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Introduction 
As we mentioned in the introductory paper, the measured input for quantitative analysis 
consists the intensities of the analytical X-ray lines (one line per element). Based on physical 
reasoning, we can give a formula that relates the X-ray intensity emitted by the selected 
analytical line as a function of both materials constants and experimental parameters. That 
formula is given by 
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where Q*i is the cross section per atom for ionization of the selected subshell of the ith 
element, taking into account both direct ionization by the electrons of energy E and the effect 
of indirect ionizations at that subshell caused by the Coster-Kronig transitions. N0, ρ, t and N 
are Avogadro's number, the density and thickness of a very thin tracer layer made of the ith 
element and the number of primary electrons, respectively. The mass fraction, atomic weight, 
fluorescence yield and weight of line for the ith element is designated by cw

i, Ai, ω and a, 
respectively, while Ω and ε are the solid angle and the detection efficiency of the detector. 
The integral in curly bracket in the center describes the depth distribution of ionization in the 
bulk sample with respect to the tracer layer and the self-absorption of the X-rays. We shall 
deal with these quantities in more details later. 

If this formula is accurate enough, all the data like atomic constants and geometric parameters 
are known and the measurement is done on the absolute basis (giving the number of photons 
per primary electron) the composition of the sample can be given directly and no additional 
measurements are needed. The above idealised situation means a true standardless analysis. 
The traditional approach is different, however. The ingenious in Castaing's approach was that 
he realized that by comparing the measured intensity to another measurement on a known 
material (the so-called standard), we can get rid of many of the unknown constants and 
parameters. For a standard, he originally selected a (known) sample made of a single chemical 
element only. He showed (for a selected X-ray line of the ith element in the unknown sample) 
that the ratio of the intensity, measured in the unknown ( unk

iI ) to that, measured in the 
elementary standard ( std

iI ) represents a good approximation of the mass fraction of the ith 
element in the sample. The correction factor needed to obtain a better approxiation of the 
mass fraction is of the order of unity and depends on all the n elements present in the sample 
(in contrast to depending only on the selected element for which the ratio is formed). 
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The additional dependence on the primary beam energy (E0) and on the geometry of the 
measurement (ψ) is also indicated in (2). Variants of quantitative analysis are nothing else 
than different approaches to the calculation of the mentioned correction factor. Present paper 
explains the relation between equations (1) and (2) and gives a short overview of the most 
frequently used approximations in the calculation of the correction factors. The possibility of 
and the limitations in calculating the standard intensities (in contrast to measuring them) is 
also outlined. Although, before we start, let's take a diversion. 

There is a regularly returning confusion, why the generated X-ray intensity is proportional to 
the mass fraction of the elements present, in contrast to the atomic fraction. This fact is 
contradictory to our first physical anticipation, since the ionization cross section is defined for 
one atom, so it is the number of atoms that should be important (irrespective of their masses). 
It is a correct assumption and we recall it below, how the mass fraction results from the 
starting number of atoms. 

Avogadro's number, N0 (=6.02*1023) gives the number of molecules in that many gramms of 
a chemical compound as the value of its molecular weight. If, for the sake of simplicity, we 
assume that the chemical formula of the molecule is XnYm than its molecular weight is 
nAX+mAY and there are N0n atoms of the X element and N0m atoms of the Y element in the 
nAX+mAY gramms of that compound. The importan feature of the molecule here is the 
constant proportion of its constituents (and not the type of bond between them). 

Let's take the excited volume in a thin layer first, for which we want to calculate the generated 
intensity during our EPMA analyisis. Extension to a bulk sample will be examined in a next 
step. The excited volume is assumed to be homogeneous, so it can be characterized by a 
constant composition (that is what we want to determine with EPMA). Let the atomic 
fractions be ci (i=1,n for the the n elements present in the layer). Than, the material can be 
thought of being similar to a chemical compound (irrespective of the chemical bounds) made 
up of fixed "compositional blocks" with "block weight" ΣciAi. If we take ΣciAi gramms of 
that material, it will contain N0 "compositional blocks " [and (within that) ciN0 atoms of the ith 
element]. There will be N0/ΣciAi "compositional blocks" in 1 gramms of this material and 
ρN0/ΣciAi "compositional blocks" in 1 cm3. If we take a layer of thickness t, the number of 
"compositional blocks" is tρN0/ΣciAi and within it, the number of the ith atoms is  
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per unit surface area. You can see that linear dependence on the number of atoms of an 
element in a given piece of material does not mean linear dependence on the atomic fraction 
of that element. Since the mass fraction can be calculated from the atomic fractions as 
cw

i=ciAi/Σ ciAi, the number of the ith atoms in unit surface area of this layer can be rewritten 
as tρN0cw

i/Ai.  

The effective area of one atom from the point of view of ionization (as seen by one 
bombarding electron) is given by the ionization cross section, Q(E). By multiplying one 
atom's area (cross section) with the number of atoms (in a unit surface area) we obtain the 
effective area (per unit surface area) of all the atoms seen by the bombarding electron: 



EMAS-2002, Szczyrk (Poland) 

Lábár: Quantitative  3 / 10 

( )








⋅⋅⋅
i

w
i

A
ctNEQ ρ0           (3b) 

The probability of ionization is given by the geomertical probability, i.e. by the ratio of that 
effective area to the total area considered, which is unity. That is why (3b) gives the 
ionization probability per incident electron for our thin layer. Although the concentration 
dependence described in (3a) is identical to that given in (3b), it is expressed simpler in (3b), 
which describes a linear dependence on its variable ( w

ic ) than how it is expressed in (3a) 
where both the numerator and the denominator depends on the variable ( ic ). 

So, we can see that linear dependence of the number of ionizations on the areal density of the 
atoms (corresponding to a complicated dependence on the atomic fractions) translates into a 
simple linear dependence on the mass fraction for a thin layer and this dependence is also 
inherited to the bulk samples, as seen in eq. (1). Division by the standard intensity (implying 
cw=1) does not change this dependence. 

Matrix correction: derivation of composition from X-ray intensities 
Simplicity of quantitative microprobe analysis derives from the fact that the emitted X-ray 
intensity is roughly proportional to the mass fraction of that element within the sample, as we 
reiterated above.A better approximations of the sample composition can be obtained from this 
so-called k-ratio by applying a matrix-correction for the differences in different physical 
processes between the unknown and the standard [1]. For the sake of convenience, usage of 
compound standards was also introduced (and that amounts to a double-correction), resulting 
in a generalization of (2). 
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The matrix correction can be based either on empirical data (for simple systems) [2] or on 
calculated correction factors. The correction factor depends on all of the concentrations of the 
components, on the selected analytical lines (and ensuing atomic data like mass absorption 
coefficients) and on the experimental parameters like primary beam energy (E0) and geometry 
(ψ, the angle between the sample surface and the detector, the so-called take-off-angle). Due 
to this inter-dependence, equation (4) can only be solved by iteration, an ideal task for 
computers. The physical processes to be taken into account are the of electron-specimen 
interactions and the X-ray photon-specimen interactions. Namely, electrons are scattered and 
decelerated, they ionize the atoms, the atoms emit characteristic X-ray photons and these 
photons are partially absorbed in the sample. Second order effect of fluorescence (i.e. 
emission of X-ray photons in response to the ionization caused by the absorption of other X-
ray photons) is also part of this correction, but its magnitude is smaller. The photon-detector 
interactions are identical for photons originating either from the unknown sample or from the 
standard, so detection efficiency need not be taken into account if standards are used. Modern 
correction procedures can calculate the concentrations of any element between B and U, 
handle many elements simultaneously, use K, L or M lines and primary beam energies 
between 2 and 50 keV. If the experiment is carried out carefully and the standard is good 
enough, 1-2 % relative accuracy can be achieved for major components with medium or high 
atomic number on a routine basis. For light elements it is more difficult to obtain reliable 
experimental data but the modern correction methods can still achieve about 5 % relative 
accuracy. In summary, microprobe analysis is a quantitative, multi-elemental method. 
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Approximations used in matrix correction procedures 

Monte Carlo calculations vs. analytical approximations 
X-ray generation and absorption can be calculated in two distinct ways. As the first approach, 
every elementary particle (electron or photon) can be followed in a classical manner 
(disregarding that many of them are indistinguishable). In that approach the sequence of 
interactions to be calculated is selected on a probability basis. Due to the inherent randomness 
(chance), this group of approaches is termed as Monte Carlo (MC) methods. Due to the large 
number of possible parameter-values that influence the result, the MC methods are generally 
used to calculate k-ratios from concentrations and known experimental condition, i.e. to 
generate calibration curves or reference data. Some people tend to look at Monte Carlo 
calculations as a reliable reference. However, one must keep in mind that the key-word Monte 
Carlo embraces very different physical approximations (for scattering, ionization, absorption, 
etc.) and the correctness of the result depends on these details [3], [4]. So, by saying simply 
that the results of some other calculations are compared to the results of Monte Carlo 
calculations one states no more than one calculation is compared to the other and reliability is 
not inferred (unless the particular MC method was validated separately in a previous step). 
With this statement we do not intend to question the reliability of the MC methods We only 
want to draw the attention to the fact that further specification is needed if we want to know 
something about the reliability of the particular method (within the group of MC methods). As 
the second approach, the same physical processes can be approximated by continuous 
mathematical functions treating the material as a continuum. The rest of the talk concentrates 
on these analytical approximations. 

ZAF correction vs. ϕ(ρz) methods 
The correction procedures presently in use belong to the analytical approximation category. 
The difference between the individual approaches (methods) lies in the way the complex 
process is artificially subdivided into smaller sub-processes (that are approximated 
independently) and which mathematical functions are used to approximate these smaller 
“independent” sub-processes. Such sub-processes can be the generation and the absorption of 
x-rays. Obviously, they are not truly independent, since absorption depends on where in the 
sample the photon is generated. The artificial separation is done to simplify the calculations. 
Following Castaing’s original suggestion [1], the first methods calculated 3 factors separately: 
the generation factor (FZ), the absorption factor (FA) and the secondary fluorescence factor 
(FF). 

 FAZN FFFEccCorrection ⋅⋅=),,,,( 01 ψΚΚ    (5) 

The subscript of the first factor indicates that X-ray generation is different for elements 
with different atomic number (Z). Hinting to the subscripts of the 3 factors, the methods 
using this approximation are termed as ZAF-methods. 

The generation factor 

The generation factor is traditionally further divided into stopping-power and 
back-scatter factors. 
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where Qnl is the ionization cross section and Enl is the excitation energy of the atomic 
sub-shell with quantum numbers n and l and 
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where η is the fraction of electron leaving the sample due to back-scattering. The 
stopping power factor calculates the number of ionizations on the assumption that every 
electron deposits its entire energy within the sample and the back-scatter factor (R) 
corrects this assumption with the fact that a fraction of electrons leaves the sample and the 
energy they carry does not contribute to the ionization. Separation into these factors is 
again arbitrary. 

The experimental data of Bishop [5] was used by Duncumb and Reed [6] for the 
calculation of R. The amount of experimental data is still restricted since then [7], [8], [9], 
[10]. Although loss of energy happens is discrete scattering events, it is approximated as a 
continuous function S. Bethe’s continuous slowing down approximations was used for 
decades for this purpose [11] using the empirical mean ionization potential of Berger and 
Seltzer [12]. Bethe’s approximation predict non-physical values (acceleration instead of 
deceleration) for low electron energies. Better formulas were introduced by Love et al. 
[13], Pouchou and Pichoir [14], Bastin and Heijligers [15] and Merlet [16] to overcome 
this problem. All of them represent a continuous slowing down approach. Czyzewski 
proposed an analytical expression for the energy distribution of back-scattered electrons 
[17] and for the R-factor [18]. Several polynomials were suggested to calculate the R-
factor [19], [20]. Some of the analytical functions used were discontinuous as remarked by 
Lábár [21]. Most of the expression were only developed for perpendicular electron 
incidence. Newer expressions extended the formulas to the analysis of tilted samples that 
is important when using an EDS in an SEM [22], [23]. 

The absorption factor 

The absorption factor can be derived from the distribution of ionization with depth, the 
so-called ϕ(ρz) function. 
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You can notice that if the integral of the ϕ(ρz) function gave the total number of generated X-
rays, the generation and absorption factors could be handled in one step and the arbitrary 
separation were not be necessary. That exactly what the group of matrix correction procedures 
(called ϕ(ρz) methods) aim at. Many authors claim that the essential difference between ZAF 
and ϕ(ρz) methods is whether X-ray generation and absorption processes are calculated 
separately on the one hand, or simultaneously on the other hand. However this classification 
is not entirely correct, since the most successful ϕ(ρz) methods were developed after 
recognizing that the integral under the ϕ(ρz) must be calculated separately in order to achieve 
the desired accuracy [37], [24]. So, the essence of difference is in the following, instead. 
Every f(χ) corresponds to a ϕ(ρz) and vica versa; and the ϕ(ρz) curves are calculated to obtain 
a good absorption correction. However, it makes a significant difference if we follow one of 
two alternative ways. On the one hand, we try to optimize the ϕ(ρz) curve and f(χ) is given 
automatically by the computation and we shall see if the result is as good as we anticipated. 
This approach is called the ϕ(ρz) method. On the other hand, we can disregard how well our 
ϕ(ρz) functions correspond to the experimental depth distributions, but instead we try to 
optimize its transformed, the f(χ) function to get the best absorption correction. This approach 
is the A-part of the ZAF method. In its extremes it is even difficult to realize what functional 
form of ϕ(ρz) would be needed to obtain the used f(χ), as in Heinrich’s correction [25]. 

Parametrization of the shape of the ϕ(ρz) and its integral 

It is only practical to apply the ϕ(ρz) in an analytical procedure, if it is given in a parametric 
form as a function of both sample parameters and experimental conditions. The most justified 
form, from a physical point of view, for the ϕ(ρz) is a modified, surface centered Gaussian 
function (MSG) which has been introduced by Packwood and Brown [26]. The random walk 
of electrons justifies the Gaussian shape after a transient region where the original persistent 
walk prevails. The approach runs into difficulty when the randomization is not completed in a 
reasonable distance as it is the situation for Z≤13, especially for higher E0 [27]. It might be 
one reason why a further optimization of the method became necessary [32], [28]. In spite of 
the early efforts, it became obvious that it is necessary to calculate the integral of the ϕ(ρz) 
separately and use this integral in the subsequent description of the shape of the curve [37], 
[24]. Without this separation the atomic number correction did not work accurately. Although 
physically not supported, other mathematical functions can at least as well approximate the 
shape of the ϕ(ρz) distribution. Both double parabolic (PAP) and exponential approximations 
(XPP) perform excellently [37]. The latter one has a further advantage that easily can be 
adopted for tilted samples, as well. The double Gaussian approach seems to be a variant of the 
Gaussian shapes, different form the others in that how the transient region in the MSG 
approach can be handled [29], [16]. A common feature of the approximations that they use 4 
shape-parameters. They may be different, but the physically controlled quantities like the 
surface ionization (ϕ0), X-ray range and the position and height of the maximum must be 
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determined accurately. All three approximations (MSG, PAP and XPP) can also be 
considered for the analysis of inhomogeneous structures. 

As for the analytical functions used to represent the shape of depth distributions, different 
forms of exponential (including Gaussian functions) are the most popular, since integration is 
easy and can be done in closed form [30], [31] [26], [32], [33], [34], [29]. Parabolic 
expression of Pouchou (although good for perpendicular electron incidence) proved difficult 
for inclined geometry, so he also selected an exponential form in his last version [35], [22]. 

Fluorescence 

The secondary fluorescence term should really be additive, since if the intensity Ii of line l of 
element i is concerned, the enhancement to this intensity is proportional to the number of X-
ray photons (both characteristic and Bremmstrahlung) with higher energy than the energy of 
line l of element i; and this number is not proportional to the concentration of element i. 
However, proportionality exists between the intensities Ii and Ij of elements i and j, so the 
effect can be approximated as a multiplicative factor. Except for the program CORR2 [36], 
continuum fluorescence was disregarded in most of the correction procedures for decades 
until Pouchou reintroduced it with an improved formula [37]. For characteristic fluorescence, 
Reed’s formula retained its popularity for decades [38]. 

In between: the multiple reflection method 
This method virtually cuts the sample into thin layers parallel to the surface and calculates 
transmission through and reflection from these layers individually. Ionization events in the 
layers are then summed up. The discrete treatment of layers reminds the MC methods, while 
analytical calculation of the averaged quantities for the layers resemble the analytical 
approximations. The number of steps is lower than in the MC methods by orders of 
magnitude, so the method is fast as compared to MC. The original idea of Cosslett and 
Thomas [39] was refined by August and Wernisch [40] and was applied successfully to 
several problems [41], [42], [43]. 

The role of standards and standardless methods 
Measurement on standards was introduced to improve accuracy by neutralizing the effect of 
parameters not known with the desired accuracy. Such parameters include atomic data as 
fluorescence yield and Coster-Kronig transition rates and experimental parameters as 
detection efficiency as a function of photon energy. The atomic data are important for 
complex electronic shells as the L and M shells. The experimental parameters are problematic 
for WD spectrometers [and/or for soft radiation (e.g. light elements) even if an EDS is used]. 
Although special methods were developed to overcome the need for standards (these are the 
so-called standardless methods), the situation did not change that accuracy can be increased 
by making measurements on standards and this is the way to do the analysis if utmost 
accuracy is preferred (to reduced time and costs). 

The effect of replacing a measurement on a standard by calculation can be understood from 
the inspection of equation (9), which gives the number of detected X-ray photons (with a pre-
selected energy that corresponds to a main characteristic line of the element to be analyzed). 
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where 
aliI , , the intensity of line la (belonging to sub-shell a of shell n) in (9a) depends on 

Q*i,a, the number of total ionizations and ωa fluorescence yield in sub-shell a, ala
F , , the 

fraction of the analytical line within the lines originating from the same sub-shell a, f(χ), the 
absorption factor (giving the fraction not absorbed) and ε, the detection efficiency for the 
energy of the given line. As you can see from (9b), there are two processes contributing to the 
total number of ionizations: direct ionizations of the given sub-shell by electrons (fa,a=1) and 
indirect ionizations caused by redistribution of empty states within the atomic shell (through 
non-radiative, two-electron process, the so-called Koster-Kronig transition, with rates fa,i). 

The problems to be solved by standardless analysis are twofold. On the one hand, the atomic 
data as the Koster-Kronig rates fa,j and fluorescence yield ωa are only known with limited 
accuracy (5-30%). Similarly, detection efficiency is difficult to measure and might change 
due to contamination built up on the detector window. Neither of these quantities influence 
the result if standards are used but the errors of all of them directly propagates into the error 
of the analysis in a standardless procedure. For example a 10% error in the knowledge of the 
value of the detection efficiency induces 10% error in the concentration result, unless two 
different sources of error luckily compensate each other’s effect. On the other hand, the 
factors that are identical to the generation and absorption factors in the correction procedure 
cause more problems if the standards are not measured. In a matrix correction procedure one 
always encounters a ratio of such quantities (one for the unknown and one for the standard). 
Consequently the errors in these factors partially compensate each other’s effect when the 
ratios are formed. This type of compensation of errors is missing if only a calculated value is 
used to replace a measurement on the standard [44], [45]. Similarly, variation of the emitted 
intensity with primary beam energy (and as a consequence of absorption path length) is a 
sensitive measure of the absorption correction and the mass absorption coefficient used in it. 
Pouchou used this fact to determine mass absorption coefficient optimal for use in correction 
procedures in microprobe analysis [46]. 

Altogether, a root mean square of error (RMS) of 2-3% can be anticipated for major elements 
with medium atomic munber on the basis of many analyses if standards are used [47] and 
10% if a standardless procedure is followed [44], [45]. Obviously, individual errors might be 
higher than the average in a particular analysis. For complex shells (L or M) the effect of 
Coster-Kronig transitions plays a major role and must be taken into account either directly by 
including the effect into the standardless calculation or indirectly, when the k-ratios are 
determined by comparing the spectrum of unknown to stored standard spectra and it is only a 
correction for the differences between the measurement of the unknown and of the stored 
profile that is to be taken into account. (The stored profiles are usually measured by the 
manufacturer and supplied to the user who need not be aware of the details what is given 
within the commercial software. So, not every program is a true standardless procedure that 
claims that classification to itself.) The light elements represent larger problems and the 
accuracy is 3-5% [24]. Standardless procedures are not properly tested in the light element 
region. 
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How to get optimal results? 
The most important factor affecting your result is the quality of the measurement (including 
the quality of standards). Details of this factor are elaborated in accompanying lectures. 

If any doubt arises, check your results by performing the measurements by different primary 
beam energies and/or using different analytical lines (K, L and M), applying different 
standards for the same elements. If they coincide, you can definitely trust your results. This 
kind of cross-checking is especially important if you use the procedure for the first time for 
the given type of samples. If standards are not used, you should be even more distrustful. In 
that case the experimental part is emphasized again, because many people erroneously use 
standardless procedures to get concentrations from doubtful experimental data obtained in an 
SEM from samples with undefined geometry. The requirements for the sample and for the 
measurement are the same regardless of the fact if standards are also measured or not. On the 
other hand always avoid extreme experimental conditions (overvoltage <1.5 or extremely 
high absorption). Most of the alternative matrix correction procedures give good results 
nowadays if the input is reliable. So, matrix correction procedures reached their maturation 
and can be regarded as established variants of the method. 
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