Modern Thin Film Analysis by Electron Probe K-ratio Measurements

A. Moy¹ and J. Fournelle¹

¹University of Wisconsin-Madison, Geoscience Department, Madison, WI 53706, USA

Thin film analyses

• What's the point?

Determining thickness and composition of layers (multilayers) on substrate.

- → What are the issues for thin films?
- → How to perform thin film analysis?
- → How precise/accurate are such analyses?

Phi-rho-z for bulk materials

- Transformation of k-ratios into elemental composition
 matrix-correction procedures
 - ➔ assume homogeneous composition
- Phi-rho-z procedure (PAP, XPP, XPHI, ...)
 realistic description of the ionization depth distribution

Phi-rho-z for thin film

Phi-rho-z model adapted to thin films
 ponderation function for PAP

→ weighting procedure of phi-rho-z parameters for XPHI

Phi-rho-z for thin film

- Integration of the $\phi(\rho z)$ to calculate total emitted X-ray intensity for a given layer

 $I \downarrow i = A C \downarrow i \int \rho z \downarrow 1 \uparrow \rho z \downarrow 2 \implies \Phi \downarrow i (\rho z) e \uparrow -\mu/\rho \rho z/\sin \theta d\rho z$

- > Repeat for all layers and for the substrate
- Calculate theoretical k-ratios
- Iteration on composition and film thickness to match experimental k-ratios

Phi-rho-z for thin film

→ Iteration until convergence

Current thin film analysis programs

- STRATAGem (Pouchou and Pichoir) \$\$
- XFILM (Merlet) \$?
- LayerProbe (Oxford Instruments) \$\$
- GMRFilm (Waldo, GMR)
 - ➔ Free program
 - → But old, requires DOS, input by command prompt

Not easy to use for large set of data

BadgerFilm

Development of a thin film analysis program
 User-friendly graphical interface

Powerful non-linear fitting algorithm (converge even for far starting conditions)

- → Implementation of the PAP algorithm
- → Elements up to Einsteinium (Z=99)
- → Free (and code available on request)

X-ray Intensities

• 3 "kind" of X-ray intensities to consider

1) Characteristic X-ray intensity generated by primary electrons

Secondary fluorescence:

2) X-ray intensity generated by Characteristic X-rays

3) X-ray intensity generated by Bremsstrahlung

Secondary fluorescence (SF) can account up to ~15-20% of total intensity (especially for films). (this is not considered in the CASINO program)

Absolute Characteristic X-ray Intensity

- Absolute X-ray intensity (ph/electron/sr) using recent atomic parameter databases
- Comparison with Monte Carlo simulations using PENEPMA
- Pure bulk sample

Secondary fluorescence by characteristic X-rays

- Calculation scheme
 Find all the characteristic X-rays with E>E_{ionization} (even the low intensity X-rays)
 - → Calculate $\phi(\rho z)$ distribution for all characteristic X-rays
 - → Calculate SF generated by each $\phi(\rho z)$ distributions (numerical integration over mass depth)
 - Sum all the contributions to calculate final SF by characteristic X-rays

Secondary fluorescence by characteristic X-rays

FeNi₃ bulk sample
 Fluorescence of Fe Kα by Ni (comparison with PENEPMA)

Calculation scheme

No published $\phi(\rho z, E)$ curve for the bremsstrahlung!

 \rightarrow the energy range is discretized \rightarrow Ei (from Ec to E0)

 the φ(ρz, Ei) curve of a fictitious element is calculated and weighted by Kramers' law

→ SF is calculated for bremsstrahlung of energy Ei

repeat with next energy Ei

→ All the SF contributions are integrated from Ec to E0

- Procedure used in GMRFilm
 - \rightarrow usually overestimates SF compared to PENEPMA

 Using two correction factors: almost perfect matching with PENEPMA results

Correction factors are easy to predict for pure elements

Absolute Total X-ray Intensity

Absolute X-ray intensity (ph/electron/sr) using recent atomic data
 <u>Compound bulk sample</u>

Absolute Total X-ray Intensity

• Absolute X-ray intensity (ph/electron/sr) using recent atomic data

BadgerFilm Features

- Advanced options:
 - \rightarrow change atomic parameters (MACs, ...)

 \rightarrow restrict the domain of variation of the variables (concentrations, thicknesses)

 \times

Thin film analysis – Example 1

- Al film on SiO₂ (data from Pouchou 2002)
- X-ray intensities: Al K α , Si K α and O K α k-ratio measured at 5, 10, 15, 20, 25 and 30 kV Standards used: Pure AI, Pure Si and Y₃Fe₅O₁₂

Thin film analysis – Example 2

- Multilayer Ni-Cr on Fe-Gd-Pt on Si substrate (data from Pouchou 1993)
- X-ray intensities: Ni Kα, Cr Kα, Fe Kα, Gd Lα, Pt Mα k-ratio measured at 20, 25 and 30 kV Standards used: Pure Elements for all

💀 C:\Users\Aurélien\Desktop\Thin film prog test\Pouchou 1993.txt - 🗆 X																									
Secondary fluorescence Characteristic fluorescence Bremsstrahlung fluorescence Take-off angle (in degrees) 40 Bhi(fbo*a) model			Layers definition Number of layers + substrate: 3 Layer 1 Substrate Fix thickness: 241.801574707031 Fix thickness of the selected layer? Selected layer definied by: ✓ weight fraction □ atomic formula								1 H S Li 19 K 37	4 Be 12 Mg Ca	21 Sc	12 23 Ti 1 0 41	/ 24 / C	r 25 Mr 43	26 Fe	27 Co	28 22 Ni C	9 30 Cu Zi	5 B 13 Al Ga	6 7 C 14 Si 1 Ge 2	N (5 16 P 5 As 5 1 52) ⁹ F 17 CI 8 ³⁵ Br	2 He 10 Ne 18 Ar 36 Kr 54
Bastin's Scanning (1986)			Line	conc (wt)	k-ratio	k-ratio meas.	E(kV)	Standard	^		Rb	Sr	Y	Žr N	bM	o Tc	Ru	Rh	Pd A	Ag C	d În	Sn	Sb T	e ï	Xe
Bastin's Scanning (1990)			Ка	0.499535351	0.02531833	0.0258	20				55 Cs	56 Ba	57 7 La	2 Hf T	a 74 M	/ Re	• 0s	n Ir	78 7 Pt A	°au Au H	g TI	Pb	₃ 84 BiP	o At	86 Rn
Pouchou, Pichoir (PAP) Scanning (1990)			Ka	0.499535351	0.01487999	0.0147	25		-		87	88	89												
Packwood's MAS (1986)		Fe	Ka	0.499535351	0.00988897	0.0098	30		-			Ka	AC	SI C	e 9	r No	ा I Pm	s2 Sm	Eu C	4 65 Gd Ti	b Dy	67 6 Ho I	8 69 Er Ti	n Yb	71 Lu
Units		Gd	La	0.292110204	0.01225288	0.0123	20		-					90	91	92	93	94	95 9	6 97	98	99			
Thicknesses defined in:		Gd	La	0.292110204	0.00/56003	0.00/6	25		-					I	h Pi	1 U	Np	Pu	Am C	m B	k Cf	Es			
	Ga	La	0.292110204	0.00011001	0.0052	30			X	axis	Y axi	ixis													
Load	Save	Pt	Ma	0.206759649	0.00611221	0.0065	20		- , I	Min 18		0	- u	pdate											
Calc	Export Layer density (g/cm^3) Add kV to selected elt Remove selected line *** TestLinFit status = {0} CHI-SQUARE = 2.93546680398359 (14 DOF) NFREE = 7 NFEEE = 7 NFEEE = 7 NPEGGED = 1 NITER = 8 NFEV = 79 P[0] = 688.417233134283 +/- 34.5435598265627 (INITIAL 100) P[1] = 241.801570746341 +/- 12.3972710304743 (INITIAL 100)								^	k-ratio	0.1(0.0(0.0(0.04 0.02	0 3 - 4 - 2		<				•				•	=	Ni Ka Cr Ki Fe K Gd L Pt Ma Si Ka	a a .a a a
	P[2] = 100000000 +/- 0 (INITIAL 100000000) P[3] = 0.142993525857 +/- 0.00862961649453574 (INITIAL 0.5) P[4] = 0.853450601865417 +/- 0.0431048638886661 (INITIAL 0.5) P[5] = 0.499535345859573 +/- 0.0265292196081283 (INITIAL 0.33) P[6] = 0.292110206954519 +/- 0.0163839311051556 (INITIAL 0.33) P[7] = 0.206758649062583 +/- 0.0118983162341946 (INITIAL 0.33)								0.00 18.0 20.0 22.0 24.0 26.0 28.0 30.0 19.0 21.0 23.0 25.0 27.0 29.0 Energy (keV)																

Thin film analysis – Example 2

- Multilayer Ni-Cr on Fe-Gd-Pt on Si substrate (data from Pouchou 1993)
- X-ray intensities: Ni Kα, Cr Kα, Fe Kα, Gd Lα, Pt Mα k-ratio measured at 20, 25 and 30 kV Standards used: Pure Elements for all

		Layer 1		Layer 2								
μετησα	Ni wt%	Cr wt%	T (Å)	Fe wt%	Gd wt%	Pt wt%	T (Å)					
RBS measurements	14.4	85.6	683	51.4	28.6	20.0	246					
Pouchou (1993)Strata	14.7	85.4	671	52.0	28.7	19.3	242					
GMRF PAP w CF 30 kV	14.3	85.7	688	51.1	29.3	19.6	242					
BadgerFilm	14.3	85.3	688	50.0	29.2	20.7	242					

 Convergence even if initial values far from solutions (Ni 50 wt%, Cr 50 wt%, Fe 33 wt%, Gd 33 wt% and Pt 33 wt%. Thicknesses: Layer #1 = 100 Å, Layer #2 = 100 Å)

Conclusions

- Free Thin film analysis program (+ code available)
- Easy to use GUI
- Calculated absolute X-ray intensities similar to Monte Carlo simulations
- Good performances (film thickness and composition)

- Further developments:
 - More testing against other experimental data
 - Import STRATAGem file format
 - Uncertainties on experimental k-ratios

Support for this research came from the National Science Foundation:

EAR-1337156 (JHF)

EAR-1554269 (JHF)

EAR-1849386 (JHF)

Thank you for your attention

Secondary fluorescence by characteristic X-rays

Comparison with PENEPMA

