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Abstract

We describe a new model of electron transport mechanics, the method by which an electron is transported geo-

metrically in an in®nite medium as a function of pathlength, s, the accumulated elastic multiple-scattering angular

de¯ection characterized by H�s�, the polar scattering angle, and U, a random azimuthal angle. This model requires only

one sample of the multiple-scattering angle yet it reproduces exactly the following spatial moments and space±angular

correlations: hzi, hx sin H cos Ui, hy sin H sin Ui, hz cos Hi, hx2i, hy2i and hz2i. Moreover, the distributions associated with

these moments exhibit a good improvement over the PENELOPE transport mechanics model when compared self-

consistently with the results of analog simulations. When we split the transport step into two steps with equal path-

length, we observe excellent agreement with the distributions, indicating that the algorithm nearly matches higher order

moments when employed in this way. The equations described herein are relatively inexpensive to employ in an iterative

Monte-Carlo code. We have employed the new model to demonstrate the usefulness of the new mechanics for several

examples that span the dynamic range of application. Ó 2001 Elsevier Science B.V. All rights reserved.

PACS: 02.50Ng; 13.60Fz; 25.30Bf; 34.80Bm
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1. Introduction

One of the most challenging problems in the
Monte-Carlo simulation of high-energy electron
(and positron) transport is the generation of spa-

tial displacements of the particle. In each step of
the simulation, the electron is moved a certain
pathlength, s, through the medium. The angular
de¯ection after this pathlength is determined by
the polar multiple-scattering angle, H�s�, and the
azimuthal angle U, which is distributed uniformly
on �0; 2p�. For a given elastic cross-section, the
theory of Goudsmit and Saunderson [1,2] provides
the multiple-elastic scattering distribution from
which H�s� can be sampled. The di�culty comes
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from the fact that the space displacement �x; y; z�
at the end of the step, although strongly correlated
with the angular de¯ection, is not known. Formal
solutions of the transport equation [3,4] provide
closed expressions only for the moments of the
space displacements and space±angle correlations.
Since only a few of these moments can be evalu-
ated and employed in a practical transport scheme,
there is not enough information to characterize
�x; y; z� unambiguously. The prescription that re-
lates �x; y; z� to H�s�, U and s will be called the
``electron transport mechanics'' [4].

The PENELOPE Monte-Carlo code system [5±
7], a general purpose coupled e�c Monte-Carlo
code, employs a ``random hinge'' electron trans-
port mechanics' scheme that can be summarized as
follows:

x=s � r sin H�s� cos U;

y=s � r sin H�s� sin U;

z=s � �1ÿ r� � r cos H�s�;
�1�

where r is a random number sampled uniformly on
�0; 1�, and the pathlength, s, for which the multiple-
scattering angle H�s� is calculated and interpreted
as the total curved pathlength that the electron
travels through the medium.

Although this scheme is an ansatz, it produces
high quality results as indicated through compli-
ance [4] with Lewis' moments [3]. The Lewis mo-
ments studied in the previous work were

hzi �
Z s

0

ds0 eÿg1s0 ;

hzli � 1

3

Z s

0

ds0 eÿg1�sÿs0��1� 2eÿg2s0 �;
hx sin H cos U� y sin H sin Ui

� 2

3

Z s

0

ds0 eÿg1�sÿs0��1ÿ eÿg2s0 �; �2�

hz2i � 1

3

Z s

0

ds0
Z s0

0

ds00 eÿg1�s0ÿs00��1� 2eÿg2s00 �;

hx2 � y2i � 2

3

Z s

0

ds0
Z s0

0

ds00 eÿg1�s0ÿs00��1ÿ 2eÿg2s00 �;

where the gs are moments of the single-scattering
cross-section r�l� with Legendre polynomials,

g` � 2p
NAq

A

Z s

0

ds0
Z 1

ÿ1

dlr�l��1ÿ P`�l��; �3�

in which NA is Avogadro's number, A is atomic
weight (we assume single-element medium) and q is
the density of the medium. Here, the distance s is
expressed as a unit of length and the integration
variable l is the cosine of the polar scattering angle.
Since the scattering model we are considering is
azimuthally symmetric, hx sin H cos Ui � hy sin H
sin Ui, hx2i � hy2i, and are combined in Eq. (2).

The angular distribution after a pathlength, s, is
given by

f �l; s� �
X1
l�0

l
�
� 1

2

�
eÿsg`P`�l�; �4�

and we also have

hli � eÿg1s; hl2i � 1� 2eÿg2s

3
: �5�

Here, we have ignored the energy dependence of
the single-scattering cross-section, which allows
for greater analytic development. The above
equations may be expressed in energy-dependent
form, for example, employing the continuous
slowing down approximation (CSDA), whereby
the integrals over pathlength, s, in Eq. (2) are re-
placed by integrals over energy, and pathlength and
energy are related through a stopping-power rela-
tionship. We leave this, or similar, adaptations to
future work. Having ignored energy loss, the inte-
grals in Eq. (2) may be performed with the result

hzi
s
�1ÿeÿn

n
;

hzli
s
� 1

3n
1

�
ÿeÿn�2

eÿnÿeÿcn

cÿ1

�
;

hxsinHcosU�y sinHsinUi
s

� 2

3n
1

�
�eÿcnÿceÿn

cÿ1

�
;

hz2i
s2
� 2

3cn2
c�n
�

�eÿn�ÿ�cÿ2��2
eÿcnÿceÿn

cÿ1

�
;

hx2�y2i
s2

� 4

3cn2
cn

�
ÿ�c�1�ÿeÿcnÿc2eÿn

cÿ1

�
;

�6�
where n � sg1 and c � g2=g1 which spans the range
from 0 (backward scattering) to 3 (high energy,
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forward directed) and has the value unity for iso-
tropic scattering.

Generally, much of the range of application
involves small values of n which suggests an ex-
pansion of the moments in a Taylor series in n.
These results have been stated elsewhere [4], but
we include them here for completeness and for the
next order in n for later use. To O�n3�,

sÿhzi
s
�n

2
ÿn2

6
�n2

24
;

cov�z;l�
s

�3ÿc
3

n�c2�cÿ9

9
n2ÿc3�c2�cÿ21

36
n3;

hxsinHcosU�ysinHsinUi
s

�c
3
nÿc�c�1�

9
n2�c

c2�c�1

36
n3;

�7�

var�z�
s2
�2�3ÿc�

9
n�c2�cÿ9

18
n2ÿc3�c2�cÿ21

90
n3;

hx2�y2i
s2

�2c
9

nÿc�c�1�
18

n2�c
c2�c�1

90
n3;

where cov�z; l� � hzli ÿ hzihli and var�z� � hz2iÿ
hzi2. We note that the O�n� terms of cov�z; l� and
var�z� vanish in the high-energy limit. This will
have interesting consequences as we shall see
later on.

With the above information, we can compare
predictions of spatial and angular moments of
PENELOPEs transport mechanics. As shown
previously [4], to O�n2�,

hziPÿhzi
hzi � n2

12
;

hzliPÿhzli
hzli � 2c2ÿ4c�3

36
n2;

hxsinHcosU� y sinHsinUiP
hxsinHcosU� y sinHsinUi ÿ1

�8�

�ÿcÿ2

6
n� c2ÿ c�1

36
n2;

hz2iPÿhz2i
hz2i � 3�2c�cÿ1�

36
n2;

hx2� y2iPÿhx2� y2i
hx2� y2i �ÿcÿ1

4
n�3ÿ12c�13c2

240
n2:

We note, in particular, that the lateral moments,
hx sin H cos U� y sin H sin UiP and hx2 � y2iP have
O�n� discrepancies, while the longitudinal ones
shown are O�n2�. This forms the main motivation
for attempting to improve the model. We will see
that our new form is able to reproduce the exact
moments shown above.

2. The improved model

It su�ces to say that we attempted many
schemes before settling on the following model:

x=s � fr sin H�s� cos U1 � r cos H�s� cos U2;

y=s � fr sin H�s� sin U1 � r cos H�s� sin U2;

z=s � k�1ÿ r� � c� �kr � d� cos H�s�;
�9�

where r is a random number sampled uniformly on
�0; 1�, and f, r, k, c and d are constants independent
of r, H and the Uis. U1 and U2 are sampled uni-
formly on �0; 2p� and are independent of each
other. On average, U1 is associated with the ran-
dom azimuthal direction of scattering after path-
length, s, while U2 provides some additional
straggling about this direction.

In the analysis associated with the present
work, it became apparent that the simple PE-
NELOPE picture of a particle traveling a certain
random distance, scattering and traveling the re-
mainder of the pathlength, would have to be
abandoned. Yet, the anticorrelation of the two
longitudinal parts of k (with and without cos H�s�)
would have to be nearly preserved except for the
modi®cation by c and d. The correlation between
the cos H�s�-dependent part of z and the lateral
de¯ection is also important but the correlation is
broken to some degree by the di�erent modifying
factors, k and f. Physically, the r-factor was mo-
tivated to break the absolute correlation between
the azimuthal direction of scatter and the azi-
muthal direction of transport. This e�ect was rec-
ognized in the algorithm described by Kawrakow
[8] although our approach is di�erent. The
cos H�s�-factor modifying the r-term was found to
be necessary to reduce some overprediction of the
tail in lateral straggling distributions.
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The requirement that the model Eq. (9) repro-
duce the ®ve exact Lewis moments given in Eq. (6)
allows us to solve for f, r, k, c and d with the
result

f � 2
hx sin H cos U� y sin H sin Ui

1ÿ hl2i ; �10�

r �
������������������������������������������������
hx2 � y2i ÿ f 2

3
�1ÿ hl2i�

hl2i

s
; �11�

k �
������������������������������������������������������������
12

var�z�var�l� ÿ cov2�z; l�
var2�l� � var�l��1ÿ hli�2

s
; �12�

c � hzi ÿ hli cov�z; l�
var�l� ÿ

k
2
; �13�

d � cov�z; l�
var�l� ÿ

k
2
: �14�

The small n behavior of Eqs. (10)±(14) is

f � 1� cÿ 2

6
nÿ cÿ 1

12
n2;

r� �5ÿ c�c
54

n2;

k � 1ÿ 2cÿ 3

4�3ÿ c�n

ÿ 12c4 ÿ 104c3� 176c2ÿ 228c� 171

480�3ÿ c�2 n2;

c� 2c2 � 2cÿ 9

24�3ÿ c� n

� 12c4ÿ 104c3 � 16c2 � 252cÿ 189

960�3ÿ c�2 n2;

d �ÿ2c2 ÿ 10c� 9

24�3ÿ c� n

� 4c4ÿ 8c3ÿ 48c2� 84cÿ 63

320�3ÿ c�2 n2;

�15�

which is expressed above to O�n2�. The apparent
singularity of these expressions is an artifact of
leading order terms in n vanishing in the limit
c! 3. All this means that the series expansion
expressed in Eq. (15) is of limited use. For nu-
merical calculations we will have to resort to Eqs.
(10)±(14) and Eq. (6) for most cases except very
close to n � 0 where rational expressions of two
Taylor series in n were employed.

The c! 3 limit of Eqs. (10)±(14) is

f � 1� 1

6
nÿ 1

6
n2;

r � 1

9
n2;

k � 1���
3
p 1

�
� n

5
� 19

1800
n2

�
; �16�

c � 4ÿ ���
3
p

6
ÿ 20� 3

���
3
pÿ �

90
n� 2

27

�
ÿ 19

3600
���
3
p
�

n2;

d � 2ÿ ���
3
p

6
ÿ 3

���
3
p ÿ 5

ÿ �
90

nÿ 1

54

�
� 19

3600
���
3
p
�

n2:

The ``exact'' forms of the ®ve factors, f, r, k, c and
d are plotted in Figs. 1±5 over the ranges 06 n6 1
and 06 c6 3 ± su�cient for any practical simula-
tion. These should be contrasted to the standard
PENELOPE model, f � k � 1, r � c � d � 0. All
the surfaces are ¯at with the most structure being
exhibited near c � 3 which may have been ex-
pected from the previous discussion.

3. Implementation of the new algorithm

To generate random electron trajectories, the
transport mechanics algorithm needs to be sup-
plied with polar de¯ections, H�s�, sampled from
appropriate multiple-scattering distributions.
Ultimately, the reliability of the simulation is
governed by the physical quality of the single-
scattering model adopted and the numerical ac-
curacy of the pre-calculated multiple-scattering
angular distribution. In the limit of small path-
lengths, Larsen has shown [9] that condensed
simulation should reproduce the exact solution of
the transport equation, independently of the form
of the underlying elastic cross-section. However, it
has been argued [10] that the multiple-scattering
algorithm must also be ``robust''. That is, the
simulated spatial and angular distributions after a
given pathlength should be the same no matter
how that total pathlength is subdivided into sub-
steps, each with its own de¯ection and displace-
ment. A robust multiple-scattering algorithm has
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been previously developed using the screened
Rutherford cross-section [10]. However, we have
decided to employ a di�erential cross-section
(DCS) with more physical content, one based on a
partial-wave analysis.

3.1. Generation of multiple-scattering angles

DCSs for elastic scattering of electrons by
neutral atoms have been calculated using the
PWADIR code of Salvat and Mayol [11]. This

Fig. 1. f surface for 06 n6 1 and 06 c6 3.

Fig. 2. r surface for 06 n6 1 and 06 c6 3.
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code computes relativistic phase shifts from the
numerical solution of the radial Dirac equation,
for a given interaction ®eld, and determines the

corresponding DCS. We have adopted the pa-
rameterization of the Dirac±Hartree±Fock±Slater
(DHFS) screened potential given by Salvat et al.

Fig. 3. k surface for 06 n6 1 and 06 c6 3.

Fig. 4. c surface for 06 n6 1 and 06 c6 3.
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[12], which leads to essentially the same DCSs
as the numerical DHFS ®eld. The e�ect of ex-
change between the projectile and the electrons
in the target atoms has been accounted for by
means of the approximate local ®eld correction
of Furness and McCarthy [13]. With this
scheme, elastic DCSs can be calculated for in-
cident electrons with energies up to a few MeV.
For higher energies, the numerical calculation
becomes prohibitively lengthy and one must rely
on approximate factorization methods. It should
also be noted that the physical model (static
®eld approximation) loses validity for projectiles
with energies of the order of 1 keV and less,
since slow projectiles may cause appreciable
polarization of the target atom. Fortunately,
these energies are below the range of interest of
most transport calculations. Our computer pro-
gram generates a table of DCS values for a grid
of about 600 scattering angles suitably distrib-
uted (logarithmically for small de¯ections and
uniformly for large de¯ections). The DCS at
other angles is obtained by linear interpolation.
Computed DCSs for the elements C (Z � 6) and
PB (Z � 82) and electrons and positrons with
di�erent energies are displayed in Figs. 6 and 7,
respectively.

The moments g`, Eq. (3), of the single-scatter-
ing distribution, disregarding energy loss, can be
expressed as

g` � NAq
A

r0� � f`�; �17�

where

r0 � 2p
Z 1

ÿ1

dlr�l� �18�

Fig. 6. Partial wave DCS for elastic scattering of electrons with

the indicated kinetic energies by carbon atoms.

Fig. 5. d surface for 06 n6 1 and 06 c6 3.
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is the total atomic cross-section and

f` � 2p
Z 1

ÿ1

dlr�l�P`�l�: �19�

The quantities f` have been calculated numerically
from the partial-wave DCS by using the following
algorithm. First, the integration interval (ÿ1; 1) is
split into a number of subintervals in such a way
that the DCS varies by less than a factor of 10
within each subinterval. Then, a 500-point Gauss
quadrature formula is used to evaluate the integral
within each subinterval. Since the Legendre poly-
nomials are generated by using the upward re-
cursion relation, the algorithm can be coded to
compute simultaneously all moments up to a given
order, 600 in the present work. The calculation of
these moments is very fast, a few seconds on a 366
MHz IBM compatible PC.

To check the accuracy of the calculated mo-
ments, we compared the original DCS with the
result of adding up its Legendre expansion,

r�l� �
X1
`�1

2`� 1

4p
f`P`�l� ÿ `�l�: �20�

For low-energy electrons, when the DCS is rela-
tively wide and its Legendre series converges rap-
idly, this comparison is satisfactory. Di�erences

between the original DCS and the ``reconstructed''
one are less than 0.001%. In principle, the accuracy
of the calculated moments should be independent
of the energy, since the DCS varies slowly in each
subinterval. The Goudsmit±Saunderson distribu-
tion is obtained by summing up its Legendre ex-
pansion (after removing the no-scattering part)
and is expected to be as accurate as the recon-
struction of the DCS, provided that the Legendre
series actually does converge. At high energies,
convergence with the 600 calculated moments is
obtained only if the pathlength is large enough.

The random sampling of the scattering angle,
from both the single-scattering DCS (analog sim-
ulation) and from the GS distribution (class I
condensed simulation), is performed as follows.
We start from a table of values of the corre-
sponding probability distribution (not necessarily
normalized) at the points of the angular grid
mentioned above. To generate random de¯ection
angles, we apply the inverse transform method to
the (continuous) distribution obtained by linear
interpolation within this table (i.e., the distribution
of sampled values is done exactly from a piecewise
linear distribution). With the aid of a binary-
search method, this sampling algorithm is very fast
(about 300,000 random values generated per sec-
ond on a 366 MHz personal computer).

3.2. Implementation of the transport mechanics

In the numerical implementation of the algo-
rithm, use is made of the fact that the azimuthal
direction of either the scattering angle or the spa-
tial displacement is arbitrary for unpolarized
scattering. We adopted the following approach:
1. Start with an electron with initial position~x0 and

direction ~X0 and sample the multiple-scattering
angles H�s� (from the Goudsmit±Saunderson
distribution) and U1 (uniformly in �0; 2p�).

2. Do a partial transport of the particle to the
point at which the additional lateral straggling
takes place. i.e.,

x=s � fr sin H�s� cos U1;

y=s � fr sin H�s� sin U1;

z=s � k�1ÿ r� � c� �kr � d� cos H�s�;
�21�

Fig. 7. Partial wave DCS for elastic scattering of electrons with

the indicated kinetic energies by lead atoms.
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relative to an initial direction along the ẑ-axis
but account, via rotation and translation, for
the particle's actual direction and position.

3. Apply the additional lateral straggling

Dx=s � r cos H�s� cos U2;

Dy=s � r cos H�s� sin U2

�22�

in a plane perpendicular to the particle's initial
direction.

4. Rotate the particle's direction accounting for
the scattering angles, H�s� and U1.

4. Simulation results

To demonstrate the quality of the new trans-
port mechanics algorithm, we performed simula-
tions of spatial and angular distributions of
electrons with various energies after traveling dif-
ferent pathlengths in a number of elements. The
simulations probed the practical limits of the c
parameter and cross-section shape. However, here
we will only present the graphical results for 100
keV electrons in Pb with pathlengths of 75 mean
free paths (MFPs). This corresponds to c � 2:185
and n � 0:507. Results from the new algorithm are
compared here with those from equivalent analog
(collision by collision) simulations using the same
single-scattering DCS, which provide essentially
exact results. The comparison also includes results
from PENELOPEs transport mechanics, which
were obtained for the same cases as the new me-
chanics.

In Figs. 8±10, we show the distributions for z,
r � ��������������

x2 � y2
p

and x. The results were obtained
using 6� 107 histories. The one-step distributions
di�er manifestly from the analog distributions,
re¯ecting the somewhat arti®cial nature of the
transport mechanics. The shapes of the distribu-
tions obtained from the new mechanics are gen-
erally closer to the analog distributions than the
results from PENELOPEs mechanics; in particular
the p�r� distributions are peaked at ®nite values of
r, in accordance with the analog results, whereas
PENELOPE sets the most probable lateral dis-
placement at r � 0.

When the electron pathlength is split into two
equal steps, the shapes of the simulated distribu-
tions improve substantially for both schemes. Figs.
11±13 display results of the two-step simulations
for the same case studied above. Two-step distri-
butions are twice as expensive to simulate than
those with one step, but the extra cost is largely

Fig. 8. The distribution of z for 100 keV electrons in lead taking

a single-step of pathlength 75 elastic scattering MFPs.

Fig. 9. The distribution of r �
��������������
x2 � y2

p
for the simulation

described in the caption of Fig. 8.
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compensated by the gain in accuracy. It is satis-
fying that the crude details of the one-step distri-
butions are almost completely washed out, for
both the new transport mechanics and PENELO-
PE (which both use the the same physical infor-
mation). The only visible artifact is the little bump

in the lateral distributions, which disappears when
the pathlength is split in four or more steps. These
results do not imply that calculations with PEN-
ELOPEs and the new mechanics are equally ac-
curate. Inspection of the spatial moments and
space±angular correlations obtained by the two
methods shows that the new mechanics is more

Fig. 10. The distribution of x for the simulation described in the

caption of Fig. 8.

Fig. 11. The distribution of z for 100 keV electrons in lead

taking two equal steps comprising a total pathlength of 75

elastic scattering MFPs. 6� 107 histories were employed in this

simulation. This case corresponds to c � 2:185 and n � 0:507.

Fig. 12. The distribution of r �
��������������
x2 � y2

p
for the simulation

described in the caption of Fig. 11.

Fig. 13. The distribution of x for the simulation described in the

caption of Fig. 11.
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accurate and, therefore, it allows simulating a
given pathlength in fewer steps.

This is illustrated in Table 1, where we give
spatial moments and space±angular correlations
for 100 keV electrons in lead; the pathlength is half
a transport mean free path (i.e., n � 0:507); each
simulation involved the generation of 107 histories.
We see that PENELOPEs mechanics gives results
that deviate in the expected way, according to Eq.
(8). In particular, it gives values of the longitudinal
moments, hzi and hz2i, that are systematically too
large, even when the pathlength is divided into six
steps. On the other hand, the new mechanics gives
the correct moments in a single step. The cost of
implementing the new algorithm is indicated in the
last line of the table, where we give the number of
seconds to simulate 106 histories on a 366 MHz
PII. We see that the computation cost of the new
algorithm is about three times that of the random
hinge in this particular example.

5. Concluding remarks

The new electron transport mechanics algo-
rithm provides a more accurate description of
spatial displacements than previous approaches.
Although its accuracy can be matched by PENE-
LOPEs mechanics, the latter will usually require
splitting the pathlength into a larger number of
steps. For pure elastic scattering, it has been
shown that two-step simulations already yield
fairly accurate space±angular distributions, which

have their ®rst moments correct (apart from sta-
tistical ¯uctuations).

In principle, the new algorithm could be im-
proved, e.g. by straggling some of the parameters
in Eq. (9), to yield qualitatively improved one-step
distributions. However, this is far from trivial. In
practice, it may be equally expedient (and proba-
bly faster) to appropriately increase the number of
steps. It should be noted that in real simulations
the number of steps per electron trajectory will be
of the order of 10 or larger. Under these circum-
stances, the e�ect of any possible improvement of
the transport mechanics on the ®nal results will be
hardly seen.

Although the present paper has been limited to
pure elastic scattering for simplicity, the new
transport algorithm can be readily combined with
the continuous-slowing-down approximation to
include energy losses. It is also particularly ame-
nable for use in mixed, class II simulations, where
it can allow increasing the cuto� angle (i.e. re-
ducing the number of elastic hard events to be
simulated) considerably. Work along these lines is
in progress.
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