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Abstract

A new Monte Carlo code for the detailed simulation of the transport of low-energy electrons and positrons in solids
is presented, including a critical discussion of concepts and approximations in the scattering model. Inelastic scattering is
calculated using a Bethe surface model based on optical and photoelectric data for the solid, making possible a good accuracy
at low energies, and a high resolution (~1 eV) in simulated energy loss spectra. Exchange corrections for electrons and
relativistic corrections for energies up to ~100 keV are included. Elastic scattering is calculated by means of a differential
cross section obtained by relativistic partial wave analysis for an exchange-corrected muffin-tin Dirac-Hartree-Slater atomic
potential. In the simulation, no adjustments of parameters to empirical scattering data are made. For comparison, measurements
have been made of the characteristic low energy loss spectrum of 100 keV electrons through a thin silicon film. Simulated
results for electrons and positrons are also compared with other available experimental data, in particular at low (a few keV)

energies. In general, very good agreement is obtained.

1. Introduction

Since more than three decades, the method of Monte Carlo
simulation has been used to calculate the scattering and en-
ergy loss of charged particles penetrating matter [1]. The
introduction of this method to the scattering of low-energy
electrons (at kinetic energies ~10 keV) [2,3] has stimu-
lated the practical application of successively more accurate
elastic and inelastic single scattering differential cross sec-
tions (e.g. Refs. [4-12]), as well as simple models com-
bined with empirical corrections (e.g. Refs. [13-15]). More
recently, there has been an increasing interest in the calcula-
tion of low-energy positron scattering (see e.g. Ref. [16]),
and improved cross section models have been introduced in
particular for the inelastic scattering of low-energy electrons
and positrons (see e.g. Refs. [17-191).

Our intention with this work has been to construct a Monte
Carlo code applicable to electrons or positrons with energies
down to ~100 eV, and, moreover, useful for simulating en-
ergy loss distributions with high accuracy, e.g. showing the
effects of the characteristic loss spectrum at a ~1 eV reso-
lution. Simple relativistic corrections are added to make the
code applicable up to ~100 keV. The code is named LEEPS
(low energy electron and positron simulation).
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At the relatively low energies thus considered, we may
neglect bremsstrahlung as a source of energy loss. On the
other hand, the energies are high enough that we also shall
be able to disregard electron-phonon or positron-phonon
interaction. Methods for the simulation of such interaction,
important at energies below ~10 eV, have recently been de-
scribed by Akkerman et al. [20]. Thus we have to consider
only elastic scattering, i.e. the deflection of the incident par-
ticle in the screened Coulomb field of the nuclei, and the
energy loss caused by single or collective electron excitation
in the solid.

For the elastic scattering we have used relativistic par-
tial wave analysis of the scattering against a static atomic
potential, which is nowadays a well-known, near-standard
method in this context (see e.g. Ref. [8]). By means of
this method, which appears to be useful for elastic scattering
in solids down to kinetic energies ~100 eV, it seems that
much of the difference between positron and electron trans-
port may be well understood. Questions remain as regards
the validity of this method at lower energies when applied
to scattering in solids. For the inelastic scattering we have
used a model based on optical and photoelectric data for the
scattering solid; this, in fact, is what makes possible the ac-
curacy in simulating energy loss distributions. Optical data
have previously been implemented in Monte Carlo simula-
tions by Jensen and Walker [ 16], by Oztiirk and Williamson
[21], and - in a more approximate manner and with a fur-
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ther empirical adjustment to scattering data - by Ding and
Shimizu [22]. Our model differs from the approach used
by these authors in various respects; in particular, it allows
the introduction of exchange and relativistic corrections in
a simple and natural way, and LEEPS is thus equally well
suited for the simulation of electron and positron transport.

In subsequent sections, we first describe the physical
model in LEEPS. We examine concepts, assumptions and
approximations, but avoid computational details. We then
outline the simulation procedure. Detailed derivations and
the complete description of sampling procedures are given
in a separate report [23]. For brevity and clearness, equa-
tions are here written without the exchange corrections or
relativistic corrections which are included in LEEPS. These
corrections are briefly indicated in Appendix A, and are
fully described in Refs. [23,24].

Finally we compare results of LEEPS with experiment,
in particular with regard to results at lower energies and
at high energy loss resolution, and also with regard to the
differences between electron and positron transport. Partly
we have compared with a measurement on our JEOL-100C
electron microscope, partly with experimental data reported
in the literature.

2. Elastic scattering
2.1. General aspects

In electron or positron scattering with energy loss in not
too thin solid layers, one may usually disregard effects due
to the coherent scattering from many atoms, i.e. diffraction
and channeling effects. Under these conditions the elastic
scattering process may be treated as a successionof indepen-
dent (incoherent) scattering events along a particle trajec-
tory, each event consisting of the particle (=incident electron
or positron) being scattered in the potential field V(r) of
a single, as-if isolated atom. The incoherent scattering may
be seen as due to a change of the electron or positron wave-
length because of energy loss (inelastic scattering), and to
disorder in the structure of the scattering material. It should
be noted, however, that the grain size in polycrystalline ma-
terials is typically large compared to the elastic or inelastic
mean free path for electrons or positrons in the keV energy
region. Also, it is well known that diffraction patterns (al-
beit diffuse) are obtained also for scattering in amorphous
materials. This suggest that it is basically the presence of
energy loss, i.e. some minimum amount of inelastic scat-
tering, which is required to make calculations based on the
trajectory picture generally adequate.

The reliability of the single-atom model should however
be questioned when the particle wavelength is of the order of
the interatomic distances or larger, which occurs at kinetic
energies below ~ 50 eV. At these energies it may accordingly
be questioned if the initial and final states of the particle are
well described as free-particle states. Moreover, the static

field approximation may be invalid (i.e. charge polarization
of the target atom may become important). Thus, we do not
expect our elastic scattering calculation to be reliable below
~100 eV.

The solid is assumed to consist of one element only, with
atomic number Z. The single-atom scattering potential V (r)
is not expected to be the potential Vi(r) of a free atom;
rather, it should be modified by the presence of neighbour
atoms, i.e. by the local crystalline or amorphous structure.
With a random direction of motion relative to this structure,
it is however reasonable to assume a spherically symmet-
ric average scattering potential V(r). As a consequence, the
angular distribution from a single-scattering event is axially
symmetric, i.e. independent of the azimuthal scattering an-
gle.

With these various approximations, the elastic scattering
is simply described in terms of a differential cross section
(DCS) per atom, which may be written as doe/d6, where
6 is the polar scattering angle. Moreover, it is implicitly
assumed that the solid is homogeneous and isotropic on a
scale of the order of the average distance between scattering
events. The probability for the particle to travel a distance
s without being elastically scattered is then exp(—s/Au),
where Ag is the elastic mean free path, given by Ay =
(Nao)~!, N is the number of atoms per unit volume and
oo the total elastic cross section per atom.

This constitutes the well-known conventional model, used
also in LEEPS, for particle trajectories due to incoherent plu-
ral or multiple elastic scattering in solids. Since the number
of collisions on a typical low- or medium-energy trajectory
is not too large, individual collisions may be simulated di-
rectly. The well-known multiple scattering approaches due
to Goudsmit and Saunderson [25], Lewis [26] and Molizre
[27] are not useful in the low-energy region. (See e.g.
Ref. [28] for a recent discussion,)

2.2. Scattering potential in condensed matter

Since the use of a single-atom scattering potential is it-
self an approximation, the proper choice or calculation of
V(r) may be not quite trivial. The solid-state modification
Ve(r) — V(r) has been considered, e.g. by Green and
Leckey [4], Valkealahti and Nieminen [9], Liljequist et al.
[29] and Czyzewski et al. [30]. We avoid entering a de-
tailed discussion here, but merely give qualitative arguments
to support the model presently adopted [8,31]. Theseare: 1)
the gradient dV(r) /dr should be closely equal to dV;(r) /dr
for small r, 2) by symmetry, dV(r) /dr should vanish mid-
way to an (average) nearest-neighbour atom, 3) the gauge
should be chosen so that V(r) = 0 beyond this distance, and
4) to lowest order, V(r) might be estimated by simple su-
perposition of contributions V;(r) from the central and close
neighbour atoms.

These requirements are satisfied by a simple “muffin-tin
model” [8,31]
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Ve(r) + i(2rme — 1) = 2Vi(rmy), i r < rm,
V(r)=
0, if r > rme.
(1)

Here, rm is the muffin-tin radius. The value of this radius is,
in principle, an adjustable parameter, but a physically rea-
sonable choice is to put rm equal to the radius rws of the
Wigner-Seitz sphere, i.e. essentially taking an average of
half the distance to the neighbouring lattice points. A slightly
different choice would be, for example, to take rm equal
to half the nearest-neighbour distance. A similar, more de-
tailed construction of V(r) is that given in Ref. [9]. Another
method, based on applying spherical Wigner-Seitz bound-
ary conditions to the calculation of atomic wave functions,
is used for example in Ref. [29].

The effect of the solid-state modification of the scatter-
ing potential (i.e. using V(r) rather than V(r)) may be
substantial on the scattering at small angles and on the fo-
tal elastic mean free path Aq. However, the effect on the
scattering at medium or large angles is in general small.
This is easily understood qualitatively, since such scatter-
ing classically corresponds to trajectories near the nucleus.
The effect on plural or multiple scattering, which is conve-
niently measured in terms of the transport mean free path
Av = At/ (1= (cos 8)), is therefore rather small {29]. This
may be regarded as a fortunate circumstance, which makes
possible the use of rather simple approximations to account
for the solid-state modification of the atomic scattering field.

For the present code, the muffin-tin potential (1) with
rm = rws has been applied, using parameterized and tabu-
lated free-atom potentials V;(r) which have been calculated
by the Dirac-Hartree-Slater method and fitted to a sum of
Yukawa-type potentials [32]. An additional correction in
the case of elastic scattering of electrons is made by adding
a local exchange potential (see e.g. Ref. [33]).

2.3. Elastic cross section calculation

With the single-atom scattering potential V(r) defined,
the next problem is to choose the appropriate method for
computing the elastic cross section. The simplest method is
the Born approximation, which is valid provided that vfe>
Z/137, where v is the velocity of the incident particle and ¢
the velocity of light in vacuum. This may be written

E > 1(2/137)°mc, (2)

where E is the non-relativistic kinetic energy of the particle.
The right member of the inequality is, for example, 85 keV
for gold, 9 keV for iron and 0.2 keV for beryllium. At en-
ergies of these orders of magnitude or smaller, the Born ap-
proximation is not reliable.

For some time, partial wave analysis (PWA) has there-
fore been used for the calculation of the elastic DCS used in
Monte Carlo simulations at lower energies. It is common to
use PWA based on the Dirac equation ( “relativistic” or Dirac

PWA) (seee.g. Refs. [6,34,35]) rather than PWA based on
the Schrédinger equation [9,11]. Relativistic effects (kine-
matic effects but also the effects of the spin of the incident
electron or positron) are then systematically included. DCSs
are typically obtained as numerical tables, from which de-
sired values are obtained by interpolation; this is not a sig-
nificant disadvantage with presently available computers.

The difference between electron and positron elastic scat-
tering at low energies is mainly due to that the scattering
oceurs in a non-coulombic potential (namely, the screened
Coulomb field of the nucleus). In this potential it turns out
that an electron is scattered to a somewhat larger extent than
a positron of the same energy, resulting primarily in a shorter
transport mean free path [36]. A qualitative explanation is
that the electron, being negatively charged, tends to move
closer to the nucleus than the positron and therefore experi-
ences a stronger deflecting field. This difference is of course
not obtained in the Born approximation, and it does not
arise in a non-relativistic (Schrddinger equation) treatment
of scattering in a pure Coulomb field. A further difference
between electron and positron elastic scattering arises when
the Dirac equation is used. This difference is due essentially
to the presence of spin-orbit interaction in the Dirac PWA,
which increases with the velocity of the incident electron or
positron. It is therefore small at low energies, but becomes
dominant at high energies. It should be noted, however, that
at low energies both effects, although certainly not negligi-
ble, are small compared to the considerable error caused by
the Born approximation. A quantitative comparison is given
in Refs. [29,36].

The elastic DCSs used in LEEPS are computed with Dirac
PWA. The computational method has been described in de-
tail by Salvat and Mayol [33].

3. Inelastic scattering
3.1. General aspects

In the early simulations (e.g. Ref. [3]), and in some
more recent (e.g. Ref. [6]), the energy loss is often calcu-
lated in the continuous-slowing-down approximation. The
energy loss on a short path length segment As is then taken
to be equal to (—dE/ds)As, where —dE/ds is the stop-
ping power, i.e. the average energy loss per unit path length.
This may lead to erroneous results, since straggling is ne-
glected - i.e. the fact that energy is actually lost in discrete
collisions. The number of such collisions fluctuates statisti-
cally on a given path length and the energy loss W in each
collision varies in accordance with a probability distribu-
tion corresponding to the inelastic DCS. In fact, straggling
is considerable in electron or positron penetration through
matter, largely due to that the incident particle occasionally
suffers a large fractional energy loss W/E in a close colli-
sion with an atomic electron (or, at highly relativistic ener-
gies, in a radiative collision). As is well known, however,
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the continuous-slowing-down approximation is often accu-
rate enough for the computation of e.g. transmission and
backscattering fractions in thin films, while it fails badly as
regards for example the energy distribution of transmitted
particles. Analytic approaches such as the Landau [37] and
Vavilov [38] distributions, which give formulae for the en-
ergy distribution after a given path length segment As, are
valid only in the limit of multiple inelastic scattering, i.e.
primarily at high energies. A detailed simulation of the en-
ergy loss process is therefore necessary in order to obtain
generally accurate results and realistic energy loss distribu-
tions at low and intermediate energies.

The inelastic DCS is conveniently counted per atom.
Again we assume that all azimuthal scattering angles in a
single inelastic collision are equally probable. The inelastic
DCS may then be written as d%c, /(d6dW), where 6 is the
polar scattering angle. This is integrated over 8 and W to
give the total inelastic cross section ay,. If the solid may
be considered as isotropic and homogeneous as regards the
probability of an inelastic event, the probability for no in-
elastic event during a path length s is exp(~s/Ain), where
the inelastic mean free path A = (Noin) ~! is introduced.

Most inelastic scattering events in a solid ~ the excitation
of single electrons in the conduction or valence bands and
collective excitations — cannot be physically associated with
a particular atom. Formally, however, they may be regarded
as contributing to the atomic cross section. For example,
if the mean free path for plasmon excitation is Ap, then
the contribution to the atomic inelastic cross section may
consistently be taken to be o7 = (NA,) ™.

A single inelastic scattering event is conveniently de-
scribed in terms of the variables Q and W (rather than 4 and
W), i.e. by a DCS dza'in/(deW). Here, Q is an energy
which is a measure of the momentum change of the electron
or positron in the collision. In the non-relativistic case

(p;— Pf)2
2m

Q= ) (3)
where p; and p; are the initial and final electron (or positron)
momenta. If the incident particle collides with a free target
electron initially at rest, the momentum transfer p; — p,
is equal to the momentum of the target electron after the
collision, from which follows that Q =W in this case. This
motivates the short name “recoil energy” for Q.

The kinetic energy E of the incident particle, the energy
loss W, the recoil energy Q and the polar scattering angle 8
in an inelastic scattering event are related by the kinematic
formula

2 _, W _ Az
£ =2— % —2V/1-W/Ecosé. 4

The extreme angles § = 0° and & = 180° determine the
upper limit of possible W for a given Q, which gives

Wmax = 2‘\/ EQ - Q <5)

This defines the integration domain when calculating for ex-
ample total inelastic cross section, stopping power and en-
ergy loss probability distributions. Alternatively, this domain
may be defined by the minimum and maximum Q obtained
from Eq. (4) for a given W < Wax.

The calculation of the inelastic DCS may start either from
the Bethe theory for the inelastic scattering of fast electrons
from free atoms [39,401, or from the dielectric theory for
the energy loss of charged particles in condensed matter
[41,42] !, Both theories are essentially first-order, i.e. valid
within the Born approximation. Strictly speaking, the con-
dition for the general validity of the Born approximation in
this context may be written v > ‘ux, where ux is the orbital
velocity of the atomic (target) K-shell electrons [40]. (In
the non-relativistic case, this condition may actually also be
written as Eq. (2).) This makes both theories at least par-
tially invalid at energies below a limit larger than the K-shell
binding energy Bx. The use of these theories at lower ener-
gies may however be heuristically justified as follows. The
atomic inelastic DCS can be approximately regarded as a
sum of independent contributions from subshells for which
E > B;, where B; is the binding energy of subshell i [44].
The contribution to the inelastic cross section from such a
subshell is roughly proportional to B‘-“l. For independent
contributions from subshells such that E >> B; the validity
condition (2) may reasonably be assumed satisfied. Conse-
quently, the error in the Born approximation inelastic DCS
is expected to be small, except at energies E near or below
the smallest B;. In the case of condensed matter, this should
be interpreted as an energy of the order of the plasmon en-
ergy corresponding to the density of valence electrons.

In the Bethe theory, the inelastic DCS per atom may be
written [40]

do 7t 1 df(QW) (6)
dodw = E WQ daw

where df(Q,W)/dW is the generalized oscillator strength
(GOS) density (per unit energy transfer W). The GOS
density is essentially a map of all possible atomic transi-
tions in the Born approximation, and thus contains all the
information about the atom that is required for the calcu-
lation of the cross section [40]. As motivated by the clas-
sical theory of absorption and dispersion [45], the quan-
tity (df(Q,W)/dW) dW may be regarded as the number of
electrons per atom that take part in inelastic excitations with
recoil energy Q and energy transfer between W and W-dw.
In agreement with this view, the quantum mechanical Bethe
sum rule

Tarow
/TdW—-Z (7)
0

LU\ quite different method is represented by binary encounter models,
such as the widely and sometimes uncritically used inner-shell excitation
theory of Gryzinski [43].
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is obeyed for any Q. In the limit Q — 0 the GOS be-
comes equal to the optical oscillator strength (OOS) density
df(0,W)/dW = df(W)/dW which describes the excita-
tion of a free atom by photons in the dipole approximation.

If the atom is initially in the ground state (which we
assume), the GOS is a non-negative function, known as the
Bethe surface [40], which is defined on the (Q, W) plane.
Excitations to continuum levels form a continuous part of the
Bethe surface. In particular one may note the so-called Bethe
ridge [40] along the line W = Q, which corresponds to
close, approximately binary collisions between the incident
particle and an atomic electron, with an energy transfer much
larger than the binding energy.

In the dielectric theory, the inelastic DCS per atom may
be written [41]

d* ret 1 2W -1
T T ( > (8)

d0dW ~ E WQmi® (0, W)

where (2, is the fictitious plasmon energy of a free-electron
gas with a density equal to the total average electron density
in the condensed matter, i.e.

0, = (4rR2 e NZ/m)'. 9)

The quantity which plays a role analogous to the Bethe sur-
face is the “energy loss function” Im(—1/¢(Q, W) ), where
€(Q, W) or equivalently (K, w) is the dielectric constant
of the condensed matter as a function of the electromagnetic
field wavevector K and frequency w. Here, Q = REK? [2m
and W = hw, i.e. a quantized interaction is understood. The
dielectric constant describes polarization as well as energy
absorption in matter exposed to electric (electromagnetic)
fields [45]; thus, inelastic scattering is connected to the op-
tical properties of the solid.
The two cross sections are trivially identical if we put

dFQ.W) _ 2W -1
aw “wagZIm<e(Q,W))' (10

It should be noted that this relation actually alters and ex-
tends the GOS density concept so as to make it include also
those effects which are associated with the polarization of
the scattering medium by the incident charge, i.e., screening
of the charge and collective excitations. These effects are not
explicitly part of the Bethe theory, which deals with the ex-
citation of a single atom exposed to the unscreened field of
an incident particle. The OOS density which describes the
excitation of the atom by photons is related to the dielectric
constant by [46]

df(W) _ 2W

dw .(22

—ZIm(e(W)). (11)

(This is also easily shown by starting from e written as a
sum of contributions from Lorentz oscillators.) Eq. (11)
is evidently not equal to the limit of the modified GOS,
Eq. (10), when @ — 0. A simple, intuitive insight into the

physical content of Eq. (10) is to note that in order to reach
Eq. (10) from Eq. (11), we have to replace Im(¢) by

Im(e)
le[> -

The factor |e|* in the denominator may be regarded as a
measure of the screening of the incident charge. When |e|* =
1, for example in a thin gas, the dielectric theory reduces to
the Bethe theory. Screening is also negligible at frequencies
w = W/H corresponding to the excitation of inner shells.
With this in mind, it is clear that we can use the formalism
of the Bethe theory also for inelastic scattering in condensed
matter; we shall speak, for example, of the Bethe surface
of a free-electron gas. (Assuming the gas to be a model of
the conduction or valence electrons, we may either count
the GOS per atom, in which case Eq. (7) is valid, or the
GOS per electron, in which case the Bethe sum rule adds to
unity.) The Bethe surface thus defined for condensed matter
includes collective excitations, evidenced in the maxima of
Im(—1/€(Q,W)). As is usual, we shall refer to the optical
limit (Q — 0) of the condensed matter GOS as the “008”,
although it is the same function as in the case of free atoms
only in the limit |e| — 1.

Im(—1/e€) = (12)

3.2. Bethe surface model

As is evident from Eq. (6), the Bethe surface df(Q, W)/
dW, together with the kinematic restrictions (4) and (5),
determines the inelastic DCS. Rather than modelling the
physical scattering process (as for example in the binary
encounter theories [43]), we may look for a model of the
Bethe surface.

We use here a simple and flexible method, convenient
for Monte Carlo simulation, namely to build a model of
the Bethe surface as a sum (or integral) of contributions
of the general form f(Q)8(W — Wi(Q)), where & is the
Dirac 8-function, f(Q) a Q-dependent oscillator strength,
and W;(Q) a relation connecting each momentum transfer
with a specific energy transfer [19,47] % In the limit Q —
0 it is natural to regard W; as a resonance energy, connected
to an oscillator resonance frequency @ = W:/A. In fact,
any Bethe surface can be constructed by a suitable, specific
choice of such d-function contributions [47]. However, it
should be stressed that we do not attempt to reconstruct the
exact Bethe surface, but only to build a physically reasonable
model of it.

We may write the Bethe surface as [19]

g g UGN o

where the subscript “i” indicates the contribution from inner-
shell ionization (excitation to states above the Fermi level),

2 This method has been used several times previously [10,18,19,47]. We
give here a condensed description.
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while “v” indicates the contribution from the excitation of
weakly bound (valence) electrons.
For the “1” contribution we use the model [19,48]

{df(Q,W)]z/{df(W’):l Fs(W' 0, W) dW',

dw aw’
(14)

where [d f(W') /dW’]; is the QOS for inner-shell excitation,
and where

Fs(W';0, W) =8(W - WHo(Ww — Q)
+8(W—Q)@(Q—W’). (15)

(Here, @ is the step function, i.e. @(x) = 0if x < 0 and
O(x) = 1if x > 0.) The first term in Eq. (15) (non-zero
for Q < W') is a model of optically allowed (dipole) exci-
tations. These may be regarded as resonance excitations of
the atom in the fluctuating electric field of a charged par-
ticle passing by at some distance [49]. The second term
(non-zero for Q0 > W’) is a model of optically forbidden
excitations, i.e. the classically close, binary collisions which
produce the Bethe ridge. The Bethe ridge is in Eq. (15)
modelled as (W — Q), ie. the width of the ridge due
to the orbital motion of the atomic electron is neglected.
(This approximation is discussed below.) The total oscil-
lator strength obtained by integrating Eq. (15) from W =
0to W = oo is unity for all Q. The expression (15) is
therefore referred to as a “unit-strength (or one-electron)
d-oscillator” [10,19]. The OOS density of the 8-oscillator
consists of a single peak S(W — W’) at the resonance en-
ergy W', Although extremely simple, the -oscillator model
has been shown to be useful for approximately calculating
inner-shell (core electron) excitation [48,50~52]. Accord-
ing to a study by Bichsel [53], it may be better than the
Gryzinski model [43] for this purpose.

For the contribution “v” to the Bethe surface from valence-
electron excitation we use the model [19]

{df(Q,W)] =/[df<W’>] Fra (W50, W) dW',

dw aw’
(16)

where [df(W') /dW'], is the OOS for excitation of weakly
bound electrons, and where

Pru(W',0, W) = f,(Q) 8(W — W,(Q))
+(1 = fp(2)) 8(W - Q) (17)

is the so-called two-modes (TM) model [11,19]. This
model approximates the Lindhard theory [54] of the free-
electron gas. The first term in Eq. (17) represents the plas-
mon contribution with plasmon damping (i.e. finite plasmon
linewidth) neglected. The function f,(Q) is a QO-dependent
plasmon oscillator strength and W,(Q) is the plasmon
dispersion relation. The recoil energy Q is here connected

to the plasmon wavevector k by Q = K2/%/2m. The plas-
mon energy in the limit of infinite wavelength (k — 0)
is W' = W,(0). The oscillator strength /p(Q) is (counted
per electron in the gas) equal to unity at Q = 0, then drops
with increasing @, and vanishes for Q > Q., where Q.
is the recoil energy corresponding to the plasmon cut-off
(maximum) wavevector k. The second term in Eq. (17) is
amodel of the electron-hole excitations, where the incident
charged particle through a binary collision knocks a target
electron out of the Fermi sphere. The momentum distribu-
tion of the electrons in the gas is ignored, so that 0 = W,
i.e. the Bethe ridge is again contracted into a 8-function. In
order to satisfy the Bethe sum rule, the oscillator strength
must be 1 — f,(Q) in the second term. This represents the
screening of the binary interaction at low momentum trans-
fer (i.e. at long distances), due to collective displacement
of the gas. As may be seen from Eq. (17), there are two
modes (two branches) for Q < O.; hence the name of the
model. The OOS density is a single peak S(W — W').

Since the Bethe sum rule adds to unity when applied to
Eq. (17), we refer also to the TM model as a unit-strength
or one-electron oscillator, with the resonance energy W' in
the Q = 0 limit. With appropriate expressions for Fo(Q)
and W,(Q) [19], it reproduces nearly exactly the results
of the Lindhard theory as regards inelastic mean free path
and stopping power for electrons or positrons penetrating
the free-electron gas.

In the lowest approximation, a single &-oscillator
(Eq. (15)), multiplied by an appropriate oscillator strength
Jfi, may be used as a model for all excitations of electrons
belonging to a particular inner subshell i [48,52]. In or-
der to perform a more accurate simulation of energy loss
distributions, the possible excitations of the electrons in
each subshell / (including the valence electrons) may be
modelled by a large number of such oscillators with differ-
ent strengths fi; distributed over resonance energies W/ s
J=1,2,3,... This method was implemented in a previous
code [10]. A very simple improvement would evidently be
to use the TM model for the valence electrons.

The present approach is however different in several re-
spects, one of them being that the set of discrete oscillators
is replaced by a continuum, as explicitly shown in Egs. ( 14)
and (16); this is in practice a prerequisite for the simulation
of energy loss distributions at high resolution.

3.3. Application of optical data

It may be noted that main contributions to the inelastic
DCS are obtained at small Q values, i.e. most inelastic col-
lisions occur with a small scattering angle 6. (Small mo-
mentum transfers are classically associated with large im-
pact parameters, and therefore also with large cross sec-
tions.) A Taylor expansion of the Bethe theory expression
for dorin/dW for energy losses W < E at small scattering
angles gives [19]
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(18)

Thus, in order to compute the inelastic DCS in an approxi-
mation which is good enough to reproduce the characteristic
low energy loss spectrum, as well as a good estimate of the
total inelastic cross section [44], we need only to know the
0OS density. This is not sufficient for the calculation of en-
ergy loss during penetration of matter, since the small-angle
DCS in Eq. (18) represents only part of the stopping power.
However, Eq. (18) is a key to understand the potential ac-
curacy of optical-data models.

Penn [17] applied the idea of using an experimentally
determined OOS density, obtained from the measurement of
optical properties of the scattering solid, for the calculation
of inelastic scattering. In this way, one may, as seen from
Eq. (18), be fairly certain that the characteristic energy loss
spectrum and the inelastic mean free path are obtained with
good accuracy. The use of optical data was previously dis-
cussed by Ritchie and Howie [55], and optical data have
extensively been used for the computation of inelastic mean
free path and stopping power by Ashley [18,56-58].

In order to obtain a model for the complete inelastic scat-
tering process, we need also a physically reasonable algo-
rithm for extending the OOS to the Q > 0 region; ie. to a
Bethe surface. Penn [ 17] used the Lindhard [54] expression
for the dielectric constant of the free-electron gas, in close
analogy with the local plasma approximation [59]. Ashley
[18,56-58] has employed a 5-function representation of the
free-electron gas which is simpler and somewhat less accu-
rate than the TM model, namely (in the present notation)

FA(W'Q,W) = 8(W — (W' +0)). (19)

A comparative discussion is given in Ref. [47].

The algorithm used in the present Monte Carlo code
is based on the Bethe surface model described above
(Eqgs. (13)-(17)). However, a drawback of optical-data
models is that the experimental OOS itself is not unam-
biguously separated into contributions from different bands
or shells; this causes difficulties also, for example, when
calculating the secondary electron yield. As an approxima-
tion, we therefore introduce a parameter Ws, which serves
to divide the OOS into two parts, one due to weakly bound
electron excitation and the other to inner-shell electron ex-
citation. The Bethe surface used in LEEPS is given by [19]

oo

Qf QW) _ / [dﬂW’)} FOW'0,W)dW',  (20)
exp

aw dw’

where

F(W';0,W) = Fra(W'; Q, W) O(Ws — W')
+Fs(W'; 0, W) O(W' — Ws). (2D

Here, [df(W')/dW'] op 1§ the experimental 0O0S density,

regarded as a continuous function of the resonance energy
W', and obtained from tabulated optical and photoelec-
tric data [60-64]. The F(W’;Q,W) is a unit-strength
8-function contribution to the Bethe surface, weighted with
the oscillator strength density d f(W’) /dW’, and taken to
be a TM model oscillator for W/ < W, and a §-oscillator
for W' > Wi.

We suggest that W should be chosen to be equal to the
smallest inner-shell excitation threshold energy [19]. The
0O0S density for sufficiently small W’ is due entirely to the
excitation of weakly bound (valence) electrons, and it is
reasonable to expect that the TM oscillator should be better
than the 8-oscillator in this region. For higher W', the energy
loss spectrum shows an edge structure which is due to the
excitation of inner shells, and in order to reproduce this
structure for Q # 0 the -oscillator model should be used
[47]. However, it must be noted that for W’ > Ws there
is also a continuous background due to the excitation of
valence electrons, e.g. the tail of a damped plasmon.

Applying the formula (6) for the inelastic DCS, we get

d*o
dgdw
_7Te4 1 7 df(W/) /. /
‘TWQ’/[_—dW' expF(W,Q,W)dw
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_ [farann ] met 1 2 '
_/{ pr - WQFTM(W,Q,W)dW
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Tlafom] =t 1 ,
+/[ dw? }exp E W_QFﬁ(WvQ’W)dW
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_ [lafawn | dPoma o0
- / [ dw’ pr agaw

0

o<

df (W' Pos o,
+/[ W Lp 0w aw’, (22)

Ws

where the last member defines the one-electron DCSs for
the TM oscillator and the 8-oscillator, i.e. o /(dQdW)
and d20‘5/ (dQdW), respectively [19]. The point of prac-
tical importance here is that the contributions from these
one-electron DCSs to the inelastic mean free path and the
stopping power can be expressed by closed formulae [23].
The specific properties of the particular solid enter only in
the experimental OOS density.
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It has been shown [19] that the present optical-data model
gives inelastic mean free paths and stopping powers in good
agreement with available experimental data. The method for
preparing the optical data (i.e. the OOS) is briefly indicated
in Appendix B and described in Ref. [19].

We may note the following as compared with previous
Monte Carlo models. Since the TM model closely repro-
duces the Lindhard theory, the Penn model [17] is approx-
imately obtained by choosing W; = oo in Eq. (22). In their
Monte Carlo code, Jensen and Walker [16] apply the Penn
model to the inelastic scattering. The comparative advan-
tage with the TM model is that it lends itself more easily
than the full Lindhard theory to exchange and relativistic
corrections. Thus, our code is useful for simulation of elec-
tron as well as positron transport. Moreover, it may have a
practical advantage when applied to Monte Carlo simula-
tion [23]. Another difference from the code by Jensen and
Walker is that we use a different extension (the 8-oscillator)
for the core electrons. In partial agreement with this, Oztiirk
and Williamson [21] use dielectric theory and optical data
only for the weakly bound electrons. For the inner-shell ex-
citation they apply, as is the most common procedure, the
Gryzinski model [43]. As mentioned, we believe that the
d-oscillator used together with optical or photoelectric data
may be better than the Gryzinski model for the core elec-
trons. The Monte Carlo code of Valkealahti and Nieminen
[91 uses the Gryzinski model for both valence-electron and
inner-shell excitations, which is a method analogous to the
use of only §-oscillators [10].

The shape of the atomic Bethe ridge was discussed by
Inokuti for the case of hydrogen [40]. In the present model
(and also in the original Bethe theory for the stopping
power) the Bethe ridge is approximated as (W — Q), i.e.
the target electron in a close collision is assumed to be ini-
tially free and at rest. This approximation is in general suffi-
ciently accurate for simulating energy loss distributions, as
may also be guessed from the fact that it is actually made
in the derivation of the Landau [37] and Vavilov [38] dis-
tributions. It also allows the introduction of exchange and
relativistic corrections in a simple and straightforward man-
ner (see Appendix A). The approximation may turn out to
be insufficient, if for example electron Compton scattering
(ie. the target electron momentum distribution) is studied
[65]. Ding and Shimizu [66] and Ashley [18,56-58] have
used Eq. (19) to extend the OOS into the GOS, and in so
doing they attribute a certain width to the Bethe ridge. How-
ever, the effect of their procedure is simply that the OOS,
shifted to higher energies by the amount Q, is obtained if a
cut is made through the Bethe surface at any Q. As regards
including the width and shape of the Bethe ridge in a sim-
ulation, the Penn model, being based on the full Lindhard
theory of the free-electron gas, should be more realistic, at
Jeast for the weakly bound electrons.

4. Simulation methods
4.1. General aspects

The complete picture needed for detailed trajectory simu-
lation is in principle as follows. The DCSs, and all quantities
derived from them, depend on the particle kinetic energy E.
The total cross section is o = o + o7y, and the total mean
free path is A = (No)~!. The probability that a particle
with a given energy E will travel a path length s without in-
teracting with the solid is exp(—s/A). In accordance with
this, the path length s to the next point of interaction is sam-
pled by s = —Aln &, where £ is a random number between 0
and 1. The probability that the interaction will be elastic is
0.1/ 0 otherwise it is inelastic. If the interaction is elastic,
a polar scattering angle 6 is sampled from the probability
distribution function

1 doe

pei(6) = on 8

If the interaction is inelastic, a scattering angle 6 and an
energy loss W are sampled from the probability distribution
function

(23)

1 doy,
ot dOAW’
The energy E is then decreased by W. In both cases, a value
for the azimuthal scattering angle ¢ is chosen randomly
between 0 and 277, The angles 6 and ¢ together determine
the new direction of motion of the particle towards the next
point of interaction; and so on.

The special interpolation and sampling methods used
to obtain scattering angles and energy loss in the individ-
ual scattering events in LEEPS are described in detail in
Ref. [23]. Here we will only briefly indicate these meth-
ods. The tabulation of and sampling from the OOS is of
particular interest, and in this case we will make an excep-
tion from our intention of not going into technical details.
As regards program organization, LEEPS actually consists
of a few subroutines (dealing with data preparation and
with the sampling of scattering angles and energy loss in
single events) which can be conveniently inserted into a
user-made main program [23]. The programming language
is standard FORTRAN 77.

pin(6,W) = (24)

4.2. Simulation of inelastic events

- The basic idea in the simulation of an inelastic event in
LEEPS is first to sample the excited oscillator (i.e. the res-
onance energy W'), and then to sample the recoil energy Q
and the energy loss W in accordance with the corresponding
one-electron DCS (TM model or 8-oscillator). The variable
Q is then easily transformed to the scattering angle 8, using
Eq. (4). The first step requires the OOS data for the scat-
tering solid; the second step requires a fixed set of formulae
derived for the two-modes model and the §-oscillator.
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From an initial table of OOS values d f (W') /dW' at given
resonance energies W’ (see Appendix B), the OOS is eval-
uated by linear log-log interpolation, i.e. by linear interpo-
lation of In(df(W’)/dW’) as a function of In W'.

The probability of exciting an oscillator with resonance
energy in the interval (W', W' + dW’) is given by

W) TalW) g 25)

EW ! _
Dosc( ) dw aw’ o

where o (W') is the one-electron total cross section (at
that particular electron or positron energy E), i.e. the cross
section for exciting a unit-strength oscillator with resonance
energy W'.

The normalized probability distribution function given
by Eq. (25) is tabulated on a grid of resonance energies W}
(independent of the energy of the projectile) from which
Pose(E; W') is obtained by linear log-log interpolation.
Since o (W’) is a slowly varying function of W’ except
near E, the probability distribution function pesc(E; W')
has a shape similar to that of the OOS except for a rapid
decrease at resonance energies near E due to the decrease
of oin(W') when W’ approaches E (see Fig. 1). Therefore,
the grid of resonance energies W; where posc(E; W') is
tabulated must be selected in such a way that: (i) the OOS
obtained by linear log-log interpolation from a table of
OOS values at the points of this grid does not differ signifi-
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Fig. 1. The dashed curve shows, for aluminium, a representation of the 00S
density df(W')/dW’ (in eV_l). The dots are the remaining original 00§
data after “cleaning”, as explained in the text, with a tolerance of 5%. The
dashed curve consists of straight lines between these dots, i.e. it is obtained
by linear interpolation on a log-log scale. The continuous curve shows the
ratio oy (W) /oy (see Eq. (25)) for the case of 1 keV electrons. For
the same case, the crosses show the tabulated values of the probability
distribution function posc (E; W'y (in eV_l). The small discontinuity in
Tin (W) /o, which occurs at W' = W, is due to the switch from the
TM model to the §-oscillator.

cantly from the input OOS and (ii) the grid is dense enough
to properly reproduce the rapid decrease of o (W') for W'
values approaching E. In the simulation program we use a
grid of N; = 300 resonance energies W; determined so as to
fulfill these requirements. First, the grid of the input OOS
table is “cleaned” by discarding those data points which
can be obtained by interpolation between neighbouring
points with an error less than a given “tolerance” (typi-
cally a few percent). This cleaning reduces the number of
grid points considerably. The remaining points, say Ny, are
concentrated in the regions where the OOS varies rapidly
(as can be seen in Fig. 1). The grid is then completed, by
linear interpolation on a log-log scale, with N2 = Ny — N|
points at resonance energies logarithmically distributed in
the interval from 0.5 eV to 500 keV. The final grid is dense
enough to follow the rapid variation of pesc(E; W') near
the maximum possible W’ value at a given energy E. Fig. 1
shows explicitly the tabulated values of pesc(E; W') for 1
keV electrons in aluminium,

Before starting the simulation, the arrays A Y(E;) and
Posc (Es W) (j=1,..., N;) are computed and stored in the
computer memory on a grid of kinetic energies E; (which
is actually the same as used in the simulation of elastic
scattering). For a given kinetic energy E, such that E; <
E < E;y1, the resonance energy W' of the excited oscillator
is obtained by linear log-log interpolation, i.e. as

W/(E,€) =exp { InW'(E;, €)

+ [InW (B, €) - n W (E;, )]

InE—-InkE
X InEy —InE; } (26)
Exact random sampling of W’ is then performed from the
distribution posc (E;; W’) defined by linear log-log interpo-
lation in the pose( Ei; W}) table.

Sampling of Q and W from the appropriate one-electron
oscillator (8-oscillator or TM model, depending on whether
W' > Ws or W < W) is made from analytical formulae,
by means of the rejection method combined with the inverse
transform method. Details are found in Ref. [23]. The ran-
dom sampling of @ and W is simplified by the fact that each
one-electron oscillator can be split up into separate contri-
butions, each represented by a single-valued dispersion re-
lation W = W(Q). This means that we may integrate the
DCS over one of these variables to obtain the (unnormal-
ized) probability distribution function of the other. A value
of this other variable is sampled. The value of the first vari-
"able is then obtained from the dispersion relation.

4.3, Simulation of elastic events

For the angular deflection in elastic scattering events it is
convenient to consider the DCS as a function of the variable
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Fig. 2. Transmission fraction, 7, for electrons with the indicated kinetic energies, through (a) aluminium and (b) gold films, as a function of mass thickness
px. Crosses (joined by straight segments for visual aid) show LEEPS results. Experimental results are from Reimer and Drescher [67) (circles) and Neubert
and Rogaschewski [68] (squares and triangles), For the case of 25 keV electrons, dashed curves show LEEPS results corrected for the contribution of
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which varies from O (forward scattering) to 1 (backward
scattering). The DCS for elastic scattering of electrons or
positrons with kinetic energy E can be written as

d
ﬁ = ca pa(E; 1), (28)

where o is the total elastic cross section and per ( E; 1) is the
normalized probability distribution function of the angular
deflection w in single scattering events.

During the simulation, the inverse mean free path A YE)
and the angular distribution pe ( E; w) for the required values
E and u are obtained by linear log-log interpolation within
a precomputed table, according to methods similar to those
described above [23].

5. Comparison with experimental data

When comparing simulations made by LEEPS with ex-
perimental data, the following should be noted. First, there
are two parameters in the present model whose values are
not definitely fixed, namely the muffin-tin radius ry, and the
energy Ws. As described above, one can choose appropri-
ate values by physical arguments. The experimental OOS
represents of course a massive amount of empirical input,
which is derived from optical and photoeffect measurements
and calculations. However, no adjustments of any parame-
ters to empirical electron or positron scattering data have

been made, and in this sense the calculation performed by
LEEPS is ab initio.

Second, an inspection of the following features is of par-
ticular interest when comparing LEEPS results with experi-
ment: 1) the accuracy at low energies (below 10 keV, say);
2) the ability to reproduce accurately the differences be-
tween electron and positron transport in solids; 3) the ability
to simulate characteristic low energy loss spectra with high
energy resolution. Present comparisons are not exhaustive,
but indicate that a good accuracy may be expected.

The number of simulated tracks for each of the differ-
ent cases discussed below was sufficient (at least 200000
tracks) to make statistical uncertainties in the results in-
significant as regards our present conclusions. The cutoff en-
ergy when simulating transmission and backscattering was
set to 50 eV.

Figs. 2-4 compare LEEPS with some well-known bench-
mark electron scattering experiments. These simulations are
not particularly “difficult”, i.e. simpler Monte Carlo schemes
may appear to give similar good agreement. However, the
present results are satisfactory from the point of view that al-
though no empirical adjustments have been made, the agree-
ment is in general very good.

Fig. 2 shows a comparison as regards total transmission
of electrons through films of different thicknesses. In Figs. 3
and 4 we consider transmitted and backscattered energy loss
distributions obtained under multiple scattering conditions,
at a moderate energy resolution; i.e., traces of the charac-
teristic energy loss spectra are essentially washed out. The
simulated results in Figs. 2 and 4 should be corrected for
the contribution from energetic secondary electrons, which
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Fig. 3. Energy distributions, dnt/d(E/Eyg), for electrons with initial energy
Eg =20 keV transmitted through aluminium films, Histograms: Monte Carlo
simulation by LEEPS. Dashed curves: experimental data from Shimizu et
al. [5].

is discussed below.

A comparison between experimental and simulated data
for the angular dependence of positron bulk backscattering
from Coleman et al. [71] is shown in Fig. 5. Our simulated
results are slightly (perhaps negligibly) closer to the exper-
imental data when compared with the simulations reported
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Fig. 4. Energy distributions, dny/d(E/Eg), for Eg = 30 keV electrons
backscattered from bulk aluminium and copper. Circles and squares: exper-
imental data from Darlington [69], normalized to the bulk-backscattering
fraction as measured by Drescher et al. {70]. Histograms: Monte Carlo
simulation by LEEPS.

in Ref. [71], which were made with the Jensen and Walker
code [16], then claimed to be the most sophisticated model
available for positron transport [71].

Fig. 6 presents a comparison with experimental data
for the energy dependence of the bulk backscattering of
positrons and electrons at normal incidence. Note the loga-
rithmic energy scale. The difference between electron and
positron backscattering is striking. Bulk backscattering is
theoretically interesting, as it is the result of a delicate bal-
ance of elastic and inelastic scattering, as well as a balance
of single large-angle and multiple scattering; i.e. essentially
all parts of the scattering model seem to matter if an ac-
curate result is to be obtained in an ab initio approach. In
view of this, we consider the agreement between simulation
and experiment in Fig. 6 to be encouraging. It should be
noted that we have not included the recent experimental
data on electron backscattering from Bongeler et al. [78].
At energies below a few keV, these data are in marked dis-
agreement with simulated and experimental results shown
here. In the case of positron backscattering from gold there
are two sets of experimental data, namely that from Cole-
man et al. [71] and that from Mikinen et al. [73]. Our
results fall between these sets, but are closer to the former.

In fact, there is one correction in the case of electrons
which is presently not included in LEEPS, namely the con-
tribution to transmission and backscattering from energetic
secondary electrons. By “energetic” we mean secondary
electrons escaping from the solid with energies above 100
eV. This contribution has been estimated by help of another
Monte Carlo program, PENELOPE [79]. Using PENE-
LOPE, we have for the different experimental situations cal-
culated the number of escaping energetic secondary elec-
trons per incident primary electron. This number has been
added to the transmission and backscattering fractions simu-
lated by LEEPS, and the result is indicated by dashed curves
in Figs. 2 and 6. The correction to the bulk backscattering
(Fig. 6) is substantial. The correction to the transmission
(Fig. 2) is found to be smaller, amounting to an increase
of the transmission at a given thickness by a factor typi-
cally about 1.01-1.03. In Fig. 3, no correction is required,
since the maximum secondary electron energy is half the
initial electron energy. In Fig. 4, the good agreement at en-
ergies less than half the initial energy may be fortuitous.
The experimental data from Ref. [69] agree very well with
the LEEPS simulation without the correction for secondary
electrons. However, these experimental data were normal-
ized to the Drescher et al. [70] bulk-backscattering frac-
tion, which thus might be slightly too low, judging from the
present analysis. The missing contribution to the energy loss
distributions in Fig. 4 should be mainly at the low energy
part of the distributions, and actually seems to be present
e.g. in the experimental results of Matsukawa et al. [80].

Fig. 7 shows a comparison with the characteristic energy
loss spectrum of 100 keV electrons transmitted through a
thin silicon film. An ion milled silicon wafer was analyzed
using a JEOL-100C scanning transmission electron micro-
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Fig. 5. Bulk-backscattering fraction, 7y, for (a) 5 keV and (b) 35 keV positrons incident on aluminium and gold, as a function of the angle of incidence
fo. Crosses joined by straight segments show LEEPS results. Experimental (full symbols) and simulated data using the Jensen and Walker code [16] (open
symbols) are taken from Coleman et al. [71].
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Fig. 6. Bulk-backscattering fraction for positrons and electrons normally incident on beryllium, aluminium, copper and gold, as a function of incident particle
energy E. Crosses joined by straight segments show LEEPS results. Dashed curves show LEEPS results corrected for the energetic secondary electron
contribution for E > 1 keV. () Incident positrons. Simulated data using the Jensen and Walker code [16]: (o, [, A, %7) [71]). Experimental data: (e) [72];
(M, A, w) [71]; (#) [73]. (b) Incident electrons. Experimental data: (o, I, A, ) [70]; (@, @) [74]; (o) [75); (&) [76]; (o, B, A, ¥) [77).
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Fig. 7. Energy loss spectrum of 100 keV electrons transmitted through a
thin silicon film. Dashed curve; spectrum as measured in our JEOL-100C
electron microscope. The angular aperture is max = 0.01 rad, and the energy
resolution 3.2 eV FWHM. Histogram: LEEPS simulation result, assuming
the same angular aperture and convoluted with a gaussian profile with
the indicated FWHM. Experimental and simulated spectra are normalized
to equal area, From our simulated results, the thickness of the sample is
estimated to be 0.2540.01 um.

scope (STEM) equipped with a LaBg filament in convergent
beam coupled mode {81]. The transmitted beam was ana-
lyzed with a double focusing magnetic sector and the spec-
trum was detected by a YAG scintillator optically coupled
to a Reticon 512 photo diode array. For the present compar-
ison with simulation, we have assumed a simple gaussian
energy resolution profile and estimated the energy calibra-
tion from the peak positions. Improved agreement may be
obtained by simultaneously adjusting the spectrometer pro-
file and the calibration. However, at present we rather wish
to stress the fact that agreement with the experimental data
is essentially obtained by using a detailed OOS density (see
Eq. (18)). Also, the actual algorithm used to extend the
0OS into the GOS is here of less importance. For the simu-
lation of the characteristic energy loss spectra, optical-data
models seem to be very useful and apparently superior to
previous approaches.

Fig. 8 shows a similar comparison with experimental data
from Misell and Atkins [82] for the case of copper. As in
the previous case of silicon, the thickness of the film was not
accurately known. Misell and Atkins quote their film thick-
ness to be in the range 0.025-0.070 um. We obtain good
agreement between simulated and experimental data with a
copper film thickness of 0.10£0.01 xm. It may be argued
that the difference may indicate an error (then at least about
30%) in the inelastic mean free path calculated by LEEPS.
However, comparing LEEPS with previous calculations by
Tung et al. [59] and Ashley [ 18], this is highly unlikely. We
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Fig. 8. Energy loss spectrum of 60 keV electrons transmitted through a thin
copper film. Dashed curve: spectrum as measured by Misell and Atkins
[82]. The angular aperture of their spectrometer was 0.1 rad, and its energy
resolution was 1 eV FWHM. Histogram: LEEPS simulation result, assuming
the same angular aperture and convoluted with a gaussian profile with the
indicated FWHM, Experimental and simulated spectra are normalized to
equal area. Optimal agreement with experiment is obtained with a film
thickness of 0.10:£0.01 xm.

believe that the error may be at most about 10%, and more
likely just a few percent. It should be noted that our OOS
density for copper, using Eq. (18), is in very good agree-
ment with the single collision energy loss spectrum derived
by Misell and Atkins from their experimental data [19].

Appendix A: Exchange and relativistic corrections

We will briefly indicate the corrections of the inelastic
scattering models which are made for relativistic effects and
for exchange (when the incident particle is an electron). The
relativistic corrections are necessary in order to get a suffi-
cient accuracy at energies above ~ 50 keV and the exchange
corrections cannot be neglected at any energy. Elastic scat-
tering is, as mentioned, calculated entirely relativistically,
being based on the Dirac equation, with a local exchange
potential added for the case of electron scattering.

The complete formulae for the é-oscillator and the TM
model one-electron DCSs, including these corrections and
with expressions for the mean free path and stopping power
derived for the various contributions (resonance, binary,
plasmon, etc.), are too long to be written here, but are sum-
marized in Refs. [23,24].

We first consider exchange without relativistic correc-
tions. Exchange in the inelastic scattering of electrons is
taken approximately into account by means of a modified
Born—-Ochkur approximation [19]. The exchange-corrected
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d-oscillator DCS is
dza'a dzo'a
o, i o

where d’cs/(dQdW) in the right member is the uncorrected
DCS and

Cx=1- g +< 9 >2- (A2)
E+W -W E4+W -W

This reduces to the usual Born-Ochkur exchange correction
[83] when W = W', i.e. for distant (low-Q) collisions, and
to the (non-relativistic) Mgller DCS for electron-electron
collisions when Q = W and W >> W’. The same correction
factor Cey is introduced in the TM model one-electron DCS
d*on/(dQdW) for the inelastic scattering of electrons in a
free-electron gas, but only for the electron-hole excitations.
For the plasmon branch, we assume Cex = 1. Note that
W' = 0, so for momentum transfers beyond the plasmon
cutoff (Q > Qc), the usual Mgller DCS is obtained exactly.
It should also be observed that the integration limits are
modified by the exchange effect; the details are described in
Refs. [23,24].

We next consider relativistic corrections for electrons. We
have here previously defined E as the non-relativistic kinetic
energy, i.e. E = mu® /2. We now redefine E to be the rela-
tivistic kinetic energy of the particle. Following Fano [84],
the relativistic recoil energy is then conveniently defined by

Q (@ +2mc*) = (cq)?, (A3)

so that the Bethe ridge will lie along the line W = Q as in
the non-relativistic case. Explicitly,

0= [E (E+2c") + (B~ W) (B~ W+ 2mc?)

=2 /E (E+2m)[(E~W) (B~ W + 2mcY)
NEe 2
X cos @ + m*c ] — mc”. (A4)

As may be seen by comparing with Eq. (4), this gives a
further modification of the integration limits [23,24].

For particles with kinetic energy less than ~ 0.5 MeV,
the dominant relativistic effects on the DCS for low-Q ex-
citations are purely kinematical; transverse interactions, and
the associated density effect, can be neglected at these ener-
gies. The relativistic DCS for low-Q excitations, including
the exchange correction, is given by [24]

do 2wt 1 df(Q’W)Cex [1_(9(—9—)}.

dQAW ~ mdEWQ ~ dw )]’
(A5)

where

2 (v\*_ E(E+2mc) o

#=(2) = Erner (49

For Q < 2mc? this is identical to the non-relativistic DCS,
Eq. (6), which, written as in Eq. (A.5), therefore turns
out to be sufficiently accurate for the low-Q excitations of
electrons up to initial energies ~100 keV.

For the high-Q excitations we have to consider what hap-
pens on the Bethe ridge O = W, ie. for W > W’ in the
d-oscillator and for W > Q. in the TM model. For the scat-
tering of electrons, we use here a modified Mgller DCS
[24,23]

do _ 27Te4_1_[1_|_< W )2
AW~ mc2p w2 E+W —-W
_ (-aw aw? ]
E+W —-W ' (E+WH2]
(A7)
where
E 2
a= (m) : (A8)

Note that in the TM model W’ = 0 and Eq. (A.7) reduces
to the usual Mgller DCS.

In LEEPS, positron inelastic scattering differs from elec-
tron inelastic scattering in the following respects [23]: Cox =
1 everywhere, the integration limits are not modified by ex-
change effects, and the (modified) Mgller DCS at high-Q
collisions is replaced by the Bhabha DCS, which describes
the collision of a positron with a free electron initially at
rest. We do not take annihilation in flight into account.

Appendix B: Optical data preparation

One may start from the refractive index n and the ex-
tinction coefficient « in the infrared, visible, ultraviolet and
lower X-ray regions. These are comprehensively tabulated
(as functions of photon energy W’) e.g. by Palik et al.
[60,61] for a number of solids. The dielectric constant is
then, for each frequency w = W'/, given by

e(w) = (n+ik)%. (B.1)

From this one obtains Im(—1/e(w) ), which is easily con-
verted into the condensed matter OOS density by using
Eg. (10) with Q =0.

In some cases, these data have to be complemented by
data in the x-ray region, i.e. related to inner-shell ionization.
For this one may use the tabulated photoelectric cross section
o [62-64]. At these high frequencies one has |e| = 1,
in which case the OOS density is simply obtained by the
formula [85]

af (W) _ me
AW 2mar o
Actually, the preparation of an QOS table for a particular
solid is not quite trivial [19]. One has to extrapolate to high

(B.2)
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frequencies, check that the sum rules and the mean ioniza-
tion energy come out correctly, and generally check for and
correct against inconsistencies in the primary data. Once this
preparation has been made, one has however a convenient
data set which is generally applicable to the inelastic scatter-
ing of charged particles in that solid. The optical data used
for the present calculations have been discussed in more de-
tail in Ref. [19].
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