODY ...
MATERIAL( I3)
SURFACE ( I3), SIDE POINTER=(I2)
SURFACE ( I3), SIDE POINTER=(I2) ...
BODY ( I3)
BODY ( I3) ...
0000000000000000000000000000000000000000000000000000000000000000

◦ The indicator of each material (2nd line) must agree with the convention adopted
in penelope. Void inner volumes can be described as material bodies with
MATERIAL set to 0.
◦ A line is required to define each limiting surface, with its side pointer, and each
limiting body. Limiting surfaces and bodies can be entered in any order.
◦ Bodies are assumed to be defined in ascending order so that, in principle, it
would not be necessary to declare the limiting bodies. However, to speed up the
calculations, it is required to declare explicitly all the elements (surfaces and bod-
ies) that actually limit the body that is being defined. Omission of a limiting
body will cause inconsistencies unless the materials in the limiting and the limited
bodies are the same.

• The format for the definition of a module is the following:

0000000000000000000000000000000000000000000000000000000000000000
MODULE ( I3) TEXT DESCRIBING THE MODULE...
MATERIAL( I3)
SURFACE ( I3), SIDE POINTER=(I2)
SURFACE ( I3), SIDE POINTER=(I2) ...
BODY ( I3)
BODY ( I3) ...
MODULE ( I3)
MODULE ( I3) ...
1111111111111111111111111111111111111111111111111111111111111111
OMEGA=( E22.15 , I3) DEG (DEFAULT=0.0)
THETA=( E22.15 , I3) DEG (DEFAULT=0.0)

PHI=( E22.15 , I3) RAD (DEFAULT=0.0)
X-SHIFT=( E22.15 , I3) (DEFAULT=0.0)
Y-SHIFT=( E22.15 , I3) (DEFAULT=0.0)
Z-SHIFT=( E22.15 , I3) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000

◦ The material (which must be explicitly declared) fills the cavities of the module.
As in the case of bodies, MATERIAL = 0 corresponds to vacuum.
◦ The limiting surfaces must define a connected volume. All inner bodies and
modules (submodules) must be declared. Notice that these cannot extend outside
the module’s volume and that a submodule cannot overlap with the other sub-
modules and bodies.
◦ Limiting surfaces, inner bodies and submodules can be entered in any order.
◦ The enclosure of the system can be defined as a module (the last in the geometry
file). The enclosure must contain all modules and all bodies that do not belong
to modules. Otherwise, the subroutines will define a new enclosure (a sphere with
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1015 cm radius) that is supposed to satisfy this condition. Make sure that the
system does not contain bodies that extend outside the enclosure (this normally
will cause errors).
◦ The rotation and the translation are optional and apply to all elements of the
module. The line filled with 1’s ends the definition of elements and starts that of
transformation parameters (it can be skipped if no transformation parameters are
entered). The I3 value following each parameter has the same meaning as above.
It has to be negative or zero to make the parameter value effective; otherwise, the
parameter must be set from the main program.

A single surface can be used to define several bodies and/or submodules in the same
module; unnecessary duplication of a surface reduces the calculation speed. Notice,
however, that rotation or translation of a module modifies all the surfaces of its descen-
dants and, therefore, a transformed surface must be redefined to be used again. Thus,
if the system contains two identical modules in different positions (e.g. two detectors
in a coincidence experiment), each of them must be defined explicitly. This does not
require too much editing work; after generating the first of the two modules, we can just
duplicate its definition data sets and change their labels.

The INCLUDE option allows inserting a predefined structure (e.g. a scintillation de-
tector, an encapsulated nuclear source, . . . ) within the geometry file. The inserted
structure is defined by a complete definition file (i.e. ending with an “END-----” line).
The labels of the objects in the included file must be different from the labels used in
the main file and in any other included file. The format of an INCLUDE block is the
following,

0000000000000000000000000000000000000000000000000000000000000000
INCLUDE
FILE= (filename.ext)
0000000000000000000000000000000000000000000000000000000000000000

The name of the included file must be written between the parentheses. It may be up
to twelve characters long; if it is shorter, the blanks must be left at the right end of
the field. Only one-level INCLUDES are allowed, i.e. an included file cannot contain any
INCLUDE blocks.

The definition of the geometry may seem somewhat more laborious than with com-
binatorial methods, where the system is described by combining basic bodies of several
simple shapes [see Jenkins et al. (1988) and references therein]. In practice, however,
defining the various surfaces that limit a body may be more convenient, and intuitive,
than considering all the parameters needed to specify that body. The example of a right
elliptical cylinder, which needs 9 parameters, is quite illustrative. With our method, this
body can be defined as a module by means of two planes perpendicular to the z-axis
(only one parameter if the base is the z = 0 plane) and a scaled cylinder (2 parame-
ters); the rotation (3 parameters) of the module gives the required orientation and the
translation (3 parameters) puts it in the required position. The definition as a proper
body requires defining the three surfaces that limit the cylinder in its actual position,
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which is a bit more inconvenient. In any case, the important issue is not how to define
the geometry, but the amount of computation needed to follow a particle through the
material system.

5.5 The subroutine package pengeom

The package pengeom consists of the following subroutines;

• SUBROUTINE GEOMIN(PARINP,NPINP,NMAT,NBOD,IRD,IWR)

Reads geometry data from the input file and initializes the geometry package.

◦ Input arguments:
PARINP: Array containing optional parameters, which may replace the ones entered
from the input file. This array must be declared in the MAIN program, even when
NPINP = 0.
NPINP: Number of parameters defined in PARINP (positive).
IRD: Input file unit (opened in the main program).
IWR: Output file unit (opened in the main program).

◦ Output arguments:
NMAT: Number of different materials in full bodies (excluding void regions).
NBOD: Number of defined bodies and modules.

Subroutine GEOMIN labels elements of the various kinds (surfaces, bodies and mod-
ules) in strictly increasing order; it may also redefine some of the geometry param-
eters, whose actual values are entered through the array PARINP. A copy of the
geometry definition file, with the effective parameter values and with the element
labels assigned by GEOMIN, is printed on the output file (UNIT IWR). This part of
the output file describes the actual geometry used in the simulation.

• SUBROUTINE LOCATE

Determines the body that contains the point with coordinates (X, Y, Z).

◦ Input values (through COMMON/TRACK/) 4 :
X, Y, Z: Particle position coordinates.
U, V, W: Direction cosines of the direction of movement.
◦ Output values (through COMMON/TRACK/):
IBODY: Body where the particle moves.
MAT: Material in IBODY. The output MAT = 0 indicates that the particle is in a void
region.

• SUBROUTINE STEP(DS,DSEF,NCROSS)

Used in conjunction with penelope, this subroutine performs the geometrical part
of the track simulation. The particle starts from the point (X,Y,Z) and proceeds
to travel a length DS in the direction (U,V,W) within the material where it moves.

4Most of the input/output of the geometry routines is through COMMON/TRACK/, which is the common
block used by penelope to transfer particle state variables.
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STEP displaces the particle and stops it at the end of the step, or just after entering
a new material. The output value DSEF is the distance travelled within the initial
material. If the particle enters a void region, STEP continues the particle track, as
a straight segment, until it penetrates a material body or leaves the system (the
path length through inner void regions is not included in DSEF). When the particle
arrives from a void region (MAT = 0), it is stopped after entering the first material
body. The output value MAT = 0 indicates that the particle has escaped from the
system.

◦ Input-output values (through COMMON/TRACK/):
X, Y, Z: Input: coordinates of the initial position.

Output: coordinates of the final position.
U, V, W: Direction cosines of the displacement. They are kept unaltered.
IBODY Input: initial body, i.e. the one that contains the initial position.

Output: final body.

MAT: Material in body IBODY (automatically changed when the particle crosses an
interface).

◦ Input argument:
DS: Distance to travel (unaltered).

◦ Output arguments:
DSEF: Travelled path length before leaving the initial material or completing the
jump (less than DS if the track crosses an interface).
NCROSS: Number of interface crossings (=0 if the particle does not leave the initial
material, greater than 0 if the particle enters a new material).

For the handling and storage of geometric information we take advantage of the
structure of the genealogical tree. It is assumed that an enclosure has been defined so
that it is the only common ancestor for all bodies and modules. To understand the
operation of the geometry routines, it is convenient to define a matrix FLAG(KB,KS) as
follows (the indices KS and KB indicate the label of a surface and a body or module,
respectively),
FLAG(KB,KS) = 1, if KS is a limiting surface of KB and KB is inside KS (i.e. side

pointer = −1).
= 2, if KS is a limiting surface of KB and KB is outside KS (i.e. side

pointer = +1).
= 3, if KB is a body and KS does not directly limit KB, but appears

in the definition of a body that limits KB.
= 4, if KB is a module and KS limits one of its daughters (bodies and

submodules), but does not appear in the definition of KB.
= 5, otherwise.

To locate a point we call subroutine LOCATE, where we proceed upwards in the
genealogical tree of modules. If the point is outside the enclosure, we set MAT = 0 and
return to the main program. Otherwise, we look for a module or body of the second
generation that contains the point. If it exists, we continue analyzing its descendants
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(if any) and so on. The process ends when we have determined the body IBODY that
contains the point, or as soon as we conclude that the point is outside the material
system (i.e. in a void region). Notice that, when we have found that a module KB does
contain the point, to do the next step we only need to consider the surfaces KS such
that FLAG(KB, KS) = 1, 2 or 4.

After the body IBODY that contains the initial position of the particle has been iden-
tified, we can call subroutine STEP to move the particle a certain distance DS, dictated
by penelope, along the direction (U,V,W). We start by checking whether the track seg-
ment crosses any of the surfaces that limit IBODY. If after travelling the distance DS the
particle remains within the same body, DSEF is set equal to DS and control is returned
to the main program. It is worth noting that the surfaces KS that define the initial body
are those with FLAG(IBODY,KS)=1 and 2 (proper limiting surfaces) or =3 (limiting sur-
faces of limiting bodies). Although it may happen that a surface with FLAG=3 does not
directly limit the body, subroutine STEP cannot know this from the information at hand
and, consequently, all surfaces with FLAG=3 are analyzed after each move. It is clear
that, to reduce the number of surfaces to be considered, we should minimize the number
of bodies used to delimit other bodies.

When the particle leaves IBODY and enters a new material, STEP stops it just after
crossing the interface and determines the new body and material (in this case, the output
values of IBODY and MAT are different from the input ones). To do this, the limiting
surfaces of the parent module and of all the sisters of the initial body must be analyzed (if
they exist). If the new position is outside the parent module, we must analyze all surfaces
that limit the parent’s sisters and go downward in the genealogical tree to determine the
module that contains the point and, if necessary, go upwards again to find out what the
new body is. If the new material is the same as in the initial body, the particle is allowed
to move the remaining distance. Void regions (strict vacuum) are crossed freely (i.e. the
distance travelled within these regions is not counted). Furthermore, when the particle
starts from outside the enclosure, it is allowed to propagate freely until it reaches a
material body. The particle is stopped when it penetrates a different material or when
it leaves the system (i.e. when, after leaving a material body, its straight trajectory does
not intersect a non-void body; in this case, the value MAT=0 is returned). Evidently,
the speed of the geometry subroutines depends greatly on the structure of the modules’
genealogical tree. The responsibility of optimizing it rests with the user.

When STEP moves the particle across an interface, there is a risk that, owing to
numerical truncation errors, the particle is placed on the wrong side of the interface (i.e.
the track is stopped just before the interface). If this occurs, the program could go into
an endless loop in which STEP repeatedly tries to move the particle a very small distance
(of the order of 10−15 cm) towards the interface but does not succeed, i.e. the particle
is trapped at the interface. To avoid this collapse of the trajectory, after each interface
crossing, STEP applies an additional small displacement (∼ 10−8 cm) in the direction of
movement, which is physically irrelevant and sufficient to compensate for the effect of
truncation errors. The same strategy is used in subroutine LOCATE: when the particle
is too close to an interface, it is moved 10−8 cm along the surface gradient direction



170 Chapter 5. Constructive quadric geometry

or its opposite, depending on whether the particle approaches or leaves the interface.
Notice that this strategy requires that the direction of movement (U,V,W) be defined
before calling LOCATE. The extra displacement effectively eliminates the risk of particle
trapping at interfaces; but it also sets a limit to the space resolution (geometrical details
that are less than ∼10 Å in size cannot be described).

pengeom admits up to 250 surfaces and 125 bodies and modules. When the input
file contains a larger number of elements, the program stops and a corresponding error
message is printed. To describe such complex material systems, it is necessary to edit the
source file PENGEOM.F and increase the values of the parameters NS (maximum number
of surfaces) and NB (maximum number of bodies) in all subroutines. It is assumed
that the number of bodies in a module is less than NX = 100, which is also the upper
limit for the number of surfaces that can be used to define a body or a module (those
with FLAG < 5). When NX is too small, the module that causes the trouble should be
decomposed into several submodules. Although it is possible to increase the parameter
NX, this would waste a lot of memory. As a consequence, a system with more than 100
surfaces or bodies must be decomposed into modules.

5.6 Debugging and viewing the geometry

A pair of computer programs named gview2d and gview3d have been written to
visualize the geometry and to help the user to debug the definition file. These codes
generate two- and three-dimensional 24-bit colour images of the system using specific
graphics routines. The executable codes included in the distribution package run on
personal computers under Microsoft Windows.

The most characteristic (and useful) feature of gview2d is that displayed pictures
are generated by using the pengeom package and, therefore, errors and inconsistencies
in the geometry definition file that would affect the results of actual simulations are
readily identified. The method to generate the image consists of following a particle
that moves on a plane perpendicular to an axis of the reference frame, which is mapped
on the window. The particle starts from a position that corresponds to the left-most
pixel and moves along a straight trajectory to the right of the window. To do this,
we call subroutine STEP repeatedly, maintaining the direction of movement and with a
large value of DS (such that each body is crossed in a single step). A colour code is
assigned to each material, and pixels are lit up with the active colour when they are
crossed by the particle trajectory. The active colour is changed when the particle enters
a new material. The final picture is a map of the bodies and materials intersected by
the window plane. The orientation of the window plane, as well as the position and size
of the window view, may be changed interactively by entering one of the one-character
commands shown in table 5.2, directly from the graphics window (upper- and lower-case
letters may work differently). With gview2d we can inspect the internal structure of
the system with arbitrary magnification (limited only by the intrinsic resolution of the
pengeom routines).
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Table 5.2: One-character commands of the gview2d geometry viewer.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ x --> change window orientation, x-axis, +
+ y --> change window orientation, y-axis, +
+ z --> change window orientation, z-axis, +
+ r,right --> shift right, l,left --> shift left, +
+ u,up --> shift up, d,down --> shift down, +
+ f,pgup --> shift front, b,pgdn --> shift back, +
+ i,+ --> zoom in, o,- --> zoom out, +
+ 1 --> actual size, h,? --> help, +
+ blank, enter --> repeat last command, q --> quit. +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

When running the gview2d program, you will be asked to give the path+name of
the geometry definition file and the coordinates (XC,YC,ZC) of the centre of the window
(relative to the laboratory frame) in cm. The window may appear black (the colour for
void regions) if no material bodies are intersected. In this case, use the one-character
viewer commands to reach the bodies or, more conveniently, start again and place the
window centre near or within a filled body.

gview3d generates three-dimensional pictures of the geometry by using a simple ray-
tracing algorithm, with the source light and the camera at the same position. Bodies
are displayed with the same colour code used by gview2d and the intensity of each
pixel is determined by the angle between the vision line and the normal to the limiting
surface. This method does not produce shadows and disregards light diffusion, but
makes fairly realistic three-dimensional images. The camera is assumed to be outside
the system (placing the camera inside a body would stop the program). To reveal the
inner structure of the system, the program can eliminate a wedge (limited by two vertical
planes that intersect in the z-axis). The position and size of the system can be modified
by means of one-character commands entered from the graphics window. The command
keys and actions are similar to those of gview2d. It is worth noting that gview3d

generates the image pixel by pixel, whereas gview2d does it by drawing straight lines
on the window; as a result, gview2d is much faster.

gview2d and gview3d produce an output file named GEOMETRY.REP (which is
generated by subroutine GEOMIN) in the working directory. The programs are stopped
either when an input format is incorrect (reading error) or when a clear inconsistency in
the definition file is found (e.g. when the element that is being defined and the furnished
information do not match). The wrong datum appears in the last printed lines of the
GEOMETRY.REP file, usually in the last one. Error messages are also written on that file,
so that the identification of inconsistencies is normally very easy. When the structure of
the input file is correct, the codes do not stop and the geometry is displayed for further
analysis. Most of the possible errors in the input file can only be revealed by direct
inspection of the images generated by gview2d and gview3d.

The file GEOMETRY.REP is a duplicate of the input definition file. The only differ-
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ences between the two files are the labels assigned to the different surfaces, bodies and
modules; in GEOMETRY.REP, these elements are numbered in strictly increasing order.
It is important to bear in mind that pengeom internally uses this sequential labelling
to identify bodies and surfaces. Knowing the internal label assigned to each element is
necessary for scoring purposes, e.g. to determine the distribution of energy deposited
within a particular body.

5.7 A short tutorial

To prepare a new geometry definition file, it is useful to start from a file that contains a
model of each data set with default values of their parameters. Placing the end-line at
the beginning of the model group discontinues the geometry reading; so that the model
group can be kept in the geometry file, even when this one is operative. The starting
file should look like this

END 0000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( ) REDUCED FORM
INDICES=( 1, 1, 1, 1, 1)
X-SCALE=(+1.000000000000000E+00, 0) (DEFAULT=1.0)
Y-SCALE=(+1.000000000000000E+00, 0) (DEFAULT=1.0)
Z-SCALE=(+1.000000000000000E+00, 0) (DEFAULT=1.0)
OMEGA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)
THETA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)

PHI=(+0.000000000000000E+00, 0) RAD (DEFAULT=0.0)
X-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Y-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Z-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( ) IMPLICIT FORM
INDICES=( 0, 0, 0, 0, 0)

AXX=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AXY=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AXZ=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AYY=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AYZ=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AZZ=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AX=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AY=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AZ=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
A0=(+0.000000000000000E+00, 0) (DEFAULT=0.0)

0000000000000000000000000000000000000000000000000000000000000000
BODY ( ) TEXT
MATERIAL( )
SURFACE ( ), SIDE POINTER=( 1)
BODY ( )
0000000000000000000000000000000000000000000000000000000000000000
MODULE ( ) TEXT
MATERIAL( )
SURFACE ( ), SIDE POINTER=( 1)
BODY ( )
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MODULE ( )
1111111111111111111111111111111111111111111111111111111111111111
OMEGA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)
THETA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)

PHI=(+0.000000000000000E+00, 0) RAD (DEFAULT=0.0)
X-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Y-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Z-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000
INCLUDE
FILE= (filename.ext)
0000000000000000000000000000000000000000000000000000000000000000

Then, to generate a new element, we just duplicate the corresponding data set, modify
the parameter values and eliminate the lines that are unnecessary (i.e. those of param-
eters that take their default values). Of course, the defining data set must be placed
before the end-line. The progressing geometry can be visualized with gview2d as
soon as the first complete body has been defined. If gview2d stops before entering
the graphics mode, the geometry definition is incorrect and we should have a look at
the GEOMETRY.REP file to identify the problem. Normally, the conflicting parameter or
element appears in the last line of this file.

The basic elements of the geometry definition are quadric surfaces. These can be
visualized by using the following simple file, which defines the inner volume of a reduced
quadric as a single body,

----------------------------------------------------------------
Visualization of reduced quadric surfaces.

Define the desired quadric (surface 1) by entering its indices.
The region with side pointer -1 (inside the quadric) corresponds
to MATERIAL=1.
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 1) Reduced quadric. One sheet hyperboloid.
INDICES=( 1, 1,-1, 0,-1)
0000000000000000000000000000000000000000000000000000000000000000
BODY ( 1) The interior of the quadric.
MATERIAL( 1)
SURFACE ( 1), SIDE POINTER=(-1)
0000000000000000000000000000000000000000000000000000000000000000
END 0000000000000000000000000000000000000000000000000000000

Notice that, in this case, the body is infinite in extent. There is no objection to using
infinite bodies, as long as the enclosure contains all material bodies. When only a single
body is defined, pengeom identifies it as the enclosure, and this requirement is met.
Otherwise, we must define a proper enclosure (since all bodies and modules must have
a common ancestor).

The following example describes a sphere with an inner arrow (fig. 5.2):

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Sphere of 5 cm radius with an arrow.

0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 1) PLANE Z=4.25
INDICES=( 0, 0, 0, 1,-1)
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Z-SCALE=( 4.250000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 2) PLANE Z=1.5
INDICES=( 0, 0, 0, 1,-1)
Z-SCALE=( 1.500000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 3) PLANE Z=-4.0
INDICES=( 0, 0, 0, 1, 1)
Z-SCALE=( 4.000000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 4) CONE
INDICES=( 1, 1,-1, 0, 0)
X-SCALE=( 5.000000000000000E-01, 0)
Y-SCALE=( 5.000000000000000E-01, 0)
Z-SHIFT=( 4.250000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 5) CYLINDER
INDICES=( 1, 1, 0, 0,-1)
X-SCALE=( 7.250000000000000E-01, 0)
Y-SCALE=( 7.250000000000000E-01, 0)
0000000000000000000000000000000000000000000000000000000000000000
BODY ( 1) ARROW HEAD
MATERIAL( 2)
SURFACE ( 1), SIDE POINTER=(-1)
SURFACE ( 2), SIDE POINTER=( 1)
SURFACE ( 4), SIDE POINTER=(-1)
0000000000000000000000000000000000000000000000000000000000000000
BODY ( 2) ARROW STICK
MATERIAL( 2)
SURFACE ( 5), SIDE POINTER=(-1)
SURFACE ( 2), SIDE POINTER=(-1)
SURFACE ( 3), SIDE POINTER=( 1)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 6) SPHERE. R=5
INDICES=( 1, 1, 1, 0,-1)
X-SCALE=( 5.000000000000000E+00, 0)
Y-SCALE=( 5.000000000000000E+00, 0)
Z-SCALE=( 5.000000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
MODULE ( 3) SPHERE WITH INNER ARROW
MATERIAL( 1)
SURFACE ( 6), SIDE POINTER=(-1)
BODY ( 1)
BODY ( 2)
1111111111111111111111111111111111111111111111111111111111111111
OMEGA=( 0.000000000000000E+00, 0) DEG
THETA=(-90.00000000000000E+00, 0) DEG

PHI=( 90.00000000000000E+00, 0) DEG
0000000000000000000000000000000000000000000000000000000000000000
END 0000000000000000000000000000000000000000000000000000000

We have defined the entire system as a single module, so that you may rotate and/or
displace it arbitrarily. Notice that the initial arrow points in the positive direction of
the z-axis. It is instructive to try various rotations and use gview2d or gview3d (with
a sector excluded to make the inner arrow visible) for visualizing the rotated system.
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Writing a geometry file is nothing more than routine work. After a little practice,
you can define quite complex systems by using only surfaces and bodies. You will soon
realize that the visualization programs (as well as the actual simulations!) slow down
when the number of elements in the geometry increases. The only way of speeding up
the programs is to group the bodies into modules. The best strategy for improving the
calculation speed is to build relatively simple modules and combine them into larger
parent modules to obtain a genealogical tree where the number of daughters of each
module is not too large (say 4 or 5).

You may save a lot of time by defining each body separately (and checking it care-
fully) and then inserting it into the progressing module that, once finished, will be
added to the file. Notice that the input element labels are arbitrary (as long as they
are not repeated for elements of the same kind) and that we can insert new elements
anywhere in the file. Once the geometry definition is complete, we can generate an
equivalent file, with elements labelled according to their input order, by simply editing
the GEOMETRY.REP file.

The previous examples of geometry files (QUADRIC and ARROW) together with several
other files of more complex geometries are included in the distribution package. They
can be directly visualized by running gview2d and gview3d. The file GLASS (a glass
of champagne) shows that common objects can be described quite precisely with only
quadric surfaces; in this case, we do not use modules, which are useful only to accelerate
the calculations. WELL defines a scintillation well detector with much detail; we have set
an enclosure for the system, so that you can rotate the entire detector by editing the
definition file. Notice that, when the detector is tilted, it is very difficult to get an idea
of its geometry from the images generated by gview2d. SATURNE describes the head of
an electron accelerator, quite a complicated geometry with 96 surfaces and 44 bodies.
The structure MALE, which corresponds to a mathematical anthropomorphic phantom,
consists of 174 surfaces and 108 bodies, grouped into 11 modules.

We cannot finish without a word of caution about the use of pengeom, and other
general-purpose geometry packages. For simple geometries, they tend to waste a lot of
time. It is always advisable to consider the possibility of handling geometric aspects
directly; this may enable substantial reduction of the number of operations by taking
full advantage of the peculiarities of the material system.
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Chapter 6

Structure and operation of the code
system

In this chapter we describe the structure of the penelope code system and its opera-
tion. The kernel of the system is the fortran77 subroutine package penelope, which
performs “analogue” simulation of electron-photon showers (i.e. the simulated showers
are intended to be replicas of actual showers) in infinite (unbounded) media of various
compositions. Photon histories are generated by using the detailed simulation method
(see section 1.4), i.e. all interaction events are simulated in chronological succession.
The generation of electron and positron tracks is performed by using the mixed pro-
cedure described in chapter 4. Secondary particles emitted with initial energy larger
than the absorption energy –see below– are stored, and simulated after completion of
each primary track. Secondary particles are produced in direct interactions (hard inelas-
tic collisions, hard bremsstrahlung emission, positron annihilation, Compton scattering,
photoelectric absorption and pair production) and as fluorescent radiation (characteris-
tic x rays and Auger electrons). penelope simulates fluorescent radiation that results
from vacancies produced in K shells and L subshells by photoelectric absorption and
Compton scattering of photons and by electron/positron impact. The relaxation of
these vacancies is followed until the K and L shells are filled up, i.e. until the vacancies
have migrated to M and outer shells.

Being a subroutine package, penelope cannot operate by itself. The user must
provide a steering MAIN program for her/his particular problem. Nevertheless, this
MAIN program is normally fairly simple, since it only has to control the evolution of
the tracks simulated by penelope and keep score of relevant quantities. penelope is
devised to do the largest part of the simulation work. It allows the user to write her
or his own simulation program, with arbitrary geometry and scoring, without previous
knowledge of the intricate theoretical aspects of scattering and transport theories. In
the case of material systems with quadric geometries, the geometrical operations can be
done automatically by using the package pengeom (see chapter 5). The distribution
package also includes various examples of MAIN programs for simple geometries (slab
and cylindrical) and for general quadric geometries with limited scoring. Although



178 Chapter 6. Structure and operation of the code system

they are mostly intended to illustrate the use of the simulation routines, they do allow
studying many cases of practical interest. The complete program system is written in
fortran77 (ANSI/ISO standard form) and, therefore, it should run on any platform
with a fortran77 or fortran90 compiler.

6.1 penelope

penelope simulates coupled electron-photon transport in arbitrary material systems
consisting of a number of homogeneous regions (bodies) limited by sharp (and passive)
interfaces. Initially, it was devised to simulate the PENetration and Energy LOss of
Positrons and Electrons in matter; photons were introduced later. The adopted in-
teraction models (chapters 2-4), and the associated databases, allow the simulation of
electron/positron and photon transport in the energy range from 100 eV to 1 GeV.

It should be borne in mind that our approximate interaction models become less
accurate when the energy of the transported radiation decreases. Actually, for ener-
gies below ∼1 keV, the DCSs are not well known, mostly because they are strongly
affected by the state of aggregation. On the other hand, for electrons and positrons,
the trajectory picture ceases to be applicable (because coherent scattering from multiple
centers becomes appreciable) when the de Broglie wavelength, λB = (150 eV/E)1/2 Å,
is similar to or greater than the interatomic spacing (∼ 1 Å). Therefore, results from
simulations with penelope (or with any other Monte Carlo trajectory code) for ener-
gies below 1 keV or so, should be considered to have only a qualitative (or, at most,
semi-quantitative) value. We recall also that, for elements with intermediate and high
atomic numbers, secondary characteristic photons with energies less than the M-shell
absorption edge are not simulated by penelope. This sets a lower limit to the energy
range for which the simulation is faithful.

The source file PENELOPE.F (about 8000 lines of fortran code) consists of four
blocks of subprograms, namely, preparatory calculations and I/O routines, interaction
simulation procedures, numerical routines and transport routines. Only the latter are
invoked from the MAIN program. The interaction simulation routines implement the
theory and algorithms described in chapters 2 and 3. Although the interaction routines
are not called from the MAIN program, there are good reasons to have them properly
identified. Firstly, these are the code pieces to be modified to incorporate better physics
(when available) and, secondly, some of these subroutines deliver numerical values of
the DCSs (which can be useful to apply certain variance reduction techniques). To have
these routines organized, we have named them according to the following convention:
• The first letter indicates the particle (E for electrons, P for positrons, G for photons).
• The second and third letters denote the interaction mechanism (EL for elastic, IN for
inelastic, BR for bremsstrahlung, AN for annihilation, RA for Rayleigh, CO for Compton,
PH for photoelectric and PP for pair production).
• The random sampling routines have three-letter names. Auxiliary routines, which
perform specific calculations, have longer names, with the fourth and subsequent letters
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and/or numbers indicating the kind of calculation (TX for total x-section, DX for differ-
ential x-section) or action (W for write data on a file, R for read data from a file, I for
initialization of simulation algorithm).
Thus, for instance, subroutine EEL simulates elastic collisions of electrons while subrou-
tine EINTX computes total (integrated) cross sections for inelastic scattering of electrons.

6.1.1 Database and input material data file

Penelope reads the required physical information about each material (which includes
tables of physical properties, interaction cross sections, relaxation data, etc.) from the
input material data file (identified as UNIT=IRD in the code source listing). The mate-
rial data file is created by means of the auxiliary program material, which extracts
atomic interaction data from the database. This program runs interactively and is self-
explanatory. Basic information about the considered material is supplied by the user
from the keyboard, in response to prompts from the program. The required information
is: 1) chemical composition (i.e. elements present and stoichiometric index of each ele-
ment), 2) mass density, 3) mean excitation energy and 4) energy and oscillator strength
of plasmon excitations. Alternatively, for a set of 279 prepared materials, the program
material can read data directly from the PDCOMPOS.TAB file (see below).

For compounds and mixtures, the additivity approximation is adopted to define the
material’s cross sections, i.e. the corresponding “molecular” cross section is set equal to
the sum of atomic cross sections weighted with the stoichiometric index of the element.
Alloys and mixtures are treated as compounds, with stoichiometric indices equal, or
proportional, to the percent number of atoms of the elements.

The penelope database consists of the following 465 ASCII files,

PDATCONF.TAB . . . Atomic ground-state configurations, ionization energies (Lederer
and Shirley, 1978) and central values, Ji(pz = 0), of the one-electron shell Compton
profiles (Biggs et al., 1975) for the elements, from hydrogen to uranium.

PDCOMPOS.TAB . . . This file contains composition data, densities and mean excita-
tion energies for 279 materials, adapted from the database of the estar program
of Berger (1992). The first 98 entries are the elements Z = 1 − 98, ordered by
atomic number Z. Materials 99 to 279 are compounds and mixtures, in alphabeti-
cal order. Notice that penelope does not work for elements with atomic number
Z > 92.

PDEFLIST.TAB . . . List of materials predefined in file PDCOMPOS.TAB, with their iden-
tification numbers.

PDRELAX.TAB . . . Data on atomic relaxation, extracted from the LLNL Evaluated
Atomic Data Library (Perkins et al., 1991). Each line in the file PDRELAX.TAB

describes an atomic transition. The quantities listed are the atomic number of
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the element, the numerical labels of the active electron shells (see table 6.1), the
transition probability and the energy of the emitted x-ray or electron, respectively.

Table 6.1: Numerical labels used to designate atomic electron shells. In the case of non-

radiative transitions, the label 99 indicates shells beyond the M5 shell.

label shell label shell label shell

1 K (1s1/2) 11 N2 (4p1/2) 21 O5 (5d5/2)

2 L1 (2s1/2) 12 N3 (4p3/2) 22 O6 (5f5/2)

3 L2 (2p1/2) 13 N4 (4d3/2) 23 O7 (5f7/2)

4 L3 (2p3/2) 14 N5 (4d5/2) 24 P1 (6s1/2)

5 M1 (3s1/2) 15 N6 (4f5/2) 25 P2 (6p1/2)

6 M2 (3p1/2) 16 N7 (4f7/2) 26 P3 (6p3/2)

7 M3 (3p3/2) 17 O1 (5s1/2) 27 P4 (6d3/2)

8 M4 (3d3/2) 18 O2 (5p1/2) 28 P5 (6d5/2)

9 M5 (3d5/2) 19 O3 (5p3/2) 29 Q1 (7s1/2)

10 N1 (4s1/2) 20 O4 (5d3/2) 99 outer shells

92 files named PDEELZZ.TAB with ZZ=atomic number (01–92). These files contain
integrated cross sections for elastic scattering of electrons and positrons by neutral
atoms, calculated by using the partial-wave methods described in section 3.1 (Sal-
vat, 2000). The first line in each file gives the atomic number ZZ; each subsequent
line has 7 columns with the following data:
1st column: kinetic energy (eV), in increasing order.
2nd column: total cross section for electrons.
3rd column: first transport cross section for electrons.
4th column: second transport cross section for electrons.
5th column: total cross section for positrons.
6th column: first transport cross section for positrons.
7th column: second transport cross section for positrons.
The grid of energies is approximately logarithmic, with 15 points per decade, and
is the same for all elements. All cross sections are in cm2.

92 files named PDEBRZZ.TAB with ZZ=atomic number (01–92). They contain the
atomic bremsstrahlung scaled cross sections (energy loss spectra) and total inte-
grated radiative cross sections of electrons, for a grid of electron kinetic energies E
and reduced photon energies W/E that is dense enough to allow the use of cubic
spline log-log interpolation in E and linear interpolation in W/E. The data in
these files is from a database, with 32 reduced photon energies, which was pro-
vided to the authors by Steve Seltzer (a brief description of the methods used to
compute the database and a reduced tabulation is given in Seltzer and Berger,
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1986). The format of the bremsstrahlung database files is the following,
1) The first line contains the atomic number ZZ.
2) Each four-lines block contains the electron kinetic energy E, the scaled energy-
loss differential cross section at the 32 fixed reduced photon energies and the value
of the integrated radiative cross section.
Energies are in eV and the values of the scaled energy-loss cross section are in
millibarn (10−27 cm2).

PDBRANG.TAB . . . Gives the parameters of the analytical shape function (angular
distribution) of bremsstrahlung photons, which is expressed as a statistical mix-
ture of two Lorentz-boosted dipole distributions, eq. (3.151). The distribution
parameters were obtained by fitting the benchmark partial-wave shapes tabulated
by Kissel et al. (1983).

92 files named PDGPPZZ.TAB with ZZ=atomic number (01–92). Total cross sections
for electron-positron pair production by photons with energies up to 100 GeV
in the field of neutral atoms. The data were generated by means of the xcom

program of Berger and Hubbell (1987). The first line of each file gives the atomic
number ZZ; each subsequent line gives,
1st column: photon energy, in eV. The same energy grid for all elements.
2nd column: total cross section for pair+triplet production in barn (10−24 cm2).

92 files named PDGPHZZ.TAB with ZZ=atomic number (01–92), containing photo-
electric total atomic cross sections and partial cross sections for photoionization of
inner shells (K shell and L subshells) for the elements and photon energies in the
range from 100 eV to 1 TeV. The data were extracted from the LLNL Evaluated
Photon Data Library EPDL97 (Cullen et al., 1997). The format is the following,
1) the first line contains the atomic number ZZ and the number NS of shells for
which the partial cross section is tabulated.
2) each of the following lines contains a value of the photon energy (in eV) and the
corresponding total cross section and partial cross sections of the shells K, L1, L2
and L3, respectively (all cross sections in barn). For low-Z elements, L-subshells
are empty and, therefore, they do not appear in the table.
The grid of energies for each element was obtained by merging a generic grid (the
same for all elements, covering the energy range from 100 eV to 100 GeV) with
the grid of absorption edges of the element, and adding additional points (where
needed) to ensure that linear log-log interpolation will never introduce relative
errors larger than 0.02.

92 files named PDEINZZ.TABwith ZZ=atomic number (01–92), containing total (in-
tegrated) cross sections for ionization of inner shells (K shell and L subshells) by
impact of electrons and positrons with kinetic energies in the range from 100 eV
to 1 GeV. These cross sections were evaluated by means of the optical-data model
described in section 3.2.6 using photoelectric cross sections read from the files
PDGPHZZ.TAB. The format is the following,
1) the first line contains the atomic number ZZ.
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2) each of the following lines consists of nine columns, with the kinetic energy of
the projectile (in eV) in the first one. Columns 2-5 contain the ionization cross
sections of the shells K, L1, L2 and L3 for electron impact and columns 6-9 have
the corresponding cross sections for ionization by impact of positrons (all cross sec-
tions in barn). Cross sections for K and L shells of light elements with ionization
energies less than 100 eV are set to zero.

Atomic cross sections for coherent and incoherent scattering of photons, inelastic
scattering of electrons and positrons, and positron annihilation are evaluated directly
from the analytical DCSs described in chapters 2 and 3 .

In the material definition file generated by the program material, mean free paths,
transport mean free paths and stopping powers of electrons and positrons are given in
mass-thickness units (1 mtu ≡ 1 g/cm2) and eV/mtu, respectively. Photon mass atten-
uation coefficients are expressed in cm2/g. These quantities are practically independent
of the material density; the only exception is the collision stopping power for electrons
and positrons with kinetic energies larger than about 0.5 MeV, for which the density
effect correction may be appreciable.

The energy-dependent quantities tabulated in the input material data file determine
the most relevant characteristics of the scattering model. Thus, the MW differential
cross section for electron and positron elastic scattering is completely defined by the
mean free paths and transport mean free paths. Collision and radiative stopping powers
read from the input file are used to renormalize the built-in analytical differential cross
sections, i.e. these are multiplied by an energy-dependent factor such that the input
stopping powers are exactly reproduced. The mean free paths used in the simulation
of photon transport are directly obtained from the input total cross sections. Natural
cubic spline log-log interpolation is used to interpolate the tabulated energy-dependent
quantities, except for the photoelectric attenuation coefficient, which is obtained by
simple linear log-log interpolation in the intervals between consecutive absorption edges.

To simulate geometrical structures with several materials, the corresponding material
data files generated by the program material must be catenated in a single input file.
penelope labels the M-th material in this file with the index MAT=M, which is used
during the simulation to identify the material where the particle moves. The maximum
number of different materials that penelope can handle simultaneously is fixed by the
parameter MAXMAT, which in the present version is set equal to 10. The required memory
storage is roughly proportional to the value of this parameter. The user can increase
MAXMAT by editing the program source files. Notice that the value of MAXMAT must be
the same in all subprograms.

6.1.2 Structure of the MAIN program

As mentioned above, penelope must be complemented with a steering MAIN program,
which controls the geometry and the evolution of tracks, keeps score of the relevant
quantities and performs the required averages at the end of the simulation.
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The connection of penelope and the MAIN program is done via the named common
block

→ COMMON/TRACK/E,X,Y,Z,U,V,W,WGHT,KPAR,IBODY,MAT,ILB(5)

that contains the following particle state variables:

KPAR . . . kind of particle (1: electron, 2: photon, 3: positron).

E . . . current particle energy (eV) (kinetic energy for electrons and positrons).

X, Y, Z . . . position coordinates (cm).

U, V, W . . . direction cosines of the direction of movement.

WGHT . . . in analogue simulations, this is a dummy variable. When using variance
reduction methods, the particle weight can be stored here.

IBODY . . . this auxiliary flag serves to identify different bodies in complex material
structures.

MAT . . . material where the particle moves (i.e. the one in the body labelled IBODY).

ILB(5) . . . an auxiliary array of 5 labels that describe the origin of secondary par-
ticles (see below). It is useful e.g. to study partial contributions from particles
originated by a given process.

The position coordinates r =(X,Y,Z) and the direction cosines d̂ =(U,V,W) of the direc-
tion of movement are referred to a fixed rectangular coordinate system, the “laboratory”
system, which can be arbitrarily defined. During the simulation, all energies and lengths
are expressed in eV and cm, respectively.

The label KPAR identifies the kind of particle: KPAR=1, electron; KPAR=2, photon;
KPAR=3, positron. A particle that moves in material M is assumed to be absorbed when its
energy becomes less than a value EABS(KPAR,M) (in eV) specified by the user. Positrons
are assumed to annihilate, by emission of two photons, when absorbed. In dose cal-
culations, EABS(KPAR,M) should be determined so that the residual range of particles
with this energy is smaller than the dimensions of the volume bins used to tally the spa-
tial dose distribution. As the interaction database is limited to energies above 100 eV,
absorption energies EABS(KPAR,M) must be larger than this value.

The transport algorithm for electrons and positrons in each material M is controlled
by the following simulation parameters,

C1(M) . . . Average angular deflection, C1 ' 1 − 〈cos θ〉 [eq. (4.11)], produced by
multiple elastic scattering along a path length equal to the mean free path between
consecutive hard elastic events [see eq. (4.1)]. C1(M) should be of the order of 0.05;
its maximum allowed value is 0.2.
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C2(M) . . . Maximum average fractional energy loss, C2 [eq. (4.85)], between consec-
utive hard elastic events. Usually, a value of the order of 0.05 is adequate. The
maximum allowed value of C2(M) is 0.2.

WCC(M) . . . Cutoff energy loss, Wcc (in eV), for hard inelastic collisions in the Mth
material.

WCR(M) . . . Cutoff energy loss, Wcr (in eV), for hard bremsstrahlung emission in
material M.

These parameters determine the accuracy and speed of the simulation. To ensure ac-
curacy, C1(M) and C2(M) should have small values (of the order of 0.01 or so). With
larger values of C1(M) and C2(M) the simulation gets faster, at the expense of a certain
loss in accuracy. The cutoff energies WCC(M) and WCR(M) mainly influence the simulated
energy distributions. The simulation speeds up by using larger cutoff energies, but if
these are too large, the simulated energy distributions may be somewhat distorted. In
practice, simulated energy distributions are found to be insensitive to the adopted values
of WCC(M) and WCR(M) when these are less than the bin width used to tally the energy
distributions. Thus, the desired energy resolution determines the maximum allowed
cutoff energies. The reliability of the whole simulation rests on a single condition: the
number of steps (or random hinges) per primary track must be “statistically sufficient”,
i.e. larger than 10 or so.

The simulation package is initialized from the MAIN program with the statement

→ CALL PEINIT(EPMAX,NMAT,IRD,IWR,INFO)

Subroutine PEINIT reads the data files of the different materials, evaluates relevant
scattering properties and prepares look-up tables of energy-dependent quantities that
are used during the simulation. Its input arguments are:

EPMAX . . . Maximum energy (in eV) of the simulated particles. Notice that if the
primary particles are positrons with initial kinetic energy EP, the maximum energy
of annihilation photons may be close to (but less than) EPMAX = 1.21(EP + mec

2);
in this special case, the maximum energy is larger than the initial kinetic energy.

NMAT . . . Number of different materials (less than or equal to MAXMAT).

IRD . . . Input unit.

IWR . . . Output unit.

INFO . . . Determines the amount of information that is written on the output unit.
Minimal for INFO=0 and increasingly detailed for INFO=1, 2, etc.

For the preliminary computations, PEINIT needs to know the absorption energies
EABS(KPAR,M) and the simulation parameters C1(M), C2(M), WCC(M) and WCR(M). This
information is introduced through the named common block

→ COMMON/CSIMPA/EABS(3,MAXMAT),C1(MAXMAT),C2(MAXMAT),WCC(MAXMAT),

1 WCR(MAXMAT)
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that has to be loaded before invoking subroutine PEINIT. Notice that we can employ
different values of the simulation parameters for different materials. This possibility can
be used to speed up the simulation in regions of lesser interest.

penelope has been structured in such a way that a particle track is generated as
a sequence of track segments (free flights or “jumps”); at the end of each segment,
the particle suffers an interaction with the medium (a “knock”) where it loses energy,
changes its direction of movement and, in certain cases, produces secondary particles.
Electron-photon showers are simulated by successively calling the following subroutines:

SUBROUTINE CLEANS . . . Initiates the secondary stack.

SUBROUTINE START . . . For electrons and positrons, this subroutine forces the follow-
ing interaction event to be a soft artificial one. It must be called before starting a
new –primary or secondary– track and also when a track crosses an interface.
Calling START is strictly necessary only for electrons and positrons; for photons
this subroutine has no physical effect. However, it is advisable to call START for
any kind of particle since it checks whether the energy is within the expected
range, and can thus help to detect “bugs” in the MAIN program.

SUBROUTINE JUMP(DSMAX,DS) . . . Determines the length DS of the track segment to
the following interaction event.
The input parameter DSMAX defines the maximum allowed step length for elec-
trons/positrons; for photons, it has no effect. As mentioned above, to limit the
step length, penelope places delta interactions along the particle track. These
are fictitious interactions that do not alter the physical state of the particle. Their
only effect is to interrupt the sequence of simulation operations (which requires
altering the values of inner control variables to permit resuming the simulation in
a consistent way). The combined effect of the soft interactions that occur along
the step preceding the delta interaction is simulated by the usual random hinge
method.
As mentioned above, to ensure the reliability of the mixed simulation algorithm,
the number of artificial soft events per particle track in each body should be larger
than, say, 10. For relatively thick bodies (say, thicker than 10 times the mean free
path between hard interactions), this condition is automatically satisfied. In this
case we can switch off the step-length control by setting DSMAX=1.0D35 (or any
other very large value). On the other hand, when the particle moves in a thin
body, DSMAX should be given a value of the order of one tenth of the “thickness” of
that body. Limiting the step length is also necessary to simulate particle transport
in external electromagnetic fields.

SUBROUTINE KNOCK(DE,ICOL) . . . Simulates an interaction event, computes new en-
ergy and direction of movement, and stores the initial states of the generated
secondary particles, if any. On output, the arguments are:
DE . . . deposited energy in the course of the event,
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ICOL . . . kind of event that has been simulated, according to the following con-
vention,
• Electrons (KPAR=1)

ICOL=1, artificial soft event (random hinge).
=2, hard elastic collision.
=3, hard inelastic collision.
=4, hard bremsstrahlung emission.
=5, inner-shell ionization by electron impact.

• Photons (KPAR=2)
ICOL=1, coherent (Rayleigh) scattering.

=2, incoherent (Compton) scattering.
=3, photoelectric absorption.
=4, electron-positron pair production.

• Positrons (KPAR=3)
ICOL=1, artificial soft event (random hinge).

=2, hard elastic collision.
=3, hard inelastic collision.
=4, hard bremsstrahlung emission.
=5, inner-shell ionization by positron impact.
=6, annihilation.

For electrons and positrons ICOL=7 corresponds to delta interactions. The value
ICOL=8 is used for the “auxiliary” interactions (an additional mechanism that may
be defined by the user, e.g. to simulate photonuclear interactions, see the source
file PENELOPE.F).

SUBROUTINE SECPAR(LEFT) . . . Sets the initial state of a secondary particle and re-
moves it from the secondary stack. The output value LEFT is the number of
secondary particles that remained in the stack at the calling time.

SUBROUTINE STORES(E,X,Y,Z,U,V,W,WGHT,KPAR,ILB) . . . Stores a particle in the
secondary stack. Arguments have the same meaning as in COMMON/TRACK/, but
refer to the particle that is being stored. The variables IBODY and MAT are set
equal to the current values in COMMON/TRACK/.
Calling STORES from the MAIN program is useful e.g. to store particles produced
by splitting, a variance reduction method (see section 1.6.2).

The sequence of calls to generate a random track is independent of the kind of
particle that is being simulated. The generation of random showers proceeds as follows
(see fig. 6.1):

(i) Set the initial state of the primary particle, i.e. assign values to the state variables
KPAR, E, position coordinates r =(X,Y,Z) and direction of movement d̂ =(U,V,W).
Specify the body and material where the particle moves by defining the values of
IBODY and MAT, respectively. Optionally, set the values of WGHT and ILB(1:5).

(ii) CALL CLEANS to initialize the secondary stack.
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Figure 6.1: Flow diagram of the MAIN program for simulating electron-photon showers with

penelope.
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(iii) CALL START to initiate the simulation of the track.

(iv) CALL JUMP(DSMAX,DS) to determine the length DS of the next track segment (for
electrons and positrons, DS will never exceed the input value DSMAX).

(v) Compute the position of the following event:

• If the track has crossed an interface, stop the particle at the position where
the track intersects the interface, and shorten the step length DS accordingly.
Change to the new material (the one behind the interface) by redefining the
variables IBODY and MAT.
When the particle escapes from the system, the simulation of the track has
been finished; increment counters and go to step (vii).
Go to step (iii).

(vi) CALL KNOCK(DE,ICOL) to simulate the following event.

• If the energy is less than EABS(KPAR,MAT), end the track, increment counters
and go to step (vii).

• Go to step (iv).

(vii) CALL SECPAR(LEFT) to start the track of a particle in the secondary stack (this
particle is then automatically removed from the stack).

• If LEFT>0, go to step (iii). The initial state of a secondary particle has already
been set.

• If LEFT=0, the simulation of the shower produced by the primary particle has
been completed. Go to step (i) to generate a new primary particle (or leave
the simulation loop after simulating a sufficiently large number of showers).

Notice that subroutines JUMP and KNOCK keep the position coordinates unaltered;
the positions of successive events have to be followed by the MAIN program (simply
by performing a displacement of length DS along the direction of movement after each
call to JUMP). The energy of the particle is automatically reduced by subroutine KNOCK,
after generating the energy loss from the relevant probability distribution. KNOCK also
modifies the direction of movement according to the scattering angles of the simulated
event. Thus, at the output of KNOCK, the values of the energy E, the position r =(X,Y,Z)
and the direction of movement d̂ =(U,V,W) define the particle state immediately after
the interaction event.

In order to avoid problems related with possible overflows of the secondary stack,
when a secondary particle is produced its energy is temporarily assumed as locally de-
posited. Hence, the energy E of a secondary must be subtracted from the corresponding
dose counter when the secondary track is started. Occasional overflows of the secondary
stack are remedied by eliminating the less energetic secondary electron or photon in the
stack (positrons are not eliminated since they will eventually produce quite energetic
annihilation radiation). As the main effect of secondary particles is to spread out the
energy deposited by the primary one, the elimination of the less energetic secondary
electrons and photons should not invalidate local dose calculations.



6.1. penelope 189

It is the responsibility of the user to avoid calling subroutines JUMP and KNOCK with
energies outside the interval (EABS(KPAR,M),EMAX). This could cause improper interpo-
lation of the cross sections. The simulation is aborted (and an error message is printed
in unit 6) if the conditions EABS(KPAR)<E<EMAX are not satisfied when a primary or
secondary track is started (whenever subroutine START is called at the beginning of the
track).

Pseudo-random numbers uniformly distributed in the interval (0,1) are supplied by
function RAND(DUMMY) that implements a 32-bit generator due to L’Ecuyer (see table
1.1). The seeds of the generator (two integers) are transferred from the MAIN program
through the named common block RSEED (see below). The random number generator
can be changed by merely replacing that FUNCTION subprogram (the new one has to have
a single dummy argument). Some compilers incorporate an intrinsic random number
generator with the same name (but with different argument lists). To avoid conflict,
RAND should be declared as an external function in all subprograms that call it.

Notice that

(1) In the simulation routines, real and integer variables are declared as DOUBLE

PRECISION and INTEGER*4, respectively. To prevent type mismatches, it is pru-
dent to use the following IMPLICIT statement

→ IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)

in the MAIN program and other user program units.

(2) The MAIN program must include the following three common blocks:

→ COMMON/TRACK/E,X,Y,Z,U,V,W,WGHT,KPAR,IBODY,MAT,ILB(5)

→ COMMON/CSIMPA/EABS(3,MAXMAT),C1(MAXMAT),C2(MAXMAT),WCC(MAXMAT),

1 WCR(MAXMAT) ! Simulation parameters.
→ COMMON/RSEED/ISEED1,ISEED2 ! Random number generator seeds.

As mentioned above, ILB(5) is an array of labels that describe the origin of sec-
ondary particles. It is assumed that the user has set ILB(1) equal to 1 (one) when a
primary (source) particle history is initiated. Then, penelope assigns the following
labels to each particle in a shower;

ILB(1): generation of the particle. 1 for primary particles, 2 for their direct descen-
dants, etc.

ILB(2): kind KPAR of the parent particle, only if ILB(1)>1 (secondary particles).

ILB(3): interaction mechanism ICOL (see above) that originated the particle, only
when ILB(1)>1.

ILB(4): a non-zero value identifies particles emitted from atomic relaxation events
and describes the atomic transition where the particle was released. The numerical
value is = Z · 106 + IS1 · 104 + IS2 · 100 + IS3, where Z is the atomic number of
the parent atom and IS1, IS2 and IS3 are the labels of the active atomic electron
shells (see table 6.1).

ILB(5): this label can be defined by the user; it is transferred to all descendants of
the particle.
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The ILB label values are delivered by subroutine SECPAR, through common TRACK, and
remain unaltered during the simulation of the track.

Owing to the long execution time, the code will usually be run in batch mode. It is
advisable to limit the simulation time rather than the number of tracks to be simulated,
since the time required to follow each track is difficult to predict. To this end, one can
link a clock routine to the simulation code and stop the computation after exhausting
the allotted time; an example of a clock routine (which runs for two different compilers)
is included in the penelope distribution package.

6.1.3 Variance reduction

The subroutine package PENELOPE.F is intended to perform analogue simulation and,
therefore, does not include any variance reduction methods. The source file PENVARED.F
contains subroutines to perform splitting (VSPLIT), Russian roulette (VKILL) and inter-
action forcing (JUMPF, KNOCKF) in an automatic way. Splitting and Russian roulette
(see section 1.6.2) do not require changes in penelope; the necessary manipulations on
the numbers and weights WGHT of particles could be done directly in the main program.
Particles resulting from splitting are stored in the secondary stack by calling subroutine
STORES.

Interaction forcing (section 1.6.1) implies changing the mean free paths of the forced
interactions and, at the same time, redefining the weights of the generated secondary
particles. In principle, it is possible to apply interaction forcing from the MAIN pro-
gram by manipulating the interaction probabilities, that are made available through the
named common block CJUMP0. These manipulations are performed automatically by
calling the subroutines JUMPF and KNOCKF instead of JUMP and KNOCK.

Although these subroutines operate like “black boxes”, they should be invoked with
care. In general, it is advisable to prevent particle weights from reaching very large or
very small values. In the first case, a very “heavy” particle can completely hide the
information collected from many lighter particles. Conversely, it is not convenient to
spend time simulating particles with very small weights, which contribute insignificant
amounts to the scores. Notice also that repeated splitting and interaction forcing may
easily lead to saturation of the secondary stack (the default stack size is 1000 particles).
Hence, we usually apply interaction forcing only to primary particles.

6.2 Examples of MAIN programs

In general, the user must provide the MAIN program for each specific geometry. The
distribution package of penelope includes various examples of MAIN programs for simple
geometries (slab and cylindrical) and for general quadric geometries with limited scoring.
In these examples, we assume that a single kind of particles is emitted from the radiation
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source. The programs can be easily generalized to the case of multi-particle sources with
continuous (or discrete) energy spectra. For details on the operation of these codes, see
section 6.2.4 below and the heading comments in the corresponding source files.

6.2.1 Program PENSLAB

The program PENSLAB simulates electron/photon showers within a material slab (see
fig. 6.2). It illustrates the use of the simulation routines for the simplest geometry (as
geometry operations are very simple, this program is faster than the ones described
below). The slab is limited by the planes z = 0 and z = t, the thickness. The lateral
extension of the slab is assumed to be infinite, i.e. much larger than the maximum range
of the particles). Primary particles start with a given energy E0 from a point source
at a given “height” z0 (positive or negative) on the z-axis, and moving in directions
distributed uniformly in a spherical “sector” defined by its limiting polar angles, say θ1

and θ2, which is indicated by the hatched wedge in fig. 6.2. That is, to generate the
initial direction, the polar cosine W = cos θ is sampled uniformly in the interval from
cos θ1 to cos θ2 and the azimuthal angle φ is sampled uniformly in (0,2π). Thus, the case
θ1 = 0 and θ2 = 180 deg corresponds to an isotropic source, whereas θ1 = θ2 = 0 defines
a beam parallel to the z-axis. Notice that the complete arrangement has rotational
invariance about the z-axis.
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Figure 6.2: General planar geometry considered in PENSLAB.

PENSLAB generates detailed information on many quantities and distributions of phys-
ical interest. The output files contain a self-explanatory report of the simulation results,
which consist of:

(i) Fractions of primary particles that are transmitted, backscattered and absorbed
and a number of average quantities (track length within the sample; number of
events of each kind per particle; energy, direction and lateral displacement of
particles that leave the sample, etc.).

(ii) Energy distributions of transmitted and backscattered primary particles.
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(iii) Angular distributions of transmitted and backscattered particles.

(iv) Depth-dose distribution (i.e. deposited energy per unit depth).

(v) Depth-distribution of deposited charge.

(vi) Distribution of energy deposited into the slab.

Each simulated continuous distribution is printed on a separate file (as a histogram),
with a heading describing its content and in a format ready for visualization with a
plotting program. The code computes and delivers the statistical uncertainties (3σ) of
all evaluated quantities and distributions. Many authors quote these uncertainties as
one standard deviation, which means that the probability for the actual value to lie
outside the error bar is 0.317. We prefer to be more conservative and stay at the 3σ
level, for which the probability of “missing the real value” is only 0.003.

The program PENSLAB and its predecessors have been intensively used during the
last years to analyze the reliability of penelope. They have been applied to a variety
of experimental situations, covering a wide energy range. Benchmark comparisons with
experimental data have been published elsewhere (Baró et al., 1995; Sempau et al.,
1997).

WARNING: In the output files of PENSLAB (and also in those of the program PENCYL

described below), the terms “transmitted” and “backscattered” are used to denote par-
ticles that leave the material system moving upwards (W > 0) and downwards (W < 0),
respectively. Notice that this agrees with the usual meaning of these terms only when
primary particles impinge on the system coming from below (i.e. with W > 0).

6.2.2 Program PENCYL

The program PENCYL simulates electron and photon transport in multilayered cylindrical
structures. The material system consists of one or several layers of given thicknesses.
Each layer contains a number of concentric homogeneous rings of given compositions and
radii (and thickness equal to that of the layer). The layers are perpendicular to the z-axis
and the centre of the rings in each layer is specified by giving its x and y coordinates.
When all the centres are on the z-axis, the geometrical structure is symmetrical under
rotations about the z-axis (see fig. 6.3).

Primary particles of a given kind, KPARP, are emitted from the active volume of
the source, either with fixed energy SE0 or with a specified (histogram-like) energy
spectrum. The initial direction of the primary particles is sampled uniformly inside a
cone of (semi-) aperture SALPHA and with central axis in the direction (STHETA, SPHI).
Thus, SALPHA = 0 defines a monodirectional source and SALPHA = 180 deg corresponds
to an isotropic source.

The program can simulate two different types of sources:
a) An external point or extense (cylindrical) homogeneous source, defined separately
from the geometry of the material system, with its centre at the point (SX0, SY0, SZ0).
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Figure 6.3: An example of cylindrical geometry, a cavity (C) with walls, with a point off-axis

source. In this case, the material structure is symmetrical about the z-axis, but the radiation

flux and other three-dimensional quantities (e.g. dose and deposited charge distributions)

depend on the azimuthal angle φ.

The initial position of each primary particle is sampled uniformly within the volume of
the source. Notice that when SX0 = 0, SY0 = 0 and STHETA = 0 or 180 deg, the source
is axially symmetrical about the z-axis.
b) A set of internal sources spread over specified bodies, each one with uniform activity
concentration. The original position of the primary particle is sampled uniformly within
the active cylinder or ring, which is selected randomly with probability proportional to
the total activity in its volume.

In the distributed form of the program, we assume that both the source and the
material structure are symmetrical about the z-axis, because this eliminates the depen-
dence on the azimuthal angle φ. The program takes advantage of this symmetry to
tally 3D dose distributions. It is possible to consider geometries that are not axially
symmetrical, but then the program only delivers values averaged over φ. To obtain the
dependence of the angular distributions on the azimuthal angle, we need to increase the
value of the parameter NBPHM (the maximum number of bins for φ, which is set equal
to 1 in the distributed source file) and, in the input data file, set NBPH equal to NBPHM.

The source file PENCYL.F includes a (self-contained) set of geometry routines for
tracking particles through multilayered cylindrical structures. These routines can be
used for simulation even when the source is off-axis. Cylindrical geometries can be
viewed with the program gviewc (which is similar to gview2d and runs under Mi-
crosoft Windows). This program reads the geometry definition list from the input file
and displays a two-dimensional map of the materials intersected by the window plane.
It is useful for debugging the geometry definition.
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PENCYL delivers detailed information on the transport and energy deposition, which
includes energy and angular distributions of emerging particles, depth-dose distribution,
depth-distribution of deposited charge, distributions of deposited energy in selected
materials and 2D (depth-radius) dose and deposited charge distributions in selected
bodies (cylinders). PENCYL can be directly used to study radiation transport in a wide
variety of practical systems, e.g. planar ionization chambers, cylindrical scintillation
detectors, solid-state detectors and multilayered structures.

6.2.3 Program PENDOSES

This MAIN program provides a practical example of simulation with complex material
structures (quadric geometry only). It assumes a point source of primary particles at a
given position r0 =(X0, Y0, Z0) which emits particles in directions uniformly distributed
in a cone with (semi)aperture SALPHA and central axis in the direction (STHETA, SPHI)
[the same direction distribution assumed in the code PENCYL]. The geometry of the
material system is described by means of the package pengeom (chapter 5).

PENDOSES computes only the average energy deposited in each body per primary
particle. With minor modifications, it also provides the probability distribution of the
energy deposited in selected bodies or groups of bodies. It is a simple exercise to intro-
duce a spatial grid, and the corresponding counters, and tally spatial dose distributions.
Any future user of penelope should become familiar with the programming details of
PENDOSES before attempting her/his own application of penelope.

6.2.4 Running the PENCYL program

The programs PENSLAB, PENCYL and PENDOSES operate in a similar way. They all read
data from a corresponding input file and output the results in a number of files with
fixed names1. The input files also have similar structures and formats. For concreteness,
here we describe that of PENCYL, which is the most versatile of the example programs.

Each line in the input data file of PENCYL consists of a 6-character keyword (columns
1-6) followed either by numerical data (in free format) or by a character string, which
start at the 8th column. Keywords are explicitly used/verified by the program (which is
case sensitive!). Notice also that the order of the data lines is important. The keyword
“------” (6 blanks, which we have denoted by “-”) indicates comment lines, these can
be placed anywhere after the end of the geometry definition list. The program ignores
any text following the first blank after the last numerical datum, or after the character
string, in each line (thus, in the table given below, the comments in square brackets
are ignored by the program). Lines with certain keywords (e.g., “SPECTR”) can appear
an arbitrary number of times, limited only by the allocated amount of memory. The
program assigns default values to many input variables; lines that declare default values

1Warning: The programs overwrite older output files that are left in the working directory. You
should save all result files on a separate directory before running the program again.
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may be removed from the input file. Notice that the default source is a pencil beam
that moves upwards along the z-axis.

• Structure of the PENCYL input file (the 72-column rulers are just for visual aid, they
do not form part of the input file)

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

TITLE Title of the job, up to 65 characters.

GSTART >>>>>>>> Beginning of the geometry definition list.

LAYER ZLOW,ZHIG [Z_lower and Z_higher]

CENTRE XCEN,YCEN [X_centre and Y_centre]

CYLIND M,RIN,ROUT [Material, R_inner and R_outer]

GEND <<<<<<<< End of the geometry definition list.

>>>>>>>> Source definition.

SKPAR KPARP [Primary particles: 1=electron, 2=photon, 3=positron]

SENERG SE0 [Initial energy (monoenergetic sources only)]

SPECTR Ei,Pi [E bin: lower-end and total probability]

SEXTND KL,KC,RELAC [Extended source in KL,KC and rel. activity conc.]

STHICK STHICK [Source thickness]

SRADII SRIN,SROUT [Source inner and outer radii]

SPOSIT SX0,SY0,SZ0 [Coordinates of the source centre]

SDIREC STHETA,SPHI [Beam axis direction angles, in deg]

SAPERT SALPHA [Beam aperture, in deg]

>>>>>>>> Material data and simulation parameters.

NMAT NMAT [Number of different materials, .le.10]

SIMPAR M,EABS(1:3,M),C1,C2,WCC,WCR [Sim. parameters for material M]

PFNAME filename_0.ext [Material definition file, 18 characters]

>>>>>>>> Counter array dimensions and pdf ranges.

NBE NBE,EMIN,EMAX [No. of energy bins, and E-interval]

NBTH NBTH [No. of bins for the polar angle THETA]

NBPH NBPH [No. of bins for the azimuthal angle PHI]

NBZ NBZ [No. of bins for the Z-coordinate]

NBR NBR [No. of radial bins]

NBTL NBTL,TLMIN,TLMAX [No. of track-length bins and TL-interval]

>>>>>>>> Additional distributions to be tallied.

ABSEN MAT [Tally the distr. of absorbed E in material MAT]

DOSE2D KL,KC,NZ,NR [Tally 2D dose and charge distribs. in body KL,KC]

>>>>>>>> Interaction forcing.

IFORCE KL,KC,KPAR,ICOL,FORCE,WL,WH [Interaction forcing parameters]
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>>>>>>>> Job properties

RESUME filename1.ext [Resume from this dump file, 18 characters]

DUMPTO filename2.ext [Generate this dump file, 18 characters]

NSIMSH NTOT [Desired number of simulated showers, max=2**31-1]

RSEED ISEED1,ISEED2 [Seeds of the random number generator]

TIME ITIME [Allotted simulation time, in sec]

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

The following listing describes the function of each of the keywords, the accompanying
data and their default values.

TITLE ... title of the job (up to 65 characters).
-- Default: none (the input file must start with this line)

Geometry definition list . . . begins with the line “GSTART” and ends with the line
“GEND--” (notice the two blanks). The only allowed keywords in the geometry
list are “GSTART”, “LAYER-”, “CENTRE”, “CYLIND” and “GEND--”. The line after
“GSTART” must be a “LAYER-” line. Each “LAYER-” line contains the z-coordinates
of its lower and upper limiting planes and is followed by a “CENTRE” line (optional)
and by one or several “CYLIND” lines, which contain the inner and outer radii of
the various concentric rings in the layer; empty layers are disregarded.

Layers must be defined in increasing order of heights, from bottom to top of the
structure. If the “CENTRE” line is not entered, cylinders are assumed to be centered
on the z-axis (XCEN = YCEN = 0.0). Cylinders have to be defined in increasing
radial order, from the centre to the periphery. The two lengths in each “LAYER-”
and “CYLIND” line must be entered in increasing order. The geometry definition
list can be debugged/visualized with the code gviewc (operable under Microsoft
Windows). Notice that gviewc reads the geometry directly from the PENCYL input
data file (i.e. the first line in the geometry definition file must be the “TITLE-”
line).

SKPAR ... kind of primary particle (1=electrons, 2=photons or 3=positrons).
-- Default: KPARP=1

SENERG ... for monoenergetic sources: initial energy SE0 of primary particles.
-- Default: SE0=1.0E6

SPECTR ... For sources with continuous (stepwise constant) energy spectra. Each
“SPECTR” line gives the lower end-point of an energy bin of the source spectrum
and the associated relative probability, integrated over the bin. Up to NSEM = 200
lines, in arbitrary order. The upper end of the spectrum is defined by entering a
line with the upper energy value and null probability.
-- Default: none

SEXTND ... For internal extended sources, this line defines an active body KL, KC (the
cylinder KC in layer KL) and its relative activity concentration, RELAC.
-- Default: none
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Note: The labels KL, KC that identify each body are defined by the ordering in the
input geometry list. These labels are written on the output geometry report.

STHICK ... For an external source, thickness (height) of the active volume of the
source (cylinder or ring).
-- Default: STHICK=0.0

SRADII ... inner and outer radii of the active source volume.
-- Defaults: SRIN=0.0, SROUT=0.0

SPOSIT ... coordinates of the centre of the source volume.
-- Defaults: SX0=SY0=0, SZ0=-1.0E15

SDIREC ... polar angle θ and azimuthal angle φ of the source beam axis direction, in
deg.
-- Defaults: STHETA=0.0, SPHI=0.0

SAPERT ... angular aperture α of the source beam, in deg.
-- Default: SALPHA=0.0

NMAT ... number of different materials (up to 10 with the original program dimen-
sions). Materials are identified by their ordering in penelope’s input material
data file.
-- Default: NMAT=1

SIMPAR ... set of simulation parameters for the M-th material; absorption energies,
EABS(1:3,M), elastic scattering parameters, C1(M) and C2(M), and cutoff energy
losses for inelastic collisions and bremsstrahlung emission, WCC(M) and WCR(M).
One line for each material.
-- Defaults: EABS(1,M)=EABS(3,M)=0.01*EPMAX, EABS(2,M)=0.001*EPMAX

C1(M)=C2(M)=0.1, WCC=EABS(1,M), WCR=EABS(2,M)

EPMAX is the maximum energy of all particles found in the simulation (depends on
the source energies).

PFNAME ... name of penelope’s input material data file (18 characters).
-- Default: ’material.mat’

NBE ... number of energy bins and limits of the interval where energy distributions
are tallied.
-- Defaults: NBE=100, EMIN=0.0, EMAX=EPMAX

NBTH ... number of bins for the polar angle θ.
-- Default: NBTH=90

NBPH ... number of bins for the azimuthal angle φ.
-- Default: NBPH=1 (azimuthal average).

NBZ ... number of bins for the z-coordinate.
-- Default: NBZ=100

NBR ... number of bins for the radial variable, r = (x2 + y2)1/2.
-- Default: NBR=100
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NBTL ... number of bins for track-length distributions of primary particles. Limits
of the interval where these distributions are tallied.
-- Defaults: NBTL=100, TLMIN=0, TLMAX=2.5*RANGE(EPMAX,KPARP,1)

ABSEN ... indicates a material M for which we require the code to tally the distribution
of absorbed energy (up to three different materials can be selected, a separate line
for each).
-- Default: off

DOSE2D ... the program will tally 2D, depth-radius, dose and deposited charge dis-
tributions in the body KL, KC (i.e. the cylinder KC of layer KL). The numbers NZ
and NR of z- and r-bins have to be specified by the user, they must be between 1
and 100. Up to three different bodies can be selected, a DOSE2D line for each body.
-- Default: off
Note: The labels KL, KC that identify a given cylinder are defined by the order-
ing in the input geometry list. These labels are written on the output geometry
report.

IFORCE ... activates forcing of interactions of type ICOL of particles KPAR in cylinder
KC of layer KL. FORCE is the forcing factor and WLOW, WHIG are the limits of the
weight window where interaction forcing is active.
-- Default: no interaction forcing

RESUME ... the program will read the dump file named filename1.ext (18 charac-
ters) and resume the simulation from the point where it was left. Use this option
very, very carefully. Make sure that the input data file is fully consistent with the
one used to generate the dump file.
-- Default: off

DUMPTO ... generate a dump file named filename2.ext (18 characters) after complet-
ing the simulation run. This allows resuming the simulation to improve statistics.
-- Default: off

NSIMSH ... desired number of simulated showers. Notice that NTOT is an INTEGER*4

value and, hence, it cannot exceed 231 − 1.
-- Default: NTOT=2147 million

RSEED ... seeds of the random number generator.
-- Default: ISEED1=12345; ISEED2=54321

TIME ... allotted simulation time, in sec.
-- Default: ITIME=100

The program PENCYL (as well as the other example MAIN programs) is aborted when
an incorrect input datum is found. The conflicting quantity usually appears in the last
line of the output file. If the trouble is with arrays having dimensions smaller than
required, the program indicates how the problem can be solved (this usually requires
editing the source file, be careful).

The example of input file given below belongs to the PENCYL file set included in the
distribution package. It corresponds to the simulation of a narrow photon beam with
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E0 = 1.25 MeV (roughly the average energy of gamma rays from 60Co) entering a 3”×3”
NaI scintillation detector in an Al case, whose inner surface is partially covered by a layer
of Al2O3, which diffuses scintillation light back to the crystal and the photomultiplier.
In the material data file NAIAL.MAT, the order of the materials is NaI (MAT=1), Al2O3

(MAT=2) and Al (MAT=3). The incident beam photons move along the z-axis with θ = 0
deg (i.e. upwards) and impinge normally on the surface of the detector. The geometry
is shown schematically in the insets of fig. 6.4, which displays two of the distributions
generated by PENCYL. The plotted distributions were obtained from 5 million random
showers; the error bars represent statistical uncertainties (3σ), which are pretty small
in this case.

• Example input file of the PENCYL code.

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

TITLE Example from the distribution package...

GSTART NaI detector with Al cover and Al2O3 reflecting foil

LAYER -0.24 -0.16 1

CENTRE 0.00 0.00

CYLIND 3 0.00 4.05

LAYER -0.16 0.00 2

CYLIND 2 0.00 3.97

CYLIND 3 3.97 4.05

LAYER 0.00 7.72 3

CYLIND 1 0.00 3.81

CYLIND 2 3.81 3.97

CYLIND 3 3.97 4.05

LAYER 7.72 9.72 4

CYLIND 3 0.00 4.05

GEND

SKPAR 2 [Primary particles: 1=electron, 2=photon, 3=positron]

SENERG 1.25E6 [Initial energy (monoenergetic sources only)]

SPOSIT 0.0 0.0 -10.0 [Coordinates of the source centre]

NMAT 3 [Number of different materials, .le.10]

SIMPAR 1 1.0E5 1000 1.0E5 0.1 0.1 1.0E4 1000 [M,EABS,C1,C2,WCC,WCR]

SIMPAR 2 1.0E5 1000 1.0E5 0.1 0.1 1.0E4 1000 [M.EABS,C1,C2,WCC,WCR]

SIMPAR 3 1.0E5 1000 1.0E5 0.1 0.1 1.0E4 1000 [M,EABS,C1,C2,WCC,WCR]

PFNAME naial.mat [Material definition file, 18 characters]

ABSEN 1 [Tally the distr. of absorbed E in this material]

DOSE2D 3 1 50 50 [Tally 2D dose and charge distr. in this body]

RESUME lastdump.dat [Read from this dump file, 18 characters]

DUMPTO lastdump.dat [Generate this dump file, 18 characters]

NSIMSH 1000 [Desired number of simulated showers, max=2**31-1]

TIME 300 [Allotted simulation time, in sec]

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..
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The upper plot in fig. 6.4 shows the distribution of energy Ed deposited into the NaI
crystal volume (per primary photon). The lower figure displays the distribution (per
primary photon) of the energy Eb of “backscattered” photons, i.e. photons that emerge
from the system pointing “downwards”, with W = cos θ < 0. These distributions show
three conspicuous structures that arise from backscattering of incident photons in the
crystal volume or in the Al backing (B), escape of one of the ∼511 keV x-rays resulting
from positron annihilation (A) and escape of ∼30 keV iodine K x-rays (C). The peak A
is so small because pair production is a relatively unlikely process for 1.25 MeV photons
(the energy is too close to the threshold).

6.3 Selecting the simulation parameters

The speed and accuracy of the simulation of electrons and positrons is determined by
the values of the simulation parameters Eabs, C1, C2, Wcc, Wcr and smax, which are
selected by the user for each material in the simulated structure2. Here we summarize
the rules for assigning “safe” values to these parameters.

The absorption energies Eabs are determined either by the characteristics of the ex-
periment or by the required space resolution. If we want to tally dose or deposited-charge
distributions, Eabs should be such that the residual range R(Eabs) of electrons/positrons
is less than the typical dimensions of the volume bins used to tally these distributions3.
In other cases, it is advisable to run short simulations (for the considered body alone)
with increasing values of Eabs (starting from 100 eV) to study the effect of this parameter
on the results.

The allowed values of the elastic scattering parameters C1 and C2 are limited to
the interval (0,0.2). For the present version of penelope, these parameters have a
very weak influence on the results, weaker than for previous versions of the code. As
discussed in section 4.4.1, this is mostly due to the improved modelling of soft energy
losses and to the consideration of the energy dependence of the hard mean free paths
(see sections 4.2 and 4.3). Our recommended practice is to set C1 = C2 = 0.05, which is
fairly conservative, as shown by the example given below. Before increasing the value of
any of these parameters, it is advisable to perform short test simulations to verify that
with the augmented parameter value the results remain essentially unaltered (and that
the simulation runs faster; if there is no gain in speed, keep the conservative values).

We have already indicated that the cutoff energies Wcc and Wcr have a very weak
influence on the accuracy of the results provided only that they are both smaller than
the width of the bins used to tally energy distributions. When energy distributions are of
no interest, our recommendation is setting these cutoff energies equal to one hundredth
of the typical energy of primary particles.

2To specify simulation parameters for a single body we can simply assign a specific material to this
body, different from that of other bodies of the same composition.

3
penelope prints tables of electron and positron ranges if subroutine PEINIT is invoked with INFO=3

or larger.
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Figure 6.4: Partial results from PENCYL for the NaI photon detector described in the text.

Top: distribution of energy deposited in the NaI crystal (MAT=1). Bottom: energy distribution

of backscattered photons.



202 Chapter 6. Structure and operation of the code system

0.0E+0 5 .0E- 3 1 .0E- 2 1 .5 E- 2 2 .0E- 2

z   (cm)

0E+0

2 E+6

4 E+6

6 E+6

8 E+6

D
e
p

th
-d

o
se

  
(e

V
/c

m
 )

z

�
�

Alm i x e d  ( C
1
=C

2
=0.15)

d e t a i l e d  ( C
1
=C

2
=0)

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0

θ   (deg)

0. 000

0. 1 00

0. 2 00

0. 3 00

0. 4 00

0. 5 00

p
 
(θ

) 
  

(1
/s

r)

�

θ

�
�

Al

mixed (C
1
=C

2
=0.15)

det a il ed (C
1
=C

2
=0)

Figure 6.5: Results from PENSLAB for a 500 keV electron beam impinging normally on the

surface of a 200-µm-thick aluminium slab (further details are given in the text). Top: depth-

dose distribution within the slab. Bottom: angular distribution of emerging (transmitted and

backscattered) electrons (primary and secondary).
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Figure 6.6: Results from PENSLAB for a 500 keV electron beam impinging normally on the

surface of a 200-µm-thick aluminium slab (further details are given in the text). Top: energy

distribution of transmitted electrons. Bottom: energy distribution of backscattered electrons.

Secondary electrons are included in both cases.
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The maximum allowed step length smax (denoted by DSMAX in the fortran source
files) should be less than one tenth of the characteristic thickness of the body where the
particle moves. This ensures that, on average, there will be more than 20 soft events4

(hinges) along a typical electron/positron track within that body, which is enough to
“wash out” the details of the artificial distributions used to sample these events. Notice
however that penelope internally forces the step length to be less than ∼ 3λ

(h)
T (see

section 4.4). Therefore, for thick bodies (thicker than ∼ 20λ
(h)
T ), we can set smax = 1035,

or some other very large value, to switch off the external step-length control.

The MAIN program PENSLAB can be readily used to study the effect of the simulation
parameters for a material body of a given characteristic thickness. As an example, figs.
6.5 and 6.6 display partial results from a PENSLAB simulation for a parallel electron
beam of 500 keV impinging normally on the surface of a 200-µm-thick aluminium slab.
The absorption energies were set equal to 10 keV (for all kinds of particles) and Wcr

was given a negative value, which compels penelope to set Wcr = 10 eV and to
disregard emission of soft bremsstrahlung (with W < 10 eV). We ran PENSLAB using
Wcc = 0 and C1 = C2 = 0; in this case, penelope performs purely detailed, collision by
collision, simulation and, therefore, it provides exact results (affected only by statistical
uncertainties and by inaccuracies of the physical interaction model). Differences between
these results and those from mixed simulation are then completely attributable to the
approximations in our mixed transport algorithm. To our knowledge, no other high-
energy transport code allows detailed simulation and this kind of direct validation of
the electron/positron transport mechanics.

In figs. 6.5 and 6.6 we compare results from the detailed simulation (7.5 million
showers) with those from a mixed simulation using Wcc = 1 keV and C1 = C2 = 0.15
(20 million simulated showers); the error bars indicate statistical uncertainties (3σ).
With these relatively high values of C1 and C2, mixed simulation is quite fast, the speed
(generated showers per second) being about 45 times higher than that of the detailed
simulation. As shown in the plots, mixed simulation results are practically equivalent
to those from detailed simulation. It should be noted that backscattering, fig. 6.6b, is
one of the most difficult cases to study, because it involves transport near and across
an interface that is far from electronic equilibrium. The only visible artifact is a kind
of singularity in the energy distribution of backscattered electrons at ∼250 keV (which
averages to the correct value and, therefore, would not be seen in a coarser energy grid).
This artifact is also present in the energy distribution of transmitted electrons, but
hardly visible in the scale of fig. 6.6a.

6.4 The code shower

Monte Carlo simulation has proven to be a very valuable tool for education. In the past,
radiation physics used to be considered as a tough subject, mostly because high-energy

4
penelope randomizes smax in such a way that the actual step lengths never exceeds the value smax

set by the user and, on average, is equal to smax/2.
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radiation is well outside the realm of daily experience. Nowadays, by simply running
a transport simulation code on a personal computer we can learn more than from tens
of obscure empirical formulas and numerical tables, and eventually “understand” many
aspects of radiation transport (those for which we have run the simulation code and
“digested” the results).

The penelope distribution package includes a binary file named shower that gen-
erates electron-photon showers within a slab (of one of the 279 materials defined in
PDCOMPOS.TAB) and displays them (projected) on the computer screen plane. The cur-
rent version operates only under Microsoft Windows. The program is self-explanatory,
and requires only a small amount of information from the user, which is entered from
the keyboard, in response to prompts from the program. Electron, photon and positron
tracks are displayed in different colors and intensities that vary with the energy of the
particle. It is worth mentioning that the maximum number of showers that can be
plotted in a single shot is limited to 50, because the screen may become too messy.
Generating this small number of showers takes a short time, of the order of a few sec-
onds, even on modest personal computers (provided only that the absorption energies
are sensibly chosen).

Once on the graphical screen, the view plane can be rotated about the horizontal
screen axis by typing “r” and the rotation angle in degrees; the screen plane can also be
rotated progressively, by 15 deg steps, by pressing the “enter” key repeatedly. Entering
the single-character command “n” erases the screen and displays a new shower. Obser-
vation of single showers projected on a revolving plane gives a truly three-dimensional
perspective of the transport process.

6.5 Installation

The fortran77 source files of penelope, the examples and auxiliary programs and
the database are distributed as a single ZIP compressed file named PENELOPE.ZIP. To
extract the files, keeping the directory structure, create the directory PENELOPE in your
hard disk, copy the distribution file PENELOPE.ZIP into this directory and, from there,
inflate (unzip) it. The directory structure and contents of the penelope code system
are the following (see fig. 6.7):

• Subdirectory FSOURCE. It contains the following 6 files:

MANUAL.TXT ... abridged manual with general information.

PENELOPE.F ... simulation subroutine package.

PENGEOM.F ... modular quadric geometry subroutine package (handles systems
with up to 250 surfaces and 125 bodies).

PENVARED.F ... variance-reduction subroutines (splitting, Russian roulette and
interaction forcing).
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PENELOPE

EXAMPLES

PENDBASE

OTHER

GVIEW

SHOWER

EMFIELDS

PLOTTER

FSOURCE

Figure 6.7: Directory tree of the penelope code system.

MATERIAL.F ... main program to generate material data files.

TABLES.F ... main program to tabulate interaction data (mean free paths, ranges,
stopping powers, ...) of particles in a given material. It also determines in-
terpolated values.

• Subdirectory EXAMPLES. It contains the following 11 files:

PENSLAB.F ... main program for particle transport in a slab.

PENSLAB.IN ... sample input data file of PENSLAB.

AL.MAT ... Material data file for PENSLAB.

PENCYL.F ... main program for multilayered cylindrical geometries and axially
symmetric beams.

PENCYL.IN ... sample input data file of PENCYL. Describes the same geometry
as PENDOSES.GEO.

PENDOSES.F ... main program for arbitrary quadric geometries.

PENDOSES.IN ... sample input data file of PENDOSES.

PENDOSES.GEO ... geometry definition file for PENDOSES.

NAIAL.MAT ... material data file for PENCYL and PENDOSES. Illustrates the use of
multiple materials.

TIMER.F ... generic clock subroutine. It gives the execution time in seconds.
TIMER works with the Compaq Visual Fortran 6.5 compiler and with the g77
Fortran compiler of the Free Software Foundation.

The compact G77 for Win32 (Windows 9x/NT/2000/XP) package can be
downloaded from http://www.geocities.com/Athens/Olympus/5564.
g77 is the default fortran compiler in most Linux distributions.

NOTIMER.F ... fake clock subroutine. To be used with “unfamiliar” compilers
for which a proper timing routine is not known/available. It gives a constant
time (1 sec).
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To get the executable file of material, compile and link the files MATERIAL.F and
PENELOPE.F. This executable file must be placed and run in the same subdirectory
as the database files (PENDBASE).

The executable files of PENSLAB, PENCYL and PENDOSES are obtained by compiling
and linking the following groups of source files:
PENSLAB : PENSLAB.F, PENELOPE.F, TIMER.F

PENCYL : PENCYL.F, PENELOPE.F, PENVARED.F, TIMER.F

PENDOSES: PENDOSES.F, PENELOPE.F, PENGEOM.F, TIMER.F

The simulation programs are written in standard fortran77 language, so that
they should run on any computer. The only exception is the clock subroutine
TIMER.F, which must be adapted to your computer’s compiler.

• Subdirectory PENDBASE.penelope’s database. 465 files with the extension “.TAB”
and names beginning with the letters “PD” (for details, see section 6.1.1).

• Subdirectory OTHER. Consists of the following subdirectories,

GVIEW . . . Contains the geometry viewers gview2d, gview3d and gviewc, that
are operable under Microsoft Windows, and several examples of geometry
definition files.

EMFIELDS . . . Contains the subroutine package PENFIELD.F, which does simula-
tion of electron/positron transport under external static magnetic and electric
fields (see appendix C), and examples of programs that use it.

SHOWER . . . Contains a single binary file named SHOWER.EXE, which operates only
under Microsoft Windows. This code generates electron-photon showers
within a slab and displays them projected on the screen. To use the shower

viewer, just copy the file SHOWER.EXE into the directory PENDBASE and run
it from there. This little tool is particularly useful for teaching purposes, it
makes radiation physics “visible”.

PLOTTER . . . The programs PENSLAB and PENCYL generate multiple files with sim-
ulated probability distribution functions. Each output file has a heading de-
scribing its content, which is in a format ready for visualization with a plot-
ting program. We use gnuplot, which is small in size, available for various
platforms (including Linux and Microsoft Windows) and free (distribution
sites are listed at the Gnuplot Central site, http://www.gnuplot.info). The
directory PLOTTER contains gnuplot scripts that plot the probability distri-
butions evaluated by the simulation codes on your terminal. For instance,
after running PENSLAB you can visualize the results by simply 1) copying
the file PENSLAB.GNU from the directory PLOTTER to the directory that con-
tains the results and 2) entering the command “GNUPLOT PENSLAB.GNU” (or
clicking the icon).



208 Chapter 6. Structure and operation of the code system



Appendix A

Collision kinematics

To cover the complete energy range of interest in radiation transport studies we use
relativistic kinematics. Let P̃ denote the energy-momentum 4-vector of a particle, i.e.

P̃ = (Wc−1,p), (A.1)

where W and p are the total energy (including the rest energy) and momentum re-
spectively and c is the velocity of light in vacuum. The product of 4-vectors, defined
by

(P̃ P̃ ′) =WW ′c−2 − p·p′, (A.2)

is invariant under Lorentz transformations. The rest mass m of a particle determines
the invariant length of its energy-momentum,

(P̃ P̃ ) =W2c−2 − p2 = (mc)2. (A.3)

The kinetic energy E of a massive particle (m 6= 0) is defined as

E =W −mc2, (A.4)

where mc2 is the rest energy. The magnitude of the momentum is given by

(cp)2 = E(E + 2mc2). (A.5)

In terms of the velocity v of the particle, we have

E = (γ − 1)mc2 and p = βγmcv̂, (A.6)

where

β ≡ v

c
=

√
γ2 − 1

γ2
=

√√√√E(E + 2mc2)

(E +mc2)2
(A.7)

is the velocity of the particle in units of c and

γ ≡
√

1

1− β2
=
E +mc2

mc2
(A.8)
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is the total energy in units of the rest energy. From the relation (A.5), it follows that

E =
√

(cp)2 +m2c4 −mc2 (A.9)

and
dp

dE
=

1

v
=

1

cβ
. (A.10)

For a photon (and any other particle with m = 0), the energy and momentum are
related by

E = cp. (A.11)

A.1 Two-body reactions

Consider a reaction in which a projectile “1” collides with a target “2” initially at rest in
the laboratory frame of reference. We limit our study to the important case of two-body
reactions in which the final products are two particles, “3” and “4”. The kinematics of
such reactions is governed by energy and momentum conservation.

We take the direction of movement of the projectile to be the z-axis, and set the
x-axis in such a way that the reaction plane (i.e. the plane determined by the momenta
of particles “1”, “3” and “4”) is the x-z plane. The energy-momentum 4-vectors of the
projectile, the target and the reaction products are then (see fig. A.1)

P̃1 = (W1c
−1, 0, 0, p1) (A.12a)

P̃2 = (m2c, 0, 0, 0) (A.12b)

P̃3 = (W3c
−1, p3 sin θ3, 0, p3 cos θ3) (A.12c)

P̃4 = (W4c
−1,−p4 sin θ4, 0, p4 cos θ4) (A.12d)

Energy and momentum conservation is expressed by the 4-vector equation

P̃1 + P̃2 = P̃3 + P̃4. (A.13)

From this equation, the angles of emergence of the final particles, θ3 and θ4, are uniquely
determined by their energies, W3 and W4. Thus,

m2
4c

2 = (P̃4P̃4) = (P̃1 + P̃2 − P̃3)(P̃1 + P̃2 − P̃3)

= (P̃1P̃1) + (P̃2P̃2) + (P̃3P̃3) + 2(P̃1P̃2)− 2(P̃1P̃3)− 2(P̃2P̃3)

= m2
1c

2 +m2
2c

2 +m2
3c

2 + 2W1W2c
−2

− 2
(
W1W3c

−2 − p1p3 cos θ3

)
− 2W2W3c

−2, (A.14)

and it follows that

cos θ3 =
m2

4c
4 −m2

1c
4 −m2

2c
4 −m2

3c
4 + 2W1(W3 −W2) + 2W2W3

2 (W2
1 −m2

1c
4)

1/2
(W2

3 −m2
3c

4)
1/2

. (A.15)
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Clearly, by symmetry, we can obtain a corresponding expression for cos θ4 by interchang-
ing the indices 3 and 4

cos θ4 =
m2

3c
4 −m2

1c
4 −m2

2c
4 −m2

4c
4 + 2W1(W4 −W2) + 2W2W4

2 (W2
1 −m2

1c
4)

1/2
(W2

4 −m2
4c

4)
1/2

. (A.16)
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Figure A.1: Kinematics of two-body reactions.

The different two-body reactions found in Monte Carlo simulation of coupled elec-
tron-photon transport can be characterized by a single parameter, namely the energy
of one of the particles that result from the reaction. The energy of the second particle
is determined by energy conservation. Eqs. (A.15) and (A.16) then fix the polar angles,
θ3 and θ4, of the final directions. Explicitly, we have

• Binary collisions of electrons and positrons with free electrons at rest.

Projectile: Electron or positron m1 = me, W1 = E + mec
2.

Target: Electron m2 = me, W2 = mec
2.

Scattered particle: m3 = me, W3 = E −W + mec
2.

Recoil electron: m4 = me, W4 = W + mec
2.

cos θ3 =

(
E −W
E

E + 2mec
2

E −W + 2mec2

)1/2

, (A.17)

cos θ4 =

(
W

E

E + 2mec
2

W + 2mec2

)1/2

. (A.18)

• Compton scattering of photons by free electrons at rest.

Projectile: Photon m1 = 0, W1 = E ≡ κmec
2.

Target: Electron m2 = me, W2 = mec
2.

Scattered photon: m3 = 0, W3 ≡ τE.

Recoil electron: m4 = me, W4 = mec
2 + (1− τ )E.
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cos θ3 =
1

κ

(
κ+ 1 − 1

τ

)
, (A.19)

cos θ4 = (κ + 1)

(
1− τ

κ [2 + κ(1 − τ )]

)1/2

. (A.20)

• Annihilation of positrons with free electrons at rest.

Projectile: Positron m1 = me, W1 = E + mec
2 ≡ γmec

2.

Target: Electron m2 = me, W2 = mec
2.

Annihilation photons: m3 = 0, W3 ≡ ζ(E + 2mec
2).

m4 = 0, W4 = (1 − ζ)(E + 2mec
2).

cos θ3 =
(
γ2 − 1

)−1/2
(γ + 1 − 1/ζ) , (A.21)

cos θ4 =
(
γ2 − 1

)−1/2
(
γ + 1 − 1

1 − ζ

)
. (A.22)

A.1.1 Elastic scattering

By definition, elastic collisions keep the internal structure (i.e. the mass) of the projectile
and target particles unaltered. Let us consider the kinematics of elastic collisions of a
projectile of mass m (= m1 = m3) and kinetic energy E with a target particle of mass M
(= m2 = m4) at rest (see fig. A.2). After the interaction, the target recoils with a certain
kinetic energy W and the kinetic energy of the projectile is reduced to E ′ = E−W . The
angular deflection of the projectile cos θ and the energy transfer W are related through
eq. (A.15), which now reads

cos θ =
E(E + 2mc2)−W (E +mc2 +Mc2)

√
E(E + 2mc2) (E −W )(E −W + 2mc2)

. (A.23)

The target recoil direction is given by eq. (A.16),

cos θr =
(E +mc2 +Mc2)W

√
E(E + 2mc2)W (W + 2mc2)

. (A.24)

Solving eq. (A.23), we obtain the following expression for the energy transfer W
corresponding to a given scattering angle θ,

W =
[
(E +mc2) sin2 θ +Mc2 − cos θ

√
M2c4 −m2c4 sin2 θ

]

× E(E + 2mc2)

(E +mc2 +Mc2)2 −E(E + 2mc2) cos2 θ
. (A.25)



A.2. Inelastic collisions of charged particles 213

1

2
1

2

E

E' =  E- W

W

z

x

θ

θ
r

Figure A.2: Kinematics of elastic collisions.

In the case of collisions of particles with equal mass, m = M , this expression simplifies
to

W =
E(E + 2mc2) sin2 θ

E sin2 θ + 2mc2
if M = m. (A.26)

In this case, θ can only take values less than 90 deg. For θ = 90 deg, we haveW = E (i.e.
the full energy and momentum of the projectile are transferred to the target). Notice
that for binary collisions of electrons and positrons (m = me), the relation (A.26)
becomes identical to (A.17).

For elastic collisions of electrons by atoms and ions, the mass of the target is much
larger than that of the projectile and eq. (A.25) becomes

W =

[
(E +mc2) sin2 θ +Mc2(1 − cos θ)

]
E(E + 2mc2)

(E +Mc2)2 −E(E + 2mc2) cos2 θ
if M � m. (A.27)

The non-relativistic limit (c→∞) of this expression is

W =
2m

M
(1 − cos θ)E if M � m and E � mc2. (A.28)

A.2 Inelastic collisions of charged particles

We consider here the kinematics of inelastic collisions of charged particles of mass m
and velocity v as seen from a frame of reference where the stopping medium is at
rest (laboratory frame). Let p and E be the momentum and the kinetic energy of
the projectile just before an inelastic collision, the corresponding quantities after the
collision are denoted by p′ and E ′ = E −W , respectively. Evidently, for positrons the
maximum energy loss is Wmax = E. In the case of ionization by electron impact, owing
to the indistinguishability between the projectile and the ejected electron, the maximum
energy loss is Wmax ' E/2 (see section 3.2). The momentum transfer in the collision is
q ≡ p− p′. It is customary to introduce the recoil energy Q defined by

Q(Q+ 2mec
2) = (cq)2 = c2

(
p2 + p′2 − 2pp′ cos θ

)
, (A.29)
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where me is the electron rest mass and θ = arccos(p̂·p̂′) is the scattering angle. Equiv-
alently, we can write

Q =
√

(cq)2 + m2
ec

4 −mec
2. (A.30)

Notice that, when the collision is with a free electron at rest, the energy loss is completely
transformed into kinetic energy of the recoiling electron, i.e. Q = W . For collisions with
bound electrons, the relation Q 'W still holds for hard ionizing collisions (that is, when
the energy transfer W is much larger than the ionization energy of the target electron
so that binding effects are negligible).

The kinematically allowed recoil energies lie in the interval Q− < Q < Q+, with end
points given by eq. (A.29) with cos θ = +1 and −1, respectively. That is

Q± =
√

(cp± cp′)2 + m2
ec

4 −mec
2

=

√[√
E(E + 2mc2)±

√
(E −W )(E −W + 2mc2)

]2
+ m2

ec
4 −mec

2. (A.31)

Notice that, for W < E, Q+ is larger than W and Q− < W . When W � E, expression
(A.31) is not suitable for evaluating Q− since it involves the subtraction of two similar
quantities. In this case, it is more convenient to use the approximate relation

cp − cp′ ' c
(

dp

dE
W − 1

2

d2p

dE2
W 2

)
=
W

β

(
1 +

1

2γ(γ + 1)

W

E

)
(A.32)

and calculate Q− as

Q− '
√

(cp − cp′)2 + m2
ec

4 −mec
2 (A.33)

or, if cp − cp′ � mec
2,

Q− '
1

2

(cp − cp′)2

mec2
− 1

8

(cp− cp′)4

(mec2)3
. (A.34)

Thus, for E �W ,
Q−(Q− + 2mec

2) 'W 2/β2. (A.35)

In the non-relativistic limit,

Q ≡ q2/2me, Q± =
[
E1/2 ± (E −W )1/2

]2
. (A.36)

From (A.31), it is clear that the curves Q = Q−(W ) and Q = Q+(W ) vary monoto-
nously with W and intersect at W = E. Thus, they define a single continuous function
W = Wm(Q) in the interval 0 < Q < Q+(0). By solving the eqs. Q = Q±(Wm) we
obtain

Wm(Q) = E +mc2 −
√[√

E(E + 2mc2)−
√
Q(Q+ 2mec2)

]2
+m2c4, (A.37)
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Figure A.3: Domains of kinematically allowed transitions in the (Q, W ) plane for elec-

trons/positrons. The curves represent the maximum allowed energy loss Wm(Q), given by

eq. (A.37), for electrons with the indicated kinetic energies (in eV). When E increases, Wm(Q)

approaches the vacuum photon line, W = [Q(Q+2mec
2)]1/2, which is an absolute upper bound

for the allowed energy losses.

which, when W � E, reduces to

Wm(Q) ' β
√
Q(Q+ 2mec2). (A.38)

Now it follows that, for given values of E and Q [< Q+(0)], the only kinematically
allowed values of the energy loss are those in the interval 0 < W < Wm(Q) (see fig.
A.3).

For a given energy loss W , the quantity

qmin ≡ c−1
√
Q−(Q− + 2mec2), (A.39)

is the minimum value of the momentum transfer in an inelastic collision, which occurs
when θ = 0. qmin is always larger than W/c. When the energy of the projectile increases,
β → 1 and qmin decreases approaching (but never reaching) the value W/c. It is worth
recalling that a photon of energy W in vacuum has a linear momentum q = W/c and,
hence, interactions consisting of emission of bare photons would be located on the line
Q(Q+ 2mec

2) = W 2 of the (Q,W ) plane, the so-called vacuum photon line. This line,
lies outside the kinematically allowed region, i.e. the “recoil” energy of the photon is
less than Q− (see fig. A.3). Therefore, when the target is a single atom, the emission of
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photons by the projectile is not possible1. When the energy E of the projectile increases,
Q− decreases and tends to the photon line when β tends to unity. Hence, emission
of photons by ultrarelativistic projectiles in low-density media is barely prevented by
energy and momentum conservation. Generally speaking, as the interaction involves the
exchange of a virtual photon, the DCS increases as the photon becomes more real, that
is as we approach the photon line. For a dilute gas, this causes a gradual increase of the
cross section with the projectile energy when β → 1.

The scattering angle θ is related to the energy loss through

cos θ =
(cp)2 + (cp′)2 −Q(Q+ 2mec

2)

2(cp)(cp)
. (A.40)

The recoil angle θr between p and q is given by

cos θr =
(cp)2 − (cp′)2 + (cq)2

2(cp)(cq)
, (A.41)

which can also be written in the form

cos2 θr =
W 2/β2

Q(Q+ 2mec2)

(
1 +

Q(Q+ 2mec
2)−W 2

2W (E +mc2)

)2

. (A.42)

For heavy (m � me) high-energy projectiles and collisions such that Q � E and
W � E,

cos2 θr '
W 2/β2

Q(Q+ 2mec2)
' Q−(Q− + 2mec

2)

Q(Q+ 2mec2)
. (A.43)

1In a condensed medium, ultrarelativistic projectiles can emit real photons (Cerenkov radiation)
under certain, quite restricting circumstances (see e.g. Jackson, 1975).
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Numerical tools

B.1 Cubic spline interpolation

In this section we follow the presentation of Maron (1982). Suppose that a function
f(x) is given in numerical form, i.e. as a table of values

fi = f(xi) (i = 1, . . . , N). (B.1)

The points (knots) xi do not need to be equispaced, but we assume that they are in
(strictly) increasing order

x1 < x2 < · · · < xN . (B.2)

A function ϕ(x) is said to be an interpolating cubic spline if

1) It reduces to a cubic polynomial within each interval [xi, xi+1], i.e. if xi ≤ x ≤ xi+1

ϕ(x) = ai + bix+ cix
2 + dix

3 ≡ pi(x) (i = 1, . . . , N − 1). (B.3)

2) The polynomial pi(x) matches the values of f(x) at the endpoints of the i-th interval,

pi(xi) = fi, pi(xi+1) = fi+1 (i = 1, . . . , N − 1), (B.4)

so that ϕ(x) is continuous in [x1, xN ].

3) The first and second derivatives of ϕ(x) are continuous in [x1, xN ]

p′i(xi+1) = p′i+1(xi+1) (i = 1, . . . , N − 2), (B.5)

p′′i (xi+1) = p′′i+1(xi+1) (i = 1, . . . , N − 2). (B.6)

Consequently, the curve y = ϕ(x) interpolates the table (B.1) and has a continuously
turning tangent.
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To obtain the spline coefficients ai, bi, ci, di (i = 1, . . . , N −1) we start from the fact
that ϕ′′(x) is linear in [xi, xi+1]. Introducing the quantities

hi ≡ xi+1 − xi (i = 1, . . . , N − 1) (B.7)

and
σi ≡ ϕ′′(xi) (i = 1, . . . , N), (B.8)

we can write the obvious identity

p′′i (x) = σi
xi+1 − x

hi
+ σi+1

x− xi

hi
(i = 1, . . . , N − 1). (B.9)

Notice that xi+1 must be larger than xi in order to have hi > 0. Integrating eq. (B.9)
twice with respect to x, gives for i = 1, . . . , N − 1

pi(x) = σi
(xi+1 − x)3

6hi
+ σi+1

(x− xi)
3

6hi
+Ai(x− xi) +Bi(xi+1 − x), (B.10)

where Ai and Bi are constants. These can be determined by introducing the expression
(B.10) into eqs. (B.4), this gives the pair of eqs.

σi
h2

i

6
+Bihi = fi and σi+1

h2
i

6
+Aihi = fi+1. (B.11)

Finally, solving for Ai and Bi and substituting the result in (B.10), we obtain

pi(x) =
σi

6

[
(xi+1 − x)3

hi

− hi(xi+1 − x)
]

+ fi
xi+1 − x

hi

+
σi+1

6

[
(x− xi)

3

hi
− hi(x− xi)

]
+ fi+1

x− xi

hi
.

(B.12)

To be able to use ϕ(x) to approximate f(x), we must find the second derivatives
σi (i = 1, . . . , N). To this end, we impose the conditions (B.5). Differentiating (B.12)
gives

p′i(x) =
σi

6

[
−3(xi+1 − x)2

hi
+ hi

]
+
σi+1

6

[
3(x − xi)

2

hi
− hi

]
+ δi, (B.13)

where

δi =
yi+1 − yi

hi
. (B.14)

Hence,

p′i(xi+1) = σi
hi

6
+ σi+1

hi

3
+ δi, (B.15a)

p′i(xi) = −σi
hi

3
− σi+1

hi

6
+ δi (B.15b)
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and, similarly,

p′i+1(xi+1) = −σi+1
hi+1

3
− σi+2

hi+1

6
+ δi+1. (B.15c)

Replacing (B.15a) and (B.15c) in (B.5), we obtain

hiσi + 2(hi + hi+1)σi+1 + hi+1σi+2 = 6 (δi+1 − δi) (i = 1, . . . , N − 2). (B.16)

The system (B.16) is linear in the N unknowns σi (i = 1, . . . , N). However, since
it contains only N − 2 equations, it is underdetermined. This means that we need
either to add two additional (independent) equations or to fix arbitrarily two of the N
unknowns. The usual practice is to adopt endpoint strategies that introduce constraints
on the behaviour of ϕ(x) near x1 and xN . An endpoint strategy fixes the values of σ1

and σN , yielding an (N − 2) × (N − 2) system in the variables σi (i = 2, . . . , N − 1).
The resulting system is, in matrix form,




H2 h2 0 · · · 0 0 0

h2 H3 h3 · · · 0 0 0

0 h3 H4 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · HN−3 hN−3 0

0 0 0 · · · hN−3 HN−2 hN−2

0 0 0 · · · 0 hN−2 HN−1







σ2

σ3

σ4

...

σN−3

σN−2

σN−1




=




D2

D3

D4

...

DN−3

DN−2

DN−1




, (B.17)

where
Hi = 2(hi−1 + hi) (i = 2, . . . , N − 1) (B.18)

and
D2 = 6(δ2 − δ1)− h1σ1

Di = 6(δi − δi−1) (i = 3, . . . , N − 2)

DN−1 = 6(δN−1 − δN−2)− hN−1σN .

(B.19)

(σ1 and σN are removed from the first and last equations, respectively). The matrix
of coefficients is symmetric, tridiagonal and diagonally dominant (the larger coefficients
are in the diagonal), so that the system (B.17) can be easily (and accurately) solved
by Gauss elimination. The spline coefficients ai, bi, ci, di (i = 1, . . . , N − 1) —see eq.
(B.3)— can then be obtained by expanding the expressions (B.12):

ai =
1

6hi

[
σix

3
i+1 − σi+1x

3
i + 6 (fixi+1 − fi+1xi)

]
+
hi

6
(σi+1xi − σixi+1),

bi =
1

2hi

[
σi+1x

2
i − σix

2
i+1 + 2 (fi+1 − fi)

]
+
hi

6
(σi − σi+1),

ci =
1

2hi
(σixi+1 − σi+1xi),

di =
1

6hi
(σi+1 − σi).

(B.20)
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When accurate values of f ′′(x) are known, the best strategy is to set σ1 = f ′′(x1) and
σN = f ′′(xN), since this will minimize the spline interpolation errors near the endpoints
x1 and xN . Unfortunately, the exact values f ′′(x1) and f ′′(xN ) are not always available.

The so-called natural spline corresponds to taking σ1 = σN = 0. It results in
a y = ϕ(x) curve with the shape that would be taken by a flexible rod (such as a
draughtman’s spline) if it were bent around pegs at the knots but allowed to maintain its
natural (straight) shape outside the interval [x1, xN ]. Since σ1 = σN = 0, extrapolation
of ϕ(x) outside the interval [x1, xN ] by straight segments gives a continuous function
with continuous first and second derivatives [i.e. a cubic spline in (−∞,∞)].

The accuracy of the spline interpolation is mainly determined by the density of knots
in the regions where f(x) has strong variations. For constant, linear, quadratic and cubic
functions the interpolation errors can be reduced to zero by using the exact values of
σ1 and σN (in these cases, however, the natural spline may introduce appreciable errors
near the endpoints). It is important to keep in mind that a cubic polynomial has, at
most, one inflexion point. As a consequence, we should have at least a knot between
each pair of inflexion points of f(x) to ensure proper interpolation. Special care must
be taken when interpolating functions that have a practically constant value in a partial
interval, since the spline tends to wiggle instead of staying constant. In this particular
case, it may be more convenient to use linear interpolation.

Obviously, the interpolating cubic spline ϕ(x) can be used not only to obtain inter-
polated values of f(x) between the knots, but also to calculate integrals such as

∫ b

a
f(x) dx '

∫ b

a
ϕ(x) dx, x1 ≤ a and b ≤ xN , (B.21)

analytically. It is worth noting that derivatives of ϕ(x) other than the first one may
differ significantly from those of f(x).

To obtain the interpolated value ϕ(xc) —see eq. (B.3)— of f(x) at the point xc, we
must first determine the interval (xi, xi+1] that contains the point xc. To reduce the
effort to locate the point, we use the following binary search algorithm:

(i) Set i = 1 and j = N .

(ii) Set k = [(i+ j)/2].

(iii) If xk < xc, set i = k; otherwise set j = k.

(iv) If j − i > 1, go to step (ii).

(v) Deliver i.

Notice that the maximum delivered value of i is N − 1.
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B.2 Numerical quadrature

In many cases, we need to calculate integrals of the form

∫ B

A
f(z) dz, (B.22)

where the integrand is coded as an external function subprogram, which gives nominally
exact values. These integrals are evaluated by using the fortran77 external function
SUMGA, which implements the twenty-point Gauss method with an adaptive bipartition
scheme to allow for error control. This procedure is comparatively fast and is able to
deal even with functions that have integrable singularities located at the endpoints of
the interval [A,B], a quite exceptional feature.

B.2.1 Gauss integration

We use the twenty-point Gauss formula (see e.g. Abramowitz and Stegun, 1974), given
by

∫ b

a
f(z) dz =

b− a
2

20∑

i=1

wif(zi) (B.23)

with

zi =
b− a

2
xi +

b+ a

2
. (B.24)

The abscissa xi (−1 < xi < 1) is the i-th zero of the Legendre polynomial P20(x), the
weights wi are defined as

wi =
2

(1− x2
i ) [P ′

20(xi)]
2 . (B.25)

The numerical values of the abscissas and weights are given in table B.1. The difference
between the exact value of the integral and the right-hand side of eq. (B.23) is

∆20 =
(b− a)41(20!)4

41 (40!)3
f (40)(ξ), (B.26)

where ξ is a point in the interval [a, b].

The Gauss method gives an estimate of the integral of f(z) over the interval [a, b],
which is obtained as a weighted sum of function values at fixed points inside the interval.
We point out that (B.23) is an open formula, i.e. the value of the function at the
endpoints of the interval is never required. Owing to this fact, function SUMGA can
integrate functions that are singular at the endpoints. As an example, the integral of
f(x) = x−1/2 over the interval [0,1] is correctly evaluated. This would not be possible
with a method based on a closed formula (i.e. one that uses the values of the integrand
at the interval endpoints).
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Table B.1: Abscissas and weights for twenty-point Gauss integration.

±xi wi

7.6526521133497334D-02 1.5275338713072585D-01

2.2778585114164508D-01 1.4917298647260375D-01

3.7370608871541956D-01 1.4209610931838205D-01

5.1086700195082710D-01 1.3168863844917663D-01

6.3605368072651503D-01 1.1819453196151842D-01

7.4633190646015079D-01 1.0193011981724044D-01

8.3911697182221882D-01 8.3276741576704749D-02

9.1223442825132591D-01 6.2672048334109064D-02

9.6397192727791379D-01 4.0601429800386941D-02

9.9312859918509492D-01 1.7614007139152118D-02

B.2.2 Adaptive bipartition

Function SUMGA exploits the fact that the error ∆20, eq. (B.26), of the calculated integral
decreases when the interval length is reduced. Thus, halving the interval and applying
the Gauss method to each of the two subintervals gives a much better estimate of the
integral, provided only that the function f(x) is smooth enough over the initial interval.
Notice that the error decreases by a factor of about 2−40(!).

The algorithm implemented in SUMGA is as follows. The integration interval (A,B)
is successively halved so that each iteration gives a doubly finer partition of the initial
interval. We use the term “n-subinterval” to denote the subintervals obtained in the n-th
iteration. In each iteration, the integrals over the different n-subintervals are evaluated
by the Gauss method, eq. (B.23). Consider that the integral over a given n-subinterval
is S1. In the following iteration, this n-subinterval is halved and the integrals over each
of the two resulting (n + 1)-subintervals are evaluated, giving values S1a and S1b. If
S ′

1 = S1a + S1b differs from S1 in less than the selected tolerance, S ′
1 is the sought value

of the integral in the considered n-subinterval; the value S ′
1 is then accumulated and

this n-subinterval is no longer considered in subsequent iterations. Each iteration is
likely to produce new holes (eliminated subintervals) in the regions where the function
is smoother and, hence, the numerical effort progressively concentrates in the regions
where f(x) has stronger variations. The calculation terminates when the exploration
of the interval (A,B) has been succesfully completed or when a clear indication of an
anomalous behaviour of f(x) is found (e.g. when there is a persistent increase of the
number of remaining n-subintervals in each iteration). In the second case a warning
message is printed in unit 6 and the control is returned to the calling program.



Appendix C

Electron/positron transport in
electromagnetic fields

In this appendix, we consider the transport of electrons/positrons in static external
electromagnetic (EM) fields, in vacuum and in condensed media. We assume that, in
the region where particles move, there is an electric field E and a magnetic field B,
which are set up by external sources and do not vary with time. For practical purposes,
we also consider that both E and B are continuous functions of the position vector r.

The interactions with the medium will be described by means of penelope. In each
individual interaction event, the electron/positron loses a discrete amount of kinetic
energy and changes its direction of motion. In the absence of EM fields, the electron
travels freely between consecutive interaction events, i.e. following a straight trajectory
segment at constant speed. To simulate electron transport with static external EM
fields, we assume that the interaction properties of electrons with the medium are not
substantially affected by the field. Consequently, to account for the effect of the EM
field, we only need to consider that along each “free flight” the electron is driven by the
EM force. With a proper selection of the simulation parameters (i.e. the energy loss and
angular cutoff values), trajectory segments may have macroscopic lengths. Therefore, in
material media it is appropriate to consider the macroscopic EM fields D and H rather
than the microscopic fields E and B.

It should be noted that, under the action of an electric field, the kinetic energy of the
electron can vary substantially along a single trajectory segment. This conflicts with
one of the basic assumptions in penelope, namely that the energy of the particle stays
practically constant along the segment. In practice, however, we can always limit the
maximum segment length by means of the parameter smax. Then, the effect of the EM
field can be treated independently of that of the interactions with the medium. In other
words, for simulation purposes, we only need an efficient method to generate particle
trajectories in the EM field in vacuum. It is also important to recall that strong electric
fields in material media accelerate unbound charged particles, even when they are at
rest (i.e. electrons are never absorbed, simulated tracks can only terminate when they
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leave the field volume). Injection of a single electron in the medium may give rise to a
complex cascade of delta rays, that accelerate in the direction opposite to the electric
field. To describe these cascades we need accurate cross sections for ionization of outer
atomic shells by impact of low-energy electrons, much more accurate than the simple
ones implemented in penelope. Therefore, penelope is not expected to yield a reliable
description of this process. The simulation algorithm described here is applicable only to
magnetic fields and, cautiously, to weak electric fields. Notice also that we disregard the
emission of radiation by the charged particle when it is accelerated by the external EM
field (see e.g. Jackson, 1975); this approximation is not valid for very strong magnetic
and electric fields.

C.1 Tracking particles in vacuum.

Let us begin by describing a “brute force” method to calculate trajectories of charged
particles in arbitrary static electric and magnetic fields in vacuum. We start from the
Lorentz force equation1 for an electron (Z0 = −1) or positron (Z0 = +1),

dp

dt
= Z0e

(
E +

v

c
×B

)
, (C.1)

which we write as
d(γβv̂)

dt
=
Z0e

mec
(E + βv̂×B), (C.2)

with v̂ = v/v, β = v/c and γ = (1 − β2)−1/2. We note that

d(γβv̂)

dt
= γ3 dβ

dt
v̂ + γβ

dv̂

dt
(C.3)

where the vectors v̂ and dv̂/dt are orthogonal. Then, projecting eq. (C.2) into the
directions of these two vectors, we obtain

dβ

dt
=

Z0e

mecγ
(1− β2)(E ·v̂) (C.4)

and
dv̂

dt
=

Z0e

mecβγ
[E − (E ·v̂)v̂ + βv̂×B] . (C.5)

It then follows that

dβv̂

dt
=

dβ

dt
v̂ + β

dv̂

dt

=
Z0e

mecγ

[
E − β2(E ·v̂)v̂ + βv̂×B

]
, (C.6)

1In this appendix, electromagnetic quantities are expressed in the Gaussian system of units.
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which we cast in the form

dv

dt
= A, A ≡ Z0e

meγ

[
E − β2(E ·v̂)v̂ + βv̂×B

]
. (C.7)

Notice that, for arbitrary fields E and B, the “acceleration” A is a function of the
particle’s position r, energy E and direction of motion v̂.

Implicit integration of eq. (C.7) gives the equations of motion

v(t) = v0 +
∫ t

0
A(r(t′), E(t′), v̂(t′)) dt′, (C.8)

r(t) = r0 +
∫ t

0
v(t′) dt′. (C.9)

Evidently, these equations are too complex for straight application in a simulation code
and we must have recourse to approximate solution methods. We shall adopt the ap-
proach proposed by Bielajew (1988), which is well suited to transport simulations. The
basic idea is to split the trajectory into a number of conveniently short steps such that
the acceleration A does not change much over the course of a step. Along each step, we
then have

v(t) = v0 + tA(r0, E0, v̂0) (C.10)

r(t) = r0 + tv0 + t2
1

2
A(r0, E0, v̂0), (C.11)

where the subscript “0” indicates values of the various quantities at the starting point
(t = 0). The traveled path length s and the flying time t are related by

t =
∫ s

0

ds′

v
, (C.12)

which to first order becomes
t = s/v0. (C.13)

Then, to first order in the electromagnetic force,

v(s) = v0 + s
A(r0, E0, v̂0)

cβ0

r(s) = r0 + s v̂0 + s2 1

2

A(r0, E0, v̂0)

c2β2
0

.

That is,

r(s) = r0 + s v̂0 + s2 1

2

Z0e [E0 − β2
0(E0 ·v̂0)v̂0 + β0v̂0×B0]

mec2 γ0β2
0

. (C.14)

The particle’s velocity can be calculated directly from eq. (C.10), which to first order
gives

v(s) = v0 + ∆v (C.15)
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with

∆v = s
Z0e [E0 − β2

0(E0·v̂0)v̂0 + β0v̂0×B0]

mec γ0β0

. (C.16)

In the tracking algorithm, the velocity is used to determine the direction vector at the
end of the step,

v̂(s) =
v0 + ∆v

|v0 + ∆v|. (C.17)

Owing to the action of the electromagnetic force, the kinetic energy E of the particle
varies along the step. As the trajectory is accurate only to first order, it is not advisable
to compute the kinetic energy from the velocity of the particle. It is preferable to
calculate E(t) as

E(s) = E0 + Z0e [ϕ(r0)− ϕ(r(s))] (C.18)

where ϕ(r) is the electrostatic potential, E = −∇ϕ. Notice that this ensures energy
conservation, i.e. it gives the exact energy variation in going from the initial to the final
position.

This tracking method is valid only if
1) the fields do not change too much along the step

|E(r(s))− E(r0)|
|E(r0)|

< δE � 1,
|B(r(s))−B(r0)|

|B(r0)|
< δB � 1 (C.19)

and
2) the relative changes in kinetic energy and velocity (or direction of motion) are small

∣∣∣∣∣
E(s)−E0

E0

∣∣∣∣∣ < δE � 1,
|∆v|
v0

< δv � 1. (C.20)

These conditions set an upper limit on the allowed step length, smax, which depends
on the local fields and on the energy and direction of the particle. The method is ro-
bust, in the sense that it converges to the exact trajectory when the maximum allowed
step length tends to zero. In practical calculations, we shall specify the values of the
δ-parameters (which should be of the order of 0.05 or less) and consider step lengths con-
sistent with the above conditions. Thus, the smallness of the δ-parameters determines
the accuracy of the generated trajectories.

To test the accuracy of a tracking algorithm, it is useful to consider the special cases
of a uniform electric field (with B = 0) and a uniform magnetic field (with E = 0),
which admit relatively simple analytical solutions of the equations of motion.

C.1.1 Uniform electric fields

Let us study first the case of a uniform electric field E. The equation of the trajectory
of an electron/positron that starts at t = 0 from the point r0 with velocity v0 can be
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expressed in the form (adapted from Bielajew, 1988)

r(t) = r0 + tv0⊥ +
1

a

[
cosh (act)− 1 +

v0‖

c
sinh (act)

]
Ê , (C.21)

where v0‖ and v0⊥ are the components of v0 parallel and perpendicular to the direction
of the field,

v0‖ = (v0·Ê)Ê , v0⊥ = v0 − (v0 ·Ê)Ê (C.22)

and

a ≡ Z0eE
mec2γ0

=
Z0eE
E0

. (C.23)

The velocity of the particle is

v(t) = v0⊥ +
[
c sinh (act) + v0‖ cosh (act)

]
Ê

= v0 +
{
c sinh (act) + v0‖ [cosh (act)− 1]

}
Ê. (C.24)

Since the scalar potential for the constant field is ϕ(r) = −E ·r, the kinetic energy of
the particle varies with time and is given by

E(t) = E0 − Z0eE ·[r0 − r(t)] . (C.25)
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Figure C.1: Trajectories of electrons and positrons in a uniform electric field of 511 kV/cm.

Continuous curves represent exact trajectories obtained from eq. (C.21). The dashed lines are

obtained by using the first-order numerical tracking method described by eqs. (C.14)-(C.20)

with δE = δE = δv = 0.02. The displayed trajectories correspond to the following cases. a:

positrons, E0 = 0.1 MeV, θ = 135 deg. b: positrons, E0 = 1 MeV, θ = 135 deg. c: positrons,

E0 = 10 MeV, θ = 135 deg. f: electrons, E0 = 0.2 MeV, θ = 90 deg. g: electrons, E0 = 2

MeV, θ = 90 deg. h: electrons, E0 = 20 MeV, θ = 90 deg.
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Fig. C.1 displays trajectories of electrons and positrons with various initial energies
and directions of motion in a uniform electric field of 511 kV/cm directed along the
positive z-axis. Particles start from the origin (r0 = 0), with initial velocity in the
xz-plane forming an angle θ with the field, i.e. v0 = (sin θ, 0, cos θ), so that the whole
trajectories lie in the xz-plane. Continuous curves represent exact trajectories obtained
from the analytical formula (C.21). The dashed curves are the results from the first-
order tracking algorithm described above [eqs. (C.14)-(C.20)] with δE = δE = δv = 0.02.
We show three positron trajectories with initial energies of 0.1, 1 and 10 MeV, initially
moving in the direction θ = 135 deg. Three trajectories of electrons that initially move
perpendicularly to the field (θ = 90 deg) with energies of 0.2, 2 and 20 MeV are also
depicted. We see that the tracking algorithm gives quite accurate results. The error can
be further reduced, if required, by using shorter steps, i.e. smaller δ-values.

C.1.2 Uniform magnetic fields

We now consider the motion of an electron/positron, with initial position r0 and velocity
v0, in a uniform magnetic field B. Since the magnetic force is perpendicular to the
velocity, the field does not alter the energy of the particle and the speed v(t) = v0 is a
constant of the motion. It is convenient to introduce the precession frequency vector ω,
defined by (notice the sign)

ω ≡ −Z0eB

meγc
= −Z0ecB

E0
, (C.26)

and split the velocity v into its components parallel and perpendicular to ω,

v‖ = (v·ω̂)ω̂, v⊥ = v − (v·ω̂)ω̂. (C.27)

Then, the equation of motion (C.7) becomes

dv‖

dt
= 0,

dv⊥

dt
= ω×v⊥. (C.28)

The first of these eqs. says that the particle moves with constant velocity v0‖ along
the direction of the magnetic field. From the second eq. we see that, in the plane
perpendicular to B, the particle describes a circle with angular frequency ω and speed
v0⊥ (which is a constant of the motion). The radius of the circle is R = v0⊥/ω. That
is, the trajectory is an helix with central axis along the B direction, radius R and pitch
angle α = arctan(v0‖/v0⊥). The helix is right-handed for electrons and left-handed for
positrons (see fig. C.2).

In terms of the path length s = tv0, the equation of motion takes the form

r(s) = r0 +
s

v0
v0‖ +R [1 − cos(s⊥/R)] (ω̂×v̂0⊥) +R sin(s⊥/R)v̂0⊥, (C.29)
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ee
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B

Figure C.2: Trajectories of electrons and positrons in a uniform magnetic field. The two

particles start from the base plane with equal initial velocities.

where v̂0⊥ ≡ v0⊥/v0⊥ and s⊥ = sv0⊥/v0. Equivalently,

r(s) = r0 + sv̂0 −
s

v0
v0⊥ +

1

ω
[1− cos(sω/v0)] (ω̂×v0⊥) +

1

ω
sin(sω/v0)v0⊥. (C.30)

After the path length s, the particle velocity is

v(s) = v0
dr

ds
= v0 + [cos(sω/v0)− 1] v0⊥ + sin(sω/v0)(ω̂×v0⊥). (C.31)

In fig. C.3 we compare exact trajectories of electrons and positrons in a uniform
magnetic field obtained from the analytical formula (C.30) with results from the first-
order tracking algorithm [eqs. (C.14)-(C.20)] with δB = δE = δv = 0.02. The field
strength is 0.2 tesla. The depicted trajectories correspond to 0.5 MeV electrons (a)
and 3 MeV positrons (b) that initially move in a direction forming an angle of 45 deg
with the field. We see that the numerical algorithm is quite accurate for small path
lengths, but it deteriorates rapidly for increasing s. In principle, the accuracy of the
algorithm can be improved by reducing the value of δv, i.e. the length of the step length.
In practice, however, this is not convenient because it implies a considerable increase of
numerical work, which can be easily avoided.

C.2 Exact tracking in homogeneous magnetic fields

In our first-order tracking algorithm [see eqs. (C.14) and (C.16)], the effects of the
electric and magnetic fields are uncoupled, i.e. they can be evaluated separately. For
uniform electric fields, the algorithm offers a satisfactory solution since it usually admits
relatively large step lengths. In the case of uniform magnetic fields (with E = 0), the
kinetic energy is a constant of the motion and the only effective constraint on the
step length is that the change in direction |∆v|/v0 has to be small. Since the particle
trajectories on the plane perpendicular to the field B are circles and the first-order
algorithm generates each step as a parabolic segment, we need to move in sub-steps of
length much less than the radius R (i.e. δv must be given a very small value) and this
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Figure C.3: Trajectories of electrons and positrons in a uniform magnetic field of 0.2 tesla.

Continuous curves are exact trajectories calculated from eq. (C.30). The short-dashed lines

are obtained by using the numerical tracking method described in the text with δv = 0.02.

Long-dashed curves are the results from the tracking algorithm with δv = 0.005. a: electrons,

E0 = 0.5 MeV, θ = 45 deg. b: positrons, E0 = 3 MeV, θ = 45 deg.

makes the calculation slow. On the other hand, the action of the uniform magnetic field
is described by simple analytical expressions [eqs. (C.30) and (C.31)], that are amenable
for direct use in the simulation code. These arguments suggest the following obvious
modification of the tracking algorithm.

As before, we assume that the fields are essentially constant along each trajectory
step and write

r(s) = r0 + sv̂0 + (∆r)E + (∆r)B, (C.32)

where (∆r)E and (∆r)B are the displacements caused by the electric and magnetic
fields, respectively. For (∆r)E we use the first-order approximation [see eq. (C.14)],

(∆r)E = s2 1

2

Z0e [E0 − β2
0(E0·v̂0)v̂0]

mec2 γ0β2
0

. (C.33)

The displacement caused by the magnetic field is evaluated using the result (C.30), i.e.

(∆r)B = − s

v0
v0⊥ +

1

ω
[1− cos(sω/v0)] (ω̂×v0⊥) +

1

ω
sin(sω/v0)v0⊥ (C.34)

with

ω ≡ −Z0ecB0

E0
, and v0⊥ = v0 − (v0·ω̂)ω̂. (C.35)

Similarly, the particle velocity along the step is expressed as

v(s) = v0 + (∆v)E + (∆v)B (C.36)
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with [see eqs. (C.16) and (C.31)]

(∆v)E = s
Z0e [E0 − β2

0(E0 ·v̂0)v̂0]

mec γ0β0
(C.37)

and
(∆v)B = [cos(sω/v0)− 1]v0⊥ + sin(sω/v0)(ω̂×v0⊥). (C.38)

In our implementation of this tracking algorithm, the allowed step lengths s are
limited by the following constraints [see eqs. (C.19) and (C.20)]

|E(r(s))− E(r0)|
|E(r0)|

< δE � 1,
|B(r(s))−B(r0)|

|B(r0)|
< δB � 1 (C.39)

and ∣∣∣∣∣
E(s)−E0

E0

∣∣∣∣∣ < δE � 1,

∣∣∣(∆v)E + (∆v)B

∣∣∣

v0
< δv � 1. (C.40)

The algorithm is robust, i.e. the accuracy of the generated trajectories increases when
the δ-parameters are reduced. In many practical cases, a good compromise between
accuracy and simulation speed is obtained by setting δE = δB = δE = δv = 0.02.
Notice that, in the case of a uniform magnetic field, the tracking algorithm is now
exact, irrespective of the step length.

This tracking algorithm has been implemented in the subroutine package penfield,
which is devised to work linked to penelope and pengeom. To simulate radiation
transport in a given field/material configuration, the user must provide the steering
main program as well as specific routines that define the EM field (see the examples and
comments in the source file PENFIELD.F).
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