

AI, Mg, Si and Na Ka Peak Shifts in Common Silicate and Oxide Minerals: Relevance to Achieving the Goal of 1% Accuracy in EPMA

John H. Fournelle

Eugene Cameron Electron Microprobe Lab Department of Geology and Geophysics University of Wisconsin Madison, Wisconsin A veteran prober had problems with silicates ... we narrowed down the problem to issues related to peaks of standards and unknowns:

- 1) How wide are the peak tops?
- 2) Are there chemical peak shifts?
- 3) Is there a problem with our peaking procedure?

We started with Si and Al K α ... and worked up to Mg and Na K α

Answers 1. 5-10 sin theta units 2. Yes 3. Yes

Al K $_{\alpha}$ Peak Top Width: similar to Si — except some wider at top

Conclusion 1

Si and Al K_{α} Peak Widths on TAP:

- Many peaks ~ 5 sin theta units wide
- For <u>correctly centered</u> peak position, > 2-3 sin theta unit shift will lose counts, and
 - For 5-6 units shift, at least 1% error
 - For 7-8 units shift, at least 2% error
 - And these errors would be <u>doubled</u> for oxide values (oxygen by stoichometry)

Results of Automated Al K $_{\alpha}$ Peaking Options

ROM very reproducible: 10 measurements, s.d. of 1.2, range 32374-8 ...and sometimes very wrong

We requested a modification of the peaking procedure in Probe for Windows ...

500

Here is a post-scan on Al K α , showing that the peak center returned by ROM was several units off the true peak center.

32629.7 32858.3 Al ka TAP Peak Center Start Position Selection Select Start Peaking Position for Al ka on spectro 1 TAP Use the scroll bar to select the starting peak center position. Click OK when ready or click Cancel to skip this element. 32755.6

Operator now has final say over peaking

Chemical Peak Shifts

Have been recognized since the origins of x-ray spectroscopy in the 1920s, e.g., CI and S Kβ peaks (M-L transitions: M shell electrons = valence electrons)

Al K $_{\alpha}$ Chemical Shifts

... have been recognized for ~50 years

White, McKinstry & Bates, 1959, Advan. X-ray Analysis

Also Day, 1963, Nature; Wardle and Brindley, 1971, American Mineralogist

Al K_{α} Peak Shifts

	Al Ka Peak Shift Relative to Al-Fe Alloy							
Coord	Mineral	Sp1 Ave	Std Dev	n	Mineral (Sp4 Ave	Std Dev	Coord
4	Albite	-14.2	0.7	4	Albite	-18.0	0.7	4
4	Microcline	-13.3	1.0	8	Pyrope	-16.5	1.0	6
6	Pyrope	-12.9	0.9	4	Anorthoclase	-16.2	0.9	4
6	Topaz	-12.3	0.7	7	Alunite	-16.2	2.0	
6	Gahnite	-11.8	0.5	4	Microcline	-15.8	0.8	4
	Alunite	-11.6	1.1	4	Topaz	-15.1	0.5	6
6	Kyanite	-11.5	1.2	7	Plag - An18	-14.9	0.4	4
6	Jadeite	-11.3	1.0	4	Gahnite	-14.4	0.7	6
4	Plag - An18	-11.2	0.3	4	Jadeite	-13.9	0.5	6
4	Anorthoclase	-11.0	0.8	4	Kyanite	-13.8	0.7	6
6	Corundum	-10.8	0.3	7	Corundum	-13.4	0.5	6
6+4	Sillimanite	-10.7	0.3	7	Sillimanite	-12.8	1.0	6+4
4	Celsian	-8.5	1.0	4	Celsian	-11.7	1.1	4
4	Plag - An49	-7.5	1.6	4	An49	-10.3	1.2	4
4	Anorthite	-7.4	0.4	4	Anorthite	-9.9	1.0	4
4	F Phlogopite	-7.0	0.7	7	F Phlogopite	-9.8	1.4	4

Two independent measurements, very similar trends ... and not a simple function of AI coordination (e.g., consider the range in feldspars)

Al K_{α} Peak Shifts in Garnet

Garnet Type	Shift	Std Dev
YAG	-7.3	0.2
Almandine	-10.9	0.2
Spessartine	-11.5	0.2
Grossular	-12.2	0.1
Pyrope	-15.7	0.5

Si K_{β}, K_{α} Chemical Shifts: Historical White, McKinstry and Roy, 1962, GSA Abstract

<u>Measured major</u> Si K_{β} shifts in SiO₂ relative to Si metal: Stishovite (IV): -0.010 Å; Quartz, cristobalite (VI): -0.015Å

though no Si K α Shift between IV and VI seen

Kaufman and Moll, 1966, Advances X-ray Analysis

Examined Si K α_1 , K α_3 , K α_4 and K $_\beta$ for Si metal and 10 common silicate minerals; found differences between silicates

<u>for all K lines</u> but NOT Kα₁

Table II. Si K Lines from Silicon Metal and Silicates								
Line								
Wateria	Kaı		K_{lpha_3}		K _a ,		Κβ	
	λ	I	λ	I	λ	Ι	λ	I
Si	7.1262	1000	7.0803	66	7.0713	41	6.7506	28
SiO ₂	7.1244	1000	7.0765	52	7.0673	54	6.7666	30
Mg2Si2O6	7.1244	1000	7.0768	50	7.0680	53	6.7617	25
CaSiO ₃	7.1244	1000	7.0770	51	7.0680	53	6.7594	23
KAlSi2O6	7.1244	1000	7.0772	52	7.0680	56	6.7649	20
CaMgSi ₂ O ₆	7.1244	1000	7.0770	50	7.0682	53	6.7611	25
KAlSi ₃ O ₈	7.1244	1000	7.0765	50	7.0678	54	6.7644	22
NaAlSi ₃ O ₈	7.1244	1000	7.0766	51	7.0677	53	6.7640	24
$CaAl_2Si_2O_8$	7.1244	1000	7.0763	49	7.0677	51	6.7614	25
Fe ₂ SiO ₄	7.1244	1000	7.0773	50	7.0680	53	6.7630	23
(Na, K) (Al, Si) ₂ O ₄	7.1244	1000	7.0763	52	7.0675	56	6.7627	25

Si K_{α} Peak Shifts - UW SX51 - 2004

TAP: Si Ka Peak Shift Relative to Si Metal								
mineral	Sp1 Ave	Std Dev	n		mineral		Sp4 Ave	Std Dev
Microcline	-10.6	0.7	4		Microcline		-14.0	0.6
Quartz	-8.0	0.2	4		Quartz		-9.1	0.8
Enstatite	-6.8	0.8	4		Topaz		-8.0	1.3
Anorthite	-6.8	0.5	4		Plagioclase An49		-8.0	1.4
Andradite	-6.8	0.6	4		Wollasto	nite	-7.9	0.8
Diopside	-6.8	0.8	4		Anorthit	e	-7.8	0.7
Topaz	-6.7	1.3	4		Hornblende		-7.7	0.6
Wollastonite	-6.5	0.5	4		Enstatite		-7.6	0.6
Hornblende	-6.3	0.2	4		Andradite		-7.6	1.0
Olivine-Fo90	-5.8	0.9	4		Diopside		-7.2	0.9
Plagioclase An49	-5.6	1.2	4		Olivine-Fo90		-6.8	0.7

Translating the above data as Ka shifts for <u>quartz</u>: Spectro1 = 0.5 ±0.1 eV; Spectro4 =0.6±0.1 eV

Compare Above With:

Si Ka shifts of Quartz by HRXFS (high resolution x-ray fluorescence spectroscopy)

- Okura et al (1990 Spectrochimica Acta) α -quartz 0.655 eV
- Liu et al (2004 Physical Review B) "SiO₂" 0.62 eV

A check

Implication: there is a 0.7 - 0.9 eV shift for <u>microcline</u> Si Ka relative to Si metal, -- And one should NOT peak Si on K-feldspar for plagioclase.

Mg K_{α} Peak Shifts:

Table 2:	Relative	Relative	
Mg K α Peak	Counts on	Counts on	
	Pyrope	Chromite	
Pyrope Peak	1.000	0.968	
Chromite Peak	0.956	1.000	

Mineral	Туре	Shift	Std
			Dev
Chromite	Spinel	-3.6	0.6
MgAl2O4	Spinel	-5.1	0.5
Kaersutite	Amphibole	-5.8	0.8
MgO	Oxide	-6.0	0.5
Enstatite	Pyroxene	-8.4	0.8
Diopside	Pyroxene	-8.7	0.7
Fo90	Olivine	-8.9	0.6
Pyrope	Garnet	-13.3	0.7

Table 2:	Relative	Relative	
Mg K α Peak	Counts on	Counts on	
	Pyrope	Chromite	
Pyrope Peak	1.000	0.968	
Chromite Peak	0.956	1.000	

Mineral	Туре	Shift	Std
			Dev
Chromite	Spinel	-3.6	0.6
MgAl2O4	Spinel	-5.1	0.5
Kaersutite	Amphibole	-5.8	0.8
MgO	Oxide	-6.0	0.5
Enstatite	Pyroxene	-8.4	0.8
Diopside	Pyroxene	-8.7	0.7
Fo90	Olivine	-8.9	0.6
Pyrope	Garnet	-13.3	0.7

Na K $_{\alpha}$ Peak Shifts in Silicates:

Preliminary results:

• There are chemical peak shifts (albite vs jadeite, ~10 unit peak shift)

- Peaks are very wide (albite ~18 units wide)
- Other issues muddy the waters (element migration, lower counts -> poor statistics)

Conclusion 2

Si, Al and Mg K $_{\alpha}$ Peak Shifts:

 Al: need pay special attention to which specific minerals are being analyzed, and use appropriate standard for peaking/counting (feldspars especially!)

Si: special attention to K, Na feldspars

 Mg: MgO is not necessarily a good standard for all silicates; use like phases for standards

Al K $_{\alpha}$ Peak Positions (on TAP) are very sensitive to stage Z position

A misfocus of 5 microns in Z equals a peak shift of 3-4 sin theta units, not a trivial difference.

Conclusion 3

Well adjusted autofocus **critical** for multiple automated repeated measurements

On the basis for chemical shift in Al and Si K α

Precision of EPMA peak measurements is much less than that possible using XPS and AES, and those fields' literature provide a basis for understanding the EPMA observations.

Streubel et al (1991 J. Electron Spectro & Related Phenom): Data on Si and P chemical shifts using XPS and AES

Figure 2 (top) plots relative Pauling Electronegativity vs relative binding energy of L shell (2p)

 $\begin{array}{l} \Delta E(Ka) = \Delta E(1s) - \Delta E(2p) \\ \text{Ka peak shift =} \\ \text{Difference (vs Si metal) in K binding energy} \\ \text{minus} \\ \text{Difference in L binding energy} \end{array}$

Suggested reason for Al K α shifts in Ca vs K-Na feldspars

 $\Delta E(Ka) = \Delta E(1s) - \Delta E(2p)$ Ka peak shift =
Difference (vs Si metal) in K binding energy
minus
Difference in L binding energy

2p Bonding Energy

Summary

Accuracy in EPMA of AI, Mg and Si in silicate minerals requires attention to one of the first steps in calibration, <u>defining the peak</u> <u>positions</u>, because

- There are AI, Mg and Si Kα chemical peak shifts between some "common" silicate minerals and oxides.
- Vertical stage drift can yield peak shifts.
- Automated peak search routines should be used with a critical eye.

