
File: MANUAL.TXT

PPPPP EEEEEE N N EEEEEE L OOOO PPPPP EEEEEE
P P E NN N E L O O P P E
P P E N N N E L O O P P E
PPPPP EEEE N N N EEEE L O O PPPPP EEEE
P E N NN E L O O P E
P EEEEEE N N EEEEEE LLLLLL OOOO P EEEEEE

(version 2003).

F. Salvat, J.M. Fernandez-Varea and J. Sempau

Facultat de Fisica (ECM). Universitat de Barcelona.
Diagonal 647. 08028 Barcelona. Spain

---- GENERAL INFORMATION ----

The FORTRAN 77 code system PENELOPE performs Monte Carlo simulation
of coupled electron-photon transport in arbitrary materials. Initially,
it was devised to simulate the PENetration and Energy LOss of Positrons
and Electrons in matter; photons were introduced later. The adopted
scattering model allows the simulation of electron/positron and photon
transport in the energy range from 100 eV to 1 GeV. PENELOPE generates
random electron-photon showers in complex material structures consisting
of any number of distinct homogeneous regions (bodies) of different
compositions.

PENELOPE allows the user to write her/his own simulation program,
with arbitrary geometry and scoring, without previous knowledge of the
intricate features of scattering and transport theories. PENELOPE has
been devised to do a great part of the simulation work. The MAIN
program, which is provided by the user, only has to control the
evolution of the simulated tracks and keep score of the relevant
quantities.

For the sake of brevity, we use the term ’particle’ to refer to
either electrons, positrons or photons. Interactions with the medium
cause particles to lose energy, change their direction of movement and,
occasionally, produce secondary particles. PENELOPE incorporates a
scattering model that combines information from numerical databases with
simple analytical differential cross section models. The considered
interactions and the corresponding differential cross sections are the
following:
A) Elastic scattering of electrons and positrons: MW differential

cross section model with parameters determined from the mean free
path and first and second transport mean free paths read from the

input material definition file.
B) Inelastic collisions of electrons and positrons: Born differential

cross section obtained from the Sternheimer-Liljequist generalized
oscillator strength model, including the density effect correction.
The differential cross section is renormalized to reproduce the
collision stopping power read from the input file.

C) Bremsstrahlung emission by electrons and positrons: the energy of
the emitted photons is sampled from numerical energy-loss spectra
obtained from the scaled cross-section tables of Seltzer and Berger,
renormalized to reproduce the radiative stopping power read from the
input file.
The intrinsic angular distribution of emitted photons is described
by an analytical expression with parameters determined by fitting
the benchmark partial-wave shape functions of Kissel, Quarles and
Pratt.

D) Positron annihilation: Heitler differential cross section for
two-photon annihilation in flight.

E) Inner-shell ionization by electron and positron impact: total cross
sections obtained from an optical-data (virtual quanta) model.
Correlations between the energy lost by the projectile and the
emitted fluorescent radiation (Auger electrons and x-rays) are
disregarded.

F) Coherent (Rayleigh) scattering of photons: Born differential cross
section with an analytical atomic form factor.

G) Incoherent (Compton) scattering of photons: differential cross
section calculated using the relativistic impulse approximation with
analytical one-electron Compton profiles.

H) Photoelectric absorption of photons: total atomic cross sections and
K- and L-shell partial cross sections from the LLNL Evaluated Photon
Data Library. The initial direction of photoelectrons is sampled
from Sauter’s K-shell hydrogenic differential cross section.

I) Electron-positron pair production: total cross sections obtained
from the XCOM program of Berger and Hubbell. The initial kinetic
energies of the produced particles are sampled from the Bethe-
Heitler differential cross section, with exponential screening and
Coulomb correction, empirically modified to improve its reliability
for energies near the pair-production threshold.

The simulation of photon transport follows the usual detailed
procedure, i.e. all the interaction events in a photon history are
simulated in chronological succession.

The simulation of electron and positron tracks is performed by means
of a mixed (class II) algorithm. Individual hard elastic collisions,
hard inelastic interactions and hard bremsstrahlung emission are
simulated in a detailed way, i.e. by random sampling from the
corresponding restricted differential cross sections. The track of a
particle between successive hard interactions, or between a hard
interaction and the crossing of an interface (i.e. a surface that
separates two media with different compositions) is generated as a
series of steps of limited length (see below). The combined effect of
all (usually many) soft interactions that occur along a step is

2

simulated as a single ’artificial’ soft event (a random hinge) where the
particle loses energy and changes its direction of motion. The energy
loss and angular deflection at the hinge are generated according to a
multiple scattering approach that yields energy loss distributions and
angular distributions with the correct mean and variance.

Secondary particles emitted with initial energy larger than the
absorption energy -see below- are stored, and simulated after completion
of each primary track. Secondary particles are produced in direct
interactions (hard inelastic collisions, hard bremsstrahlung emission,
positron annihilation, Compton scattering, photoelectric absorption and
pair production) and as fluorescent radiation (characteristic x-rays and
Auger electrons). PENELOPE simulates the emission of characteristic
x-rays and Auger electrons that result from vacancies produced in
K-shells and L-subshells by photoelectric absorption and Compton
scattering of photons and by electron/positron impact. The relaxation of
these vacancies is followed until the K- and L-shells are filled up,
i.e. until the vacancies have migrated to M and outer shells. The
adopted transition probabilities were extracted from the LLNL Evaluated
Atomic Data Library.

A detailed description of the cross sections and simulation methods
adopted in PENELOPE, and a discussion of their reliability and domains
of validity, is given in the following references:
- J. Baro, J. Sempau, J.M. Fernandez-Varea and F. Salvat, ’PENELOPE:
An algorithm for Monte Carlo simulation of the penetration and energy
loss of electrons and positrons in matter’. Nucl. Instrum. and Meth.
B100 (1995) 31-46.

- J. Sempau, E. Acosta, J. Baro, J.M. Fernandez-Varea and F. Salvat,
’An algorithm for Monte Carlo simulation of coupled electron-photon
transport’. Nucl. Instrum. and Meth. B132 (1997) 377-390.

- F. Salvat, J.M. Fernandez-Varea, E. Acosta and J. Sempau, ’PENELOPE,
A Code System for Monte Carlo Simulation of Electron and Photon
Transport’. OECD Nuclear Energy Agency (Issy-les-Moulineaux, France;
2001).
The PDF version of this document can be downloaded from the web site
of the Nuclear Energy Agency Data Bank (www.nea.fr).

---- MATERIAL DATA FILE ----

PENELOPE reads the required information about each material (which
includes tables of physical properties, interaction cross sections and
physical information) from the input material data file (identified as
UNIT=IRD in the code source listing). The material data file is created
by means of the auxiliary program MATERIAL, which extracts atomic
interaction data from the database. This program runs interactively and
is self-explanatory. Basic information about the considered material is
supplied by the user from the keyboard, in response to prompts from the
program. The required information is: 1) chemical composition (i.e.
elements present and stoichiometric index of each element), 2) mass
density, 3) mean excitation energy and 4) energy and oscillator strength

3

of plasmon excitations. Alternatively, for a set of 279 prepared
materials, the program MATERIAL can read data directly from the
PDCOMPOS.TAB file (see below). Alloys and mixtures are treated as
compounds, with stoichiometric indices equal, or proportional, to the
percent number of atoms of the elements.

The database consists of the following 465 ASCII files,
-- PDATCONF.TAB: atomic ground-state configurations, ionization energies

and central values of the one-electron shell Compton profiles for
the elements, from hydrogen to uranium.

-- PDCOMPOS.TAB: prepared composition data for 279 different materials
of radiological interest (adapted from Berger, NISTIR 4999, 1992).

-- PDEFLIST.TAB: list of materials included in the PDCOMPOS.TAB file,
with their identification numbers (see the appendix).

-- PDRELAX.TAB: data on atomic relaxation, extracted from the LLNL
Evaluated Atomic Data Library. To describe atomic transitions,
each atomic shell is assigned a numerical label IS as follows;

1 = K (1s1/2), 11 = N2 (4p1/2), 21 = O5 (5d5/2),
2 = L1 (2s1/2), 12 = N3 (4p3/2), 22 = O6 (5f5/2),
3 = L2 (2p1/2), 13 = N4 (4d3/2), 23 = O7 (5f7/2),
4 = L3 (2p3/2), 14 = N5 (4d5/2), 24 = P1 (6s1/2),
5 = M1 (3s1/2), 15 = N6 (4f5/2), 25 = P2 (6p1/2),
6 = M2 (3p1/2), 16 = N7 (4f7/2), 26 = P3 (6p3/2),
7 = M3 (3p3/2), 17 = O1 (5s1/2), 27 = P4 (6d3/2),
8 = M4 (3d3/2), 18 = O2 (5p1/2), 28 = P5 (6d5/2),
9 = M5 (3d5/2), 19 = O3 (5p3/2), 29 = Q1 (7s1/2),

10 = N1 (4s1/2), 20 = O4 (5d3/2), 99 = outer shells (>N1).
In the case of non-radiative transitions the label 99 indicates
shells beyond the M5 shell.

-- 92 files named PDEELZZ.TAB with ZZ=atomic number (01-92). These files
contain electron and positron elastic scattering data. The same
grid of energies is used for all elements.

-- 92 files named PDEBRZZ.TAB that contain electron bremsstrahlung data.
These files were produced from the database of Seltzer and Berger.
The same grid of energies for all elements.

-- PDBRANG.TAB: parameters of the intrinsic angular distribution of
bremsstrahlung photons. Determined by fitting the set of benchmark
partial-wave shape functions of Kissel, Quarles and Pratt.

-- 92 files named PDGPPZZ.TAB with cross sections for pair production
in the field of neutral atoms (sum of pair and triplet contribu-
tions), obtained from the XCOM program of Berger and Hubbell. The
same energy grid for all elements.

-- 92 files named PDGPHZZ.TAB, containing total atomic photoelectric
cross sections and partial cross sections for inner (K and L)
shells, generated from the EPDL97 data library of Cullen et al.

-- 92 files named PDEINZZ.TAB with cross sections for ionization of
inner (K and L) shells by electron and positron impact.

Notice that PENELOPE does not work for elements with atomic number Z>92.

The energy-dependent quantities tabulated in the input material data
file determine the most relevant characteristics of the scattering
model. Thus, the MW differential cross section for electron and positron

4

elastic scattering is completely defined by the mean free paths and
transport mean free paths. Collision and radiative stopping powers read
from the input file are used to renormalize the built-in analytical
differential cross sections, i.e. these are multiplied by an
energy-dependent factor such that the input stopping powers are exactly
reproduced. The mean free paths used in the simulation of photon
transport are directly obtained from the input cross sections. Notice
that one can modify the scattering model, without altering the program,
by simply modifying these energy-dependent quantities in the input
material data file.

To simulate geometrical structures with several materials, the
corresponding material data files generated by the program MATERIAL must
be catenated in a single input file. PENELOPE labels the M-th material
in this file with the index MAT=M, which is used during the simulation
to identify the material where the particle moves. The maximum number of
different materials that PENELOPE can handle simultaneously is fixed by
the parameter MAXMAT, which in the present version is set equal to 10.
The required memory storage is roughly proportional to the value of this
parameter. The user can increase MAXMAT by editing the program source
files. Notice that the value of MAXMAT _must_ be the same in all
subprograms.

---- STRUCTURE OF THE MAIN PROGRAM ----

As mentioned above, PENELOPE must be complemented with a steering
MAIN program, which controls the geometry and the evolution of tracks,
keeps score of the relevant quantities, and performs the required
averages at the end of the simulation.

The connection of PENELOPE and the MAIN program is done via the named
common block
--> COMMON/TRACK/E,X,Y,Z,U,V,W,WGHT,KPAR,IBODY,MAT,ILB(5)
that contains the following particle state variables and labels:

KPAR: kind of particle (1: electron, 2: photon, 3: positron).
E: current particle energy (eV) (kinetic energy for electrons and

positrons).
X, Y, Z: position coordinates (cm).
U, V, W: direction cosines of the direction of movement.
WGHT: in analogue simulations, this is a dummy variable. When using

variance reduction methods, the particle weight can be stored
here.

IBODY: this auxiliary flag serves to identify different bodies in
complex material structures.

MAT: material where the particle moves (i.e. the one in the body
labelled IBODY).

ILB(5): an auxiliary array of 5 labels that describe the origin of
secondary particles. It is useful e.g. in studying partial
contributions from particles originated by a given process.

The position coordinates (X,Y,Z) and the direction cosines (U,V,W) of

5

the direction of movement are referred to the ’laboratory’ frame, which
can be arbitrarily defined. During the simulation, all energies and
lengths are expressed in eV and cm, respectively.

The label KPAR identifies the kind of particle: KPAR=1, electron;
KPAR=2, photon; KPAR=3, positron. A particle that moves in material M is
assumed to be absorbed when its energy becomes less than a value
EABS(KPAR,M) (in eV) specified by the user. Positrons are assumed to
annihilate, by emission of two photons, when absorbed. In dose
calculations, EABS(KPAR,M) should be determined so that the residual
range of particles with this energy is smaller than the dimensions of
the volume bins used to tally the spatial dose distribution. As the
interaction database is limited to energies above 100 eV, absorption
energies EABS(KPAR,M) must be larger than this value.

The transport algorithm for electrons and positrons in each material
M is controlled by the following simulation parameters,

C1(M): Average angular deflection, 1-<cos(theta)>, produced by
multiple elastic scattering along a path length equal to the
mean free path between hard elastic events. C1(M) should be
of the order of 0.05; its maximum allowed value is 0.2.

C2(M): Maximum average fractional energy loss between consecutive
hard elastic events. Usually, a value of the order of 0.05
is adequate. The maximum allowed value of C2(M) is 0.2.

WCC(M): Cutoff energy loss (in eV) for hard inelastic collisions.
WCR(M): Cutoff energy loss (in eV) for hard bremsstrahlung emission.

These parameters determine the accuracy and speed of the simulation. To
ensure accuracy, C1(M) and C2(M) should have small values (of the order
of 0.01 or so). With larger values of C1(M) and C2(M) the simulation
gets faster, at the expense of a certain loss in accuracy. The cutoff
energies WCC(M) and WCR(M) mainly influence the simulated energy
distributions. The simulation speeds up by using larger cutoff energies,
but if these are too large, the simulated energy distributions may be
somewhat distorted. In practice, simulated energy distributions are
found to be insensitive to the adopted values of WCC(M) and WCR(M) when
these are less than the bin width used to tally the energy histograms.
Thus, the desired energy resolution determines the maximum allowed
cutoff energies. The reliability of the whole simulation rests on a
single condition: the number of steps (or random hinges) per primary
track must be ’statistically sufficient’, i.e. larger than 10 or so.

The simulation package is initialized from the MAIN program with the
statement
--> CALL PEINIT(EMAX,NMAT,IRD,IWR,INFO)
Subroutine PEINIT reads the data files of the different materials,
evaluates relevant scattering properties and prepares look-up tables of
energy-dependent quantities that are used during the simulation. Its
input arguments are:

EMAX: Maximum energy (in eV) of the simulated particles. Notice that
if the primary particles are positrons with initial kinetic
energy EP, the maximum energy of annihilation photons equals
EMAX=1.21*(EP+5.11E5) eV; in this special case, the maximum

6

energy is larger than the initial kinetic energy.
NMAT: Number of different materials (less than or equal to MAXMAT).
IRD : Input unit.
IWD : Output unit.
INFO: Determines the amount of information that is written on the

output file. Minimal for INFO=0 and increasingly detailed for
INFO=1, 2, ...

For the preliminary computations, PEINIT needs to know the absorption
energies EABS(KPAR,M) and the simulation parameters C1(M), C2(M), WCC(M)
and WCR(M). This information is introduced through the named common
block
--> COMMON/CSIMPA/EABS(3,MAXMAT),C1(MAXMAT),C2(MAXMAT),WCC(MAXMAT),

1 WCR(MAXMAT)
that has to be loaded before invoking the PEINIT subroutine. Notice that
we can employ different values of the simulation parameters for
different materials. This possibility can be used to speed up the
simulation in regions of lesser interest.

PENELOPE has been structured in such a way that a particle track is
generated as a sequence of track segments (free flights or ’jumps’); at
the end of each segment the particle suffers an interaction event (a
’knock’) where it loses energy, changes its direction of movement and,
in certain cases, produces secondary particles. Electron-photon showers
are simulated by successively calling the following subroutines:
--> SUBROUTINE CLEANS

Initiates the secondary stack.
--> SUBROUTINE START

For electrons and positrons, this subroutine forces the following
interaction event to be a soft artificial one. It must be called
before starting a new -primary or secondary- track and also when
a track crosses an interface.

Calling START is strictly necessary only for electrons and
positrons; for photons this subroutine has no physical effect.
However, it is advisable to call START for any kind of particle
since it checks whether the energy is within the expected range,
and can thus help to detect ’bugs’ in the MAIN program.

--> SUBROUTINE JUMP(DSMAX,DS)
Determines the length DS of the track segment to the following
interaction event.

The input parameter DSMAX defines the maximum allowed step
length for electrons/positrons; for photons, it has no effect. To
limit the step length, PENELOPE places delta interactions along
the particle track. These are fictitious interactions that do not
alter the physical state of the particle. Their only effect is to
interrupt the sequence of simulation operations (which requires
altering the values of inner control variables to allow the
simulation to be resumed consistently). The combined effect of
the soft interactions that occur along the step preceding the
delta interaction is simulated by the usual random hinge method.
Owing to the Markovian nature of hard interactions, the
introduction of delta interactions does not alter the
distribution of path lengths between consecutive hard events.

7

As mentioned above, to ensure the reliability of the mixed
simulation algorithm, the number of artificial soft events per
particle track in each body should be larger than, say, 10. For
relatively thick bodies (say, thicker than 10 times the mean free
path between hard interactions), this condition is automatically
satisfied. In this case we can switch off the step-length control
by setting DSMAX=1.0D35 (or any other very large value). On the
other hand, when the particle moves in a thin body, DSMAX should
be given a value of the order of one tenth of the ’thickness’ of
that body. Limiting the step length is also necessary to simulate
particle transport in external electromagnetic fields.

--> SUBROUTINE KNOCK(DE,ICOL)
Simulates an interaction event, computes new energy and direction
of movement, and stores the initial states of the generated
secondary particles, if any. On output, the arguments are:

DE: deposited energy in the course of the event,
ICOL: kind of event that has been simulated, according to the
following convention,
-- Electrons (KPAR=1)
ICOL=1, artificial soft event (random hinge).

=2, hard elastic collision.
=3, hard inelastic collision.
=4, hard bremsstrahlung emission.
=5, inner-shell ionization.

-- Photons (KPAR=2):
ICOL=1, coherent (Rayleigh) scattering.

=2, incoherent (Compton) scattering.
=3, photoelectric absorption.
=4, electron-positron pair production.

-- Positrons (KPAR=3):
ICOL=1, artificial soft event (random hinge).

=2, hard elastic collision.
=3, hard inelastic collision.
=4, hard bremsstrahlung emission.
=5, inner-shell ionization.
=6, annihilation.

For electrons and positrons ICOL=7 corresponds to delta
interactions. The value ICOL=8 is used for the ’auxiliary’
interactions (an additional mechanism that may be defined by
the user, e.g. to simulate photonuclear interactions).

--> SUBROUTINE SECPAR(LEFT)
Sets the initial state of a secondary particle and removes it
from the secondary stack. The output value LEFT is the number of
secondary particles remaining in the stack at the calling time.

--> SUBROUTINE STORES(E,X,Y,Z,U,V,W,WGHT,KPAR,ILB)
Stores a particle in the secondary stack. Arguments have the same
meaning as in COMMON/TRACK/, but refer to the particle that is
being stored. The variables IBODY and MAT are set equal to the
current values in COMMON/TRACK/.

Calling STORES from the MAIN program is useful e.g. to store
particles produced by splitting, a variance-reduction method.

8

The sequence of calls to generate a random track is independent of
the kind of particle that is being simulated. The generation of random
showers proceeds as follows:
1) Set the initial state of the primary particle, i.e. assign values to

the state variables KPAR, E, position coordinates =(X,Y,Z) and
direction of movement =(U,V,W). Specify the body and material
where the particle moves by defining the values of IBODY and MAT,
respectively. Optionally, set the values of WGHT and ILB.

2) CALL CLEANS to initialize the secondary stack.
3) CALL START to initiate the simulation of the track.
4) CALL JUMP(DSMAX,DS) to determine the length DS of the next track

segment (for electrons and positrons, DS will never exceed the input
value DSMAX).

5) Compute the position of the following event:
-- If the track has crossed an interface, stop the particle at the

position where the track intersects the interface.
Change to the new body and material (the ones behind the
interface) by redefining the values of IBODY and MAT.
-- When the particle escapes from the system, the simulation of

the track has been finished.
Increment counters and go to step 7.

Go to step 3.
6) CALL KNOCK(DE,ICOL) to simulate the following event.

-- If the energy is less than EABS(KPAR,MAT), end the track,
increment counters and go to step 7.

-- Go to step 4.
7) CALL SECPAR(LEFT) to start the track of a particle in the secondary

stack (this particle is then automatically removed from the stack).
-- If LEFT>0, go to step 3 (the initial state of a secondary

particle has already been set).
-- If LEFT=0, the simulation of the shower produced by the primary

particle has been completed. Go to step 1 to generate a new
primary track (or leave the simulation loop after simulating a
sufficiently large number of showers).

Notice that subroutines JUMP and KNOCK keep the position coordinates
unaltered; the positions of successive events have to be followed by the
MAIN program (simply by performing a displacement of length DS along the
direction of movement after each call to JUMP). The energy of the
particle is automatically reduced by subroutine KNOCK, after generating
the energy loss from the relevant probability distribution function.
KNOCK also modifies the direction of movement according to the
scattering angles of the simulated event. Thus, at the output of KNOCK,
the values of the energy E, the position (X,Y,Z) and the direction of
movement (U,V,W) define the particle state immediately after the
interaction event.

In order to avoid problems related to possible overflows of the
secondary stack, when a secondary particle is produced its energy is
temporarily assumed to be locally deposited. Hence, the energy E of a
secondary must be subtracted from the corresponding dose counter when
the secondary track is started. Occasional overflows of the secondary

9

stack are remedied by eliminating the less energetic secondary electron
or photon in the stack (positrons are not eliminated since they will
eventually produce quite energetic annihilation radiation). As the main
effect of secondary particles is to spread out the energy deposited by
the primary one, the elimination of the less energetic secondary
electrons and photons should not invalidate local dose calculations.

It is the responsibility of the user to avoid calling subroutines
JUMP and KNOCK with energies outside the interval (EABS(KPAR,M),EMAX).
This could cause inaccurate interpolation of the cross sections. The
simulation is aborted (and an error message is printed in unit 6) if the
conditions EABS(KPAR,M)<E<EMAX are not satisfied when a primary or
secondary track is started (whenever subroutine START is called at the
beginning of that track).

Pseudo-random numbers uniformly distributed in the interval (0,1) are
supplied by function RAND(DUMMY) that implements a 32-bit generator due
to L’Ecuyer. The seeds of the generator (two integers) are transferred
from the main program through the named common block RSEED. The random
number generator can be changed by merely replacing that FUNCTION
subprogram (the new one has to have a single dummy argument). Some
compilers incorporate an intrinsic random number generator with the same
name (but with different argument lists). To avoid conflict, the user
should declare RAND as an external function in all subprograms that call
it.

Owing to the long execution time, the code will usually be run in
batch mode. It is advisable to limit the simulation time rather than the
number of tracks to be simulated, since the time required to follow each
track is difficult to predict. To this end, one can link a clock routine
to the simulation code and stop the computation after exhausting the
allotted time.

**** Notice that
1) In the simulation routines, real and integer variables are declared

as DOUBLE PRECISION and INTEGER*4, respectively. To prevent type
mismatches, it is prudent to use the following IMPLICIT statement

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)
in the MAIN program and other user program units.

2) The MAIN program must include the following three common blocks:
COMMON/TRACK/E,X,Y,Z,U,V,W,WGHT,KPAR,IBODY,MAT,ILB(5)
COMMON/CSIMPA/EABS(3,MAXMAT),C1(MAXMAT),C2(MAXMAT),WCC(MAXMAT),

1 WCR(MAXMAT)
COMMON/RSEED/ISEED1,ISEED2

As mentioned above, ILB(5) is an array of labels that describe the
origin of secondary particles. It is assumed that the user has set
ILB(1) equal to 1 (one) when a primary (source) particle history is
initiated. PENELOPE then assigns the following labels to each particle
in a shower;
ILB(1): generation of the particle. 1 for primary particles, 2 for their

direct descendants, etc.

10

ILB(2): kind KPAR of the parent particle, only if ILB(1)>1 (secondary
particles).

ILB(3): interaction mechanism ICOL (see above) that originated the
particle, only when ILB(1)>1.

ILB(4): a non-zero value identifies particles emitted from atomic
relaxation events and describes the atomic transition where the
particle was released. The numerical value is

= Z*10**6+IS1*10**4+IS2*100+IS3,
where Z is the atomic number of the parent atom and IS1, IS2 and
IS3 are the numerical labels of the active electron shells (see
above).

ILB(5): this label can be defined by the user; it is transferred to all
descendants of the particle.

The ILB label values are delivered by subroutine SECPAR, through common
TRACK, and remain unaltered during the simulation of the track.

The subroutine package PENELOPE.F is intended to perform analogue
simulation and, therefore, does not include any variance reduction
methods. The source file PENVARED.F contains subroutines to perform
splitting (VSPLIT), Russian roulette (VKILL) and interaction forcing
(JUMPF, KNOCKF) in an automatic way. Splitting and Russian roulette do
not require changes in PENELOPE; the necessary manipulations on the
numbers and weights WGHT of particles could be done directly in the main
program. Particles resulting from splitting are stored in the secondary
stack by calling subroutine STORES. Interaction forcing implies changing
the mean free paths of the forced interactions and, at the same time,
redefining the weights of the generated secondary particles. In
principle, it is possible to apply interaction forcing from the MAIN
program by manipulating the interaction probabilities, that are made
available through the named common block CJUMP0. These manipulations are
performed automatically by calling the subroutines JUMPF and KNOCKF
instead of JUMP and KNOCK.

---- QUADRIC GEOMETRY PACKAGE ----

PENELOPE incorporates the geometry subroutine package PENGEOM, which
performs particle tracking in material systems consisting of homogeneous
regions (bodies) limited by quadric surfaces. The structure and
operation of PENGEOM are described in detail in chapter 5 of the
write-up. Here we just mention the information that is essential for
using this package.

A quadric surface is defined by the implicit equation
F(x,y,z) = AXX*x*x+AXY*x*y+AXZ*x*z+AYY*y*y

+AYZ*y*z+AZZ*z*z+AX*x+AY*y+AZ*z+A0 = 0,
which includes planes, pairs of planes, spheres, cylinders, cones,
ellipsoids, paraboloids, hyperboloids, etc. Positions are referred to
the laboratory coordinate system; all lengths are in cm.

In practice, limiting surfaces are frequently known in ’graphical’
form and it may be very difficult to obtain the corresponding quadric

11

parameters. Try with a simple example: calculate the parameters of a
circular cylinder of radius R such that its symmetry axis goes through
the origin and is parallel to the vector (1,1,1). To facilitate the
definition of the geometry, each quadric surface can be specified either
through its implicit equation or by means of its reduced form, which is
easily visualized, and a few simple geometrical transformations. A
reduced quadric is defined by an expression of the form

FR(x,y,z) = I1*x*x+I2*y*y+I3*z*z+I4*z+I5 = 0,
where the coefficients (indices) I1, I2, I3, I4 and I5 can only take the
values -1, 0 or 1. Notice that reduced quadrics have central symmetry
about the z-axis, i.e. FR(-x,-y,z)=FR(x,y,z). The possible (real)
reduced quadrics are:

reduced form indices quadric

z-1=0 0 0 0 1 -1 plane
z*z-1=0 0 0 1 0 -1 pair of parallel planes
x*x+y*y+z*z-1=0 1 1 1 0 -1 sphere
x*x+y*y-1=0 1 1 0 0 -1 cylinder
x*x+y*y-z*z=0 1 1 -1 0 0 cone
x*x-y*y-1=0 1 -1 0 0 -1 hyperbolic cylinder
x*x+y*y-z*z-1=0 1 1 -1 0 -1 one sheet hyperboloid
x*x+y*y-z*z+1=0 1 1 -1 0 +1 two sheet hyperboloid
x*x-z=0 1 0 0 -1 0 parabolic cylinder
x*x+y*y-z=0 1 1 0 -1 0 paraboloid
x*x-y*y-z=0 1 -1 0 -1 0 hyperbolic paraboloid
(... and permutations of x, y and z that preserve the central

symmetry with respect to the z-axis).

A quadric is obtained from the corresponding reduced form by applying
the following transformations (in the quoted order):
1) An expansion along the directions of the axes, defined by the

scaling factors X-SCALE=a, Y-SCALE=b and Z-SCALE=c. The equation of
the scaled quadric is
F(x,y,z) = I1*(x/a)**2+I2*(y/b)**2+I3*(z/c)**2+I4*(z/c)+I5 = 0.
Thus, for instance, the reduced sphere transforms into an ellipsoid
with semiaxes equal to the scaling factors.

2) A rotation, defined through the Euler angles OMEGA, THETA and PHI,
which specify a sequence of rotations about the coordinate axes:
first a rotation of angle OMEGA about the z-axis, followed by a
rotation of angle THETA about the y-axis and, finally, a rotation
of angle PHI about the z-axis. Notice that rotations are active;
the coordinate axes remain fixed and only the quadric surface is
rotated. A positive rotation about a given axis would carry a
right-handed screw in the positive direction along the axis.
Positive (negative) angles define positive (negative) rotations.
The global rotation transforms a plane perpendicular to the
z-axis into a plane perpendicular to the direction defined by
the polar and azimuthal angles THETA and PHI, respectively. The
first rotation R(z,OMEGA) has no effect when the initial (expanded)
quadric is symmetric about the z-axis.

3) A shift, defined by the components of the displacement vector

12

(X-SHIFT,Y-SHIFT,Z-SHIFT).
Thus, a quadric is completely specified by giving the set of indices
(I1,I2,I3,I4,I5), the scale factors (X-SCALE,Y-SCALE,Z-SCALE), the Euler
angles (OMEGA,THETA,PHI) and the displacement vector (X-SHIFT,Y-SHIFT,
Z-SHIFT). Any quadric surface can be expressed in this way.

A point with coordinates (x,y,z) is said to be inside a surface
F(x,y,z)=0 if F(x,y,z)<0, and outside it if F(x,y,z)>0. A quadric
surface divides the space into two exclusive regions that are identified
by the sign of F(x,y,z), the surface side pointer. A body can be defined
by its limiting quadric surfaces and corresponding side pointers (+1 or
-1). Previously defined bodies can also be used to delimit a new body;
this is very convenient when the new body contains inclusions or when it
is penetrated by other bodies. However, the use of limiting bodies may
lengthen the calculation.

To speed up the geometry operations, the bodies of the material
system can be grouped into modules (connected volumes, limited by
quadric surfaces, that contain one or several bodies); modules can in
turn form part of larger modules, and so on. This hierarchic modular
structure allows a reduction of the work of the geometry routines, which
becomes more effective when the complexity of the system increases.

The geometry is defined from the input file (UNIT=IRD in the source
code), which consists of a number of data sets that define the different
elements (surfaces, bodies and modules). For details on the structure of
the geometry definition file see section 5.4 in the write-up (see also
the examples in directory GVIEW). Except for trivial cases, the
correctness of the geometry definition is difficult to check and,
moreover, 3D structures with interpenetrating bodies are difficult to
visualize. A pair of programs, named GVIEW2D and GVIEW3D, have been
written to display the geometry on the computer screen. These programs
use specific computer graphics software and, therefore, they are not
portable. The executable files included in the PENELOPE distribution
package run on personal computers under Microsoft Windows; they are
simple and effective tools for debugging the geometry definition file.

In practical simulations, the following PENGEOM routines are to be
invoked from the MAIN program:
--> SUBROUTINE GEOMIN(PARINP,NPINP,NMAT,NBOD,IRD,IWR)

Reads geometry data from the input file and initializes the
geometry package.
Input arguments:

PARINP ... Array containing optional parameters, which may
replace the ones entered from the input file. This
array must be declared in the MAIN program, even
when NPINP=0.

NPINP Number of parameters defined in PARINP (positive).
IRD Input file unit (opened in the main program).
IWR Output file unit (opened in the main program).

Output arguments:
NMAT Number of different materials in full bodies

13

(excluding void regions).
NBOD Number of defined bodies.

The program is stopped when a clearly incorrect input datum is
found, the wrong quantity appears in the last printed line.

--> SUBROUTINE LOCATE
Determines the body that contains the point with coordinates
(X,Y,Z).
Input values (through COMMON/TRACK/):

X, Y, Z ... particle position coordinates.
U, V, W ... direction cosines of the particle velocity.

Output values (through COMMON/TRACK/):
IBODY Body where the particle moves.
MAT Material in IBODY. The output MAT=0 indicates that

the particle is in a void region.
--> SUBROUTINE STEP(DS,DSEF,NCROSS)

This subroutine handles the geometrical part of the track
simulation. The particle starts from the point (X,Y,Z) and
proceeds to travel a length DS in the direction (U,V,W) within
the material where it moves. STEP displaces the particle and
stops it at the end of the step, or just after entering a new
material. The output value DSEF is the distance travelled within
the initial material. If the particle enters a void region
(MAT=0), STEP continues the particle track, as a straight
segment, until it penetrates a material body or leaves the system
(the path length through void regions is not included in DSEF).
When the particle arrives from a void region (MAT=0), it is
stopped after entering the first material body. The output value
MAT=0 indicates that the particle has escaped from the system.
Input-output values (through COMMON/TRACK/):

X, Y, Z ... Input: coordinates of the initial position.
Output: coordinates of the final position.

U, V, W ... direction cosines of the displacement. They
are kept unaltered

IBODY Input: initial body, i.e. the one that contains the
initial position.
Output: final body.

MAT material in body IBODY (automatically changed when
the particle crosses an interface).

Input argument:
DS distance to travel (unaltered).

Output arguments:
DSEF travelled path length before leaving the initial

material or completing the jump (less than DS if
the track crosses an interface).

NCROSS number of interface crossings (=0 if the particle
does not leave the initial material, greater than 0
if the particle enters a new material).

Before starting the simulation, the user should make sure that the
geometry has been defined correctly. To this end, subroutine GEOMIN
writes a geometry report in the output file (UNIT=IWR), which is a

14

duplicate of the input definition file. When the input file is formally
incorrect, the program stops and an error message is issued in unit IWR,
usually just after printing the conflicting information (i.e. very
likely the error is in the last printed line of the geometry report).
When the geometry definition is formally correct, the only differences
between the input file and the output report are the labels assigned to
the different surfaces, bodies and modules; in the output report, these
elements are numbered in strictly increasing order. It is important to
bear in mind that PENGEOM internally uses this sequential labelling to
identify bodies and surfaces. Knowing the internal label assigned to
each element is necessary for scoring purposes, e.g. to determine the
distribution of energy deposited within a particular body.

---- EXAMPLES OF MAIN PROGRAMS ----

In general, the user must provide the MAIN program for each specific
geometry. The distribution package includes various examples of MAIN
programs for simple geometries (slab and cylindrical) and for general
quadric geometries with limited scoring. For details on the operation of
these codes, see the heading comments in the corresponding source files.

-- PENSLAB
The program PENSLAB simulates electron/photon showers within a
material slab. It illustrates the use of the simulation routines for
the simplest geometry (as geometry operations are very simple, this
program is faster than the ones described below). PENSLAB generates
detailed information on many quantities and distributions of physical
interest.

The slab is limited by the planes Z=0 and Z=thickness (its lateral
extension is assumed to be infinite, i.e. much larger than the
maximum range of the particles). Primary particles start with a given
energy E0 from a point source at a given ’height’ Z0 on the Z-azis,
and moving in directions distributed uniformly in a spherical
’sector’ defined by the limiting polar angles THETA1 and THETA2. That
is, to generate the initial direction, the polar cosine W=cos(THETA)
is sampled uniformly in the interval from cos(THETA1) to cos(THETA2)
and the azimuthal angle PHI is sampled uniformly in (0,2*PI). Thus,
the case THETA1=0 and THETA2=180 deg corresponds to an isotropic
source, whereas THETA1=THETA2 =0 defines a beam parallel to the
Z-axis.

-- PENCYL
The program PENCYL simulates electron-photon showers in multilayered
cylindrical structures. The material system consists of one or
several layers of given thicknesses. Each layer contains a number of
concentric homogeneous rings of given compositions and radii (and
thickness equal to that of the layer). The layers are perpendicular
to the Z-axis and the centre of the rings in each layer is specified
by giving its X and Y coordinates. When all the centres are on the
Z-axis, the geometrical structure is symmetrical about the Z-axis.

Primary particles of a given kind, KPARP, are emitted from the

15

active volume of the source, either with fixed energy SE0 or with a
specified (histogram-like) energy spectrum. The initial direction of
the primary particles is sampled uniformly inside a cone of (semi-)
aperture SALPHA and with central axis in the direction (STHETA,SPHI).
Thus, SALPHA=0 defines a monodirectional source and SALPHA=180 deg
corresponds to an isotropic source.

The program can simulate two different types of sources:
a) An external point or extense (cylindrical) homogeneous source,

defined separately from the geometry of the material system, with
its centre at the point (SX0, SY0, SZ0). The initial position of
a primary particle is sampled uniformly within the volume of the
source. Notice that when SX0=0, SY0=0 and STHETA=0 or 180 deg, the
source is axially symmetrical about the Z-axis.

b) A set of internal sources spread over specified bodies, each one
with uniform activity concentration. The original position of the
primary particle is sampled uniformly within the active cylinder
or ring, which is selected randomly with probability proportional
to the total activity in its volume.

In the distributed form of the program, we assume that both the
source and the material structure are symmetrical about the Z-axis,
because this eliminates the dependence on the azimuthal angle PHI. It
is possible to consider geometries that are not axially symmetrical,
but then the program only delivers values averaged over PHI. To
obtain the dependence of the angular distributions on the azimuthal
angle, we need to increase the value of the parameter NBPHM (the
maximum number of bins for PHI, which is set equal to 1 in the
distributed source file) and, in the input data file, set NBPH equal
to NBPHM.
The source file PENCYL.F includes a (self-contained) set of

geometry routines for tracking particles through multilayered
cylindrical structures. These routines can be used for simulation
even when the source is off-axis. Cylindrical geometries can be
viewed with the program GVIEWC (which is similar to GVIEW2D and runs
under Microsoft Windows). This program reads the geometry definition
directly from the input file of PENCYL and displays a two-dimensional
map of the materials intersected by the window plane on the screen.
It is useful for debugging the geometry definition list.

PENCYL delivers detailed information on the transport and energy
deposition, which includes energy and angular distributions of
emerging particles, depth-dose distribution, depth-distribution of
deposited charge, distributions of deposited energy in selected
materials and 2D (depth-radius) dose and deposited charge
distributions in selected bodies (cylinders). This program can be
directly used to study radiation transport in a wide variety of
practical systems, e.g. planar ionization chambers, cylindrical
scintillation detectors, solid state detectors and multilayered
structures.

WARNING: In output files of programs PENSLAB and PENCYL, the terms
’transmitted’ and ’backscattered’ are used to denote particles that

16

leave the material system moving upwards (W>0) and downwards (W<0),
respectively. Notice that this agrees with the usual meaning of these
terms only when primary particles impinge on the system coming from
below (i.e. with W>0).

-- PENDOSES
This MAIN program provides a practical example of simulation with
complex material structures (quadric geometry only). It assumes a
point source of primary particles at a given position (X0,Y0,Z0),
which emits particles in directions uniformly distributed in a cone
with (semi)aperture SALPHA and central axis in the direction (STHETA,
SPHI). The geometry of the material system is described by means of
the package PENGEOM.

PENDOSES computes only the average energy deposited on each body
per primary particle. With minor modifications, it also provides the
probability distribution function of the energy deposited on selected
bodies or groups of bodies. It is a simple exercise to introduce a
spatial grid, and the corresponding counters, and tally spatial dose
distributions. Any future user of PENELOPE should become familiar
with the programming details of PENDOSES before attempting her/his
own application of PENELOPE.

---- INSTALLATION ----

The FORTRAN 77 source files of PENELOPE, the auxiliary programs and
the database are distributed as a single ZIP compressed file named
PENELOPE.ZIP. To extract the files, keeping the directory structure,
create the directory ’PENELOPE’ in your hard disk, copy the distribution
file PENELOPE.ZIP into this directory and, from there, inflate (unzip)
it. The directory structure and contents of the PENELOPE code system are
the following:

-- Directory FSOURCE (6 files):
- PENELOPE.F simulation subroutine package.
- MATERIAL.F main program to generate material data files.
- PENGEOM.F modular quadric geometry subroutine package

(up to 250 surfaces and 125 bodies).
- PENVARED.F variance reduction subroutines (splitting,

Russian roulette and interaction forcing).
- TABLES.F main program to tabulate interaction data

(mean free paths, ranges, stopping powers, ...)
of particles in a given material. It also
determines interpolated values.

- MANUAL.TXT this file.

-- Directory EXAMPLES (11 files):
- PENSLAB.F main program for particle transport in a slab.
- PENSLAB.IN input data file of PENSLAB.
- AL.MAT material data file for PENSLAB.

- PENCYL.F main program for multilayered cylindrical

17

geometries and axially symmetric beams.
- PENCYL.IN input data file of PENCYL. Describes the same

geometry as PENDOSES.GEO.

- PENDOSES.F main program for arbitrary quadric geometries.
- PENDOSES.IN input data file of PENDOSES.
- PENDOSES.GEO ... geometry definition file for PENDOSES.

- NAIAL.MAT material data file for PENCYL and PENDOSES.
Illustrates the use of multiple materials.

- TIMER.F clock subroutine, based on the function TIME(),
that gives the execution time in seconds.
It works with the Compaq Visual Fortran 6.5
compiler and with the g77 Fortran compiler
of the Free Software Foundation.

The compact G77 for Win32 (Windows 9x/NT/2000/
XP) package can be downloaded from
http://www.geocities.com/Athens/Olympus/5564
G77 is the default FORTRAN compiler in Linux.

- NOTIMER.F a fake clock subroutine that is usable with any
compiler. It gives a constant time (1 sec).

To obtain the executable file of MATERIAL, compile and link the
files MATERIAL.F and PENELOPE.F. This executable file must be
placed and run in the same subdirectory as the database files
(PENDBASE).

The executable files of PENSLAB, PENCYL and PENDOSES are obtained
by compiling and linking the following groups of source files:
PENSLAB : PENSLAB.F, PENELOPE.F, TIMER.F
PENCYL : PENCYL.F, PENELOPE.F, PENVARED.F, TIMER.F
PENDOSES: PENDOSES.F, PENELOPE.F, PENGEOM.F, TIMER.F

-- Directory PENDBASE: PENELOPE database. 465 files with the extension
’.TAB’ and names beginning with the letters ’PD’ (see above).

-- Directory OTHER: Consists of the following subdirectories,
--> GVIEW. Contains the geometry viewers GVIEW2D, GVIEW3D and GVIEWC
(which are operable under Microsoft Windows), and several examples of
geometry definition files.
--> EMFIELDS. Contains the subroutine package PENFIELD.F, which does
simulation of electron/positron transport under external static
magnetic (and electric) fields, and examples of programs that use it.
--> SHOWER. Contains a single binary file named SHOWER.EXE, which
operates only under Microsoft Windows. This code generates electron-
photon showers within a slab (of one of the 279 materials defined in
PDCOMPOS.TAB) and displays them (projected) on the screen. To use it,
just copy the file SHOWER.EXE into the directory PENDBASE and run it
from there. This little tool is particularly useful for teaching

18

purposes, it makes radiation physics ’visible’.
--> PLOTTER. The programs PENSLAB, PENCYL and PENDOSES generate
multiple files with simulated probability distributions. Each output
file has a heading describing its content, which is in a format ready
for visualization with a plotting program. We use GNUPLOT, which is
small in size, available for various platforms (including Linux and
Windows) and free (distribution sites are listed at the Gnuplot
Central site, http://www.gnuplot.info). The directory PLOTTER
contains GNUPLOT scripts that plot the probability distributions
evaluated by the simulation codes on your terminal. For instance,
after running PENSLAB you can visualize the results by simply 1)
copying the file PENSLAB.GNU from the directory PLOTTER to the
directory that contains the results and 2) entering the command
’GNUPLOT PENSLAB.GNU’ (or clicking the icon).

The simulation programs are written in standard FORTRAN 77 language,
so that they should run on any computer with a FORTRAN compiler. The
only exception is the clock subroutine, which must be adapted to your
computer’s compiler.

XX
X Please report any bugs to F. Salvat, X
X e-mail: cesc@ecm.ub.es X
X Tel: 34-934021186, Fax: 34-934021174 X
XX

---- APPENDIX (File PDEFLIST.TAB) ----

Materials included in the PDCOMPOS.TAB file, with identifying numbers.
(adapted from Berger, NISTIR 4999, 1992).

*** ELEMENTS (id. no.=atomic number):
1 Hydrogen 50 Tin
2 Helium 51 Antimony
3 Lithium 52 Tellurium
4 Beryllium 53 Iodine
5 Boron 54 Xenon
6 Amorphous carbon 55 Cesium
7 Nitrogen 56 Barium
8 Oxygen 57 Lanthanum
9 Fluorine 58 Cerium

10 Neon 59 Praseodymium
11 Sodium 60 Neodymium
12 Magnesium 61 Promethium
13 Aluminum 62 Samarium
14 Silicon 63 Europium
15 Phosphorus 64 Gadolinium
16 Sulfur 65 Terbium
17 Chlorine 66 Dysprosium

19

18 Argon 67 Holmium
19 Potassium 68 Erbium
20 Calcium 69 Thulium
21 Scandium 70 Ytterbium
22 Titanium 71 Lutetium
23 Vanadium 72 Hafnium
24 Chromium 73 Tantalum
25 Manganese 74 Tungsten
26 Iron 75 Rhenium
27 Cobalt 76 Osmium
28 Nickel 77 Iridium
29 Copper 78 Platinum
30 Zinc 79 Gold
31 Gallium 80 Mercury
32 Germanium 81 Thallium
33 Arsenic 82 Lead
34 Selenium 83 Bismuth
35 Bromine 84 Polonium
36 Krypton 85 Astatine
37 Rubidium 86 Radon
38 Strontium 87 Francium
39 Yttrium 88 Radium
40 Zirconium 89 Actinium
41 Niobium 90 Thorium
42 Molybdenum 91 Protactinium
43 Technetium 92 Uranium
44 Ruthenium 93 Neptunium (*)
45 Rhodium 94 Plutonium (*)
46 Palladium 95 Americium (*)
47 Silver 96 Curium (*)
48 Cadmium 97 Berkelium (*)
49 Indium 98 Californium (*)

(*) not usable in PENELOPE.

*** COMPOUNDS AND MIXTURES (in alphabetical order):
99 A-150 tissue-equivalent plastic
100 Acetone
101 Acetylene
102 Adenine
103 Adipose tissue (ICRP)
104 Air, dry (near sea level)
105 Alanine
106 Aluminum oxide
107 Amber
108 Ammonia
109 Aniline
110 Anthracene
111 B-100 bone-equivalent plastic
112 Bakelite
113 Barium fluoride
114 Barium sulfate
115 Benzene

20

116 Beryllium oxide
117 Bismuth germanium oxide
118 Blood (ICRP)
119 Bone, compact (ICRU)
120 Bone, cortical (ICRP)
121 Boron carbide
122 Boron oxide
123 Brain (ICRP)
124 Butane
125 N-butyl alcohol
126 C-552 air-equivalent plastic
127 Cadmium telluride
128 Cadmium tungstate
129 Calcium carbonate
130 Calcium fluoride
131 Calcium oxide
132 Calcium sulfate
133 Calcium tungstate
134 Carbon dioxide
135 Carbon tetrachloride
136 Cellulose acetate, cellophane
137 Cellulose acetate butyrate
138 Cellulose nitrate
139 Ceric sulfate dosimeter solution
140 Cesium fluoride
141 Cesium iodide
142 Chlorobenzene
143 Chloroform
144 Concrete, portland
145 Cyclohexane
146 1,2-dichlorobenzene
147 Dichlorodiethyl ether
148 1,2-dichloroethane
149 Diethyl ether
150 N,n-dimethyl formamide
151 Dimethyl sulfoxide
152 Ethane
153 Ethyl alcohol
154 Ethyl cellulose
155 Ethylene
156 Eye lens (ICRP)
157 Ferric oxide
158 Ferroboride
159 Ferrous oxide
160 Ferrous sulfate dosimeter solution
161 Freon-12
162 Freon-12b2
163 Freon-13
164 Freon-13b1
165 Freon-13i1
166 Gadolinium oxysulfide
167 Gallium arsenide

21

168 Gel in photographic emulsion
169 Pyrex glass
170 Glass, lead
171 Glass, plate
172 Glucose
173 Glutamine
174 Glycerol
175 Graphite
176 Guanine
177 Gypsum, plaster of Paris
178 N-heptane
179 N-hexane
180 Kapton polyimide film
181 Lanthanum oxybromide
182 Lanthanum oxysulfide
183 Lead oxide
184 Lithium amide
185 Lithium carbonate
186 Lithium fluoride
187 Lithium hydride
188 Lithium iodide
189 Lithium oxide
190 Lithium tetraborate
191 Lung (ICRP)
192 M3 wax
193 Magnesium carbonate
194 Magnesium fluoride
195 Magnesium oxide
196 Magnesium tetraborate
197 Mercuric iodide
198 Methane
199 Methanol
200 Mix d wax
201 Ms20 tissue substitute
202 Muscle, skeletal (ICRP)
203 Muscle, striated (ICRU)
204 Muscle-equivalent liquid, with sucrose
205 Muscle-equivalent liquid, without sucrose
206 Naphthalene
207 Nitrobenzene
208 Nitrous oxide
209 Nylon, du Pont elvamide 8062
210 Nylon, type 6 and type 6/6
211 Nylon, type 6/10
212 Nylon, type 11 (rilsan)
213 Octane, liquid
214 Paraffin wax
215 N-pentane
216 Photographic emulsion
217 Plastic scintillator (vinyltoluene based)
218 Plutonium dioxide
219 Polyacrylonitrile

22

220 Polycarbonate (makrolon, lexan)
221 Polychlorostyrene
222 Polyethylene
223 Polyethylene terephthalate (mylar)
224 Polymethyl methacrilate (lucite, perspex, plexiglass)
225 Polyoxymethylene
226 Polypropylene
227 Polystyrene
228 Polytetrafluoroethylene (teflon)
229 Polytrifluorochloroethylene
230 Polyvinyl acetate
231 Polyvinyl alcohol
232 Polyvinyl butyral
233 Polyvinyl chloride
234 Polyvinylidene chloride (saran)
235 Polyvinylidene fluoride
236 Polyvinyl pyrrolidone
237 Potassium iodide
238 Potassium oxide
239 Propane
240 Propane, liquid
241 N-propyl alcohol
242 Pyridine
243 Rubber, butyl
244 Rubber, natural
245 Rubber, neoprene
246 Silicon dioxide
247 Silver bromide
248 Silver chloride
249 Silver halides in photographic emulsion
250 Silver iodide
251 Skin (ICRP)
252 Sodium carbonate
253 Sodium iodide
254 Sodium monoxide
255 Sodium nitrate
256 Stilbene
257 Sucrose
258 Terphenyl
259 Testes (ICRP)
260 Tetrachloroethylene
261 Thallium chloride
262 Tissue, soft (ICRP)
263 Tissue, soft (ICRU four-component)
264 Tissue-equivalent gas (methane based)
265 Tissue-equivalent gas (propane based)
266 Titanium dioxide
267 Toluene
268 Trichloroethylene
269 Triethyl phosphate
270 Tungsten hexafluoride
271 Uranium dicarbide

23

272 Uranium monocarbide
273 Uranium oxide
274 Urea
275 Valine
276 Viton fluoroelastomer
277 Water, liquid
278 Water vapor
279 Xylene

*** END ***

CC
C C
C PENELOPE/PENGEOM (version 2003) C
C Copyright (c) 2003 C
C Universitat de Barcelona C
C C
C Permission to use, copy, modify, distribute and sell this software C
C and its documentation for any purpose is hereby granted without C
C fee, provided that the above copyright notice appears in all C
C copies and that both that copyright notice and this permission C
C notice appear in all supporting documentation. The Universitat de C
C Barcelona makes no representations about the suitability of this C
C software for any purpose. It is provided "as is" without express C
C or implied warranty. C
C C
CC

24

