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Layered Synthetic Diffractors
Layered Synthetic Materials
Layered Diffraction Elements

Multilayered Diffractors
“Pseudo Crystals”
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Figure 5.5. (a) Pseudocrystal grown by Langmuir-Blodgett Technique. (b) Transmission electron micrograph ot
layered synthetic microstructure. (Courtesy of Ovonics.)

Goldstein et al. 2nd Edition, p. 280




Issues with layered synthetic diffractors:

© They give high count rates
© Peak/background ratios are good

© 2nd order peaks are weak and 3rd and above >99%
suppressed

© Peak shift/shape effects muted

© Poor spectral resolution (wide peaks) with
interferences common

© Relative difference of refraction of longer wavelength
(1st order) lines compared with higher order (shorter
wavelength) interferences, is greater here than in the
smaller 2d crystals, makmg Siegbahn’ s modification of
Braggs’ Law critical




Crystals and LSMs on one
Electron Microprobe
(UW-Madison SX51 #485)

2d (A) Approx range(A)
Lithium fluoride | |e00 40267 | 0.000058

lpE4spco | 000000000 qwsi | 0 450 | = 0.021[11.-36. |
lpEeoPct | 00000 qwsi | 0 |60 | = 0.01[15-48 |
lpE9gPc2 | 00000000 N | 0 Je8 | = 0002[2580 |
LDE198Pc3|  [MoB4C [ 200 | 0.05[50-160 |




A historical note:

12. The Invalidity of the Bragg Interference Equation in Measurements
of Greater Precision

The relation between the wave-length and the angle of reflection in
the various orders, which was derived by Bragg in the above elementary
way, was tested by him, using his ionization spectrometer, and was found
to hold within the limits of accuracy attained. In particular, he was
able to show that by reflection of a given wave-length in different orders,
the function A siné,

%
where ¢, represents the angle of reflection in the nth order, is a constant.

The author has endeavoured to increase as far as possible the accuracy
of measurement in X-ray spectroscopy, and with this in view has con-
structed suitable types of spectrographs. After the precision of measure-
ment had been raised to a considerable extent it was permissible to make
a test to see whether or not the Bragg relation, when applied to calculate
wave-lengths from angles measured experimentally, would still remain
valid. The very first trials made in this direction by W. Stenstrém
showed unequivocally, that at least with certain crystals, and especially
for longer wave-lengths, the accepted relation could not be strictly true.
The above function, which, when one and the same monochromatic
radiation is used, was thought to be constant, showed a divergence from
this simple relation ; and this divergence, although small, seemed to lie
outside the limits of error. However, the deviations from the constant
value found by Stenstrém were very small, and did not permit any
certain conclusions as to the manner of variation.

Since it has become possible recently to extend the accuracy of measure-
‘ment still further, the author has succeeded in demonstrating the
invalidity of the Bragg relation also in the case of shorter wave-lengths.
With the apparatus last indicated E. Hjalmar has now investigated this
question thoroughly, and has published a very good series of measure-
ments, which suffice to make the effect quite evident. His measurements
in spectra of very high orders were especially conducive to his great
success. In certain cases he obtained photographs which were well
capable of measurement even in the tenth order.

In the following table, taken from Hjalmar’s doctor’s dissertation, are

assembled the values of log S}End)" for various orders n as they were

obtained from the measurements. The table shows the spectral line
used in each case. Only single lines without fine structure were used.
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TABLE 2

After the Braggs
published their results in
1913-14, Siegbahn,
Stenstrom and Hjalmar
found that higher
resolution spectroscopy
indicated that while
Braggs’ equation was
very close for 1st order
lines, there were

systematic deviations

with higher order line
locations.

log ﬁ%ﬁi from the spectral lines :

W Lg,. Cu Kay. Fe KB,.

Fe Ka.1i

Va Ka,. Sc Ka,. Sn Lg;. K Ka;.

—_—0 s S Ot WD~

>

89269523 | 9:0065961 | 9-0635972
2986 0186 0590
1675 0059561 | 0629822
1032 9043 9360
0362 8837 8975
0009 8618

8400

8330

89259594

9-1059168
3109
2218
1674

1298

1062

92174174 | 9-3003512 | 9-3482412 | 9-3917609

2169973 0059 | 3478718 3780
8777| 2998780 7110 2741
7914 8130
7659




In order that the regularity of the variation may better be seen, the
values are shown graphically in Figs. 184-18p. From these curves it

may be concluded that the value of log & n% decreases with increasing

order, and appears to approach a limiting value. That the above equa-
tion of Bragg cannot be quite correct from the theoretical point of view
was first pointed out by C. G. Darwin, who gave a detailed calculation of

the phenomenon of the reflection of X-rays. A more profound theory, .

on the same basis as that given in the treatment of the diffraction of
X-rays by Laue, has been worked out by P. P. Ewald. In their main
results the theories of Darwin and Ewald are identical. In both of them
the extension of the simpler treatment is due to the necessity of taking
the mutual action of the vibrating particles into consideration.

If this mutual action be considered, the observable angle of reflection
¢, in the nth order has a value slightly different from that (¢,) given by
the Bragg equation : _

o nAg=2d sin ¢, a7)
where Ao =wave-length in vacuum (or air).

The theory also shows that with a crystal of sufficient thickness there
is total reflection for a small region A¢, on either side of the angle ¢,.
In many cases the Bragg angle ¢, falls quite outside of this region
¢,+A¢,. The value _

$—bn (18)
is a measure of the deviation from the Bragg formula. The theoretical
results give for this deviation the formula :

- 2

L s 24,
1 e? 2
Q7 2 *m ZI; v2 =2 (20)

[e and m are the charge and the mass of the electron respectively,
N; the number of electrons per unit volume with the natural frequency !
vi, and v is the frequency ! of the incident radiation.]

By suitable transformation of the above equations, we obtain

sin ¢, _
=

(19)

A ’
log const. + 2 (21)

4d?
L
The negative sign is here chosen in the expression for 4, because 2
sin ¢,
n

where A=- (22)

itself is negative. If we compare the experimental value of log

1

1y=_.
Y

This gives the multiplying factor the following value :
[1 ~5-4’in‘i:‘10—6},
where d is in A.U.
The correction resulting from this formula is proportional to
(1) the density of the crystal,
(2) the square of the lattice-constant,
and inversely proportional to
(3) the square of the order.

with the expression found for it in Ewald’s theory we see that the general
agreement is surprisingly good. This appears most readily from the
graph of the function A/n? in Fig. 18D, in which the form of the curve is
very like those of the experimental curves in Figs. 184, 188 and 18c.
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Equation (21) is of fundamental importance. The portion of the
right-hand side denoted by * const.” is, indeed, nothing else than log ;\3'

and if we substitute ordinary logarithms and solve the equation for A, we
obtain
log A, = sin ¢, _ 4 2
og Ao =log 2d +log — =2 -7, (23)
where A'=Aloge.
The simple Bragg relation gave
log X, =log 24 +log 2 %x.

The slight correction term A4’/n? becomes smaller and smaller as the
number of the order increases, and thus for higher orders the corrected
equation (23) goes over into the simple Bragg expression. .

If Apy is the value of the wave-length which is obtained by using the
simple Bragg formula when the observed angle ¢, is introduced in it :

nAp,=2d .sin ¢y, (24a)

Hence, by using a slightly smaller lattice-constant d’ given by

@ =d|:1 _54%p 10~6}

n

instead of the true d (which represents the distance in Angstr(’ims between
the reflecting atomic planes), we get the true wave-lengths by a formula

similar to the Bragg equation,
nAg=2d’ sin ¢,,.

the equations (17) and (19) give

i 1
Ag=A 1 —:I
0 Br[ +Q SinZ
Introducing the refractive index p, or better still the value 8, for the-
small difference 1 —u in the following relations :

1 2 .
N D (205
1

Q 2mctm v2—p2’
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Fre. 18c. Fie. 18 D,

we obtain for the connection between the true wave-length and that
calculated from the simple Bragg law :

X =AB,|:1 - | (24b)

This shows that—if this theory is in accordance with empirical data
—we have only to multiply the calculated wave-lengths Ap, by the factor

1 4423
L w2
to get the true wave-lengths. It is not difficult to find a good approxi-
mate value for this factor. In the expression for 8 in equation (20b), the
values of v; are negligible for most of the electrons, as compared with v.

If- we neglect them, and note the density p of the crystal, we get the
approximate expression :

4423 ]

8 -
A= L30p . 100,

Or replacing d* we have
the familiar equation

nA = 2d sinO (1-k/n?)

k 1s refraction factor, n
1s order of diffraction




“ : : This figure shows schematically the
So what difference does this relative positions of the markers for

equation make,” you are asking. F Ka and 3rd order P Ka on a
wavescan (in sin 6 or angstroms,

| came upon this by accident, in increasing to the right)
1998, trying to answer a
researcher’ s persistent question '|' AP 1
“How do you know that the 3rd
order P ka peak is totally : A l
attentuated by the LDE?” NS 4 v

| did wavescans in both TAP and W[S| GOA l

LDESs, but | was confused — on 3P Ka
TAP, the °P marker was to the right |
of F, but on the LDE, 3P was to the Sin 6

(Bt 17 F Ka=18.32 A

This made no sense to me. P Ka=6.157A o
SP Ka= 18.471A




“The Refraction Effect” ... or
the Need to use the Corrected Bragg Equation

| emailed Stephen Reed. He explained this “cross over”
effect being due to the refraction effect...which now | know is
taken into account by the Bragg Equation modified by
Siegbahn.

Here are the calculations that demonstrate the “cross over”
for the LDESs. Key is the value of 1- k/n?, which is the divisor

(=modifier) of the theoretical position.

| F18.32A [ P6a57A | 3*PisdziA | 0 | | —
T T T Reversed]
[ ["BraggsLaw"| i-(k/n**2) | Siegbahn | Order? |
| TAP | F=71159 | 1-002=998 | 071302 | | 3PKs
(2d=25745 | | [ "No |

I e e
('W/Si45A| F=40711 |  1-02=.98 | 041602 | |
 2d=458k | | T T Yes , g a |

I I (N E
|W/Si60A| F=.30033 | 1-01=.99 | 030336 |
| 2d=61A | 00000 @00 @00 | Yes |
| K=.01__| 3P=.30280 | 1-.01/9=.9989 | 0.30314 | Singe —




Or look at the effect of varying the refraction factor K
on the W/Si 45A

4
Effect of Refraction with PCO:

Shift of F Ka relative to n=3 PKa

Reversed
"Braggs Law" 1-(k/n**2) Siegbahn | Order?

TAP F=.71159 1-.002=.998 0.71302
2d=25.745 No --|K factor= .20|-

K=.002 3P=.71746 1-.002/9=.99978 0.71762

W/Si 45A| F=.40711 1-.02=.98 0.41602
2d=45R
K=.02 3P=.41046 1-.02/9=.9978 0.41136

W/Si 60A| F=.30033 1-.01=.99 0.30336
2d=61K
K=.01 3P=.30280 1-.01/9=.9989 0.30314

- n=1F Ka
54— n=3 P Ka

—
o
+—
Q
[y}
L
=
=
-+~
o
E
QO
o

At what value K would
F Ka and 3rd order P
Ka fall on exactly the
same wavelength for
the 45A LDE?

I |
0.408 0470 0.412 0.414 0.416

Sin Theta




How do you know what the 2d and k are?? You can
trust someone else....or figure it out yourself.

In July 2003 | spoke with Frank Hatfield of Osmic and
asked how they calculate 2d. He said they certify that
any multilayer is within £3% of its specified 2d. The 2d
is found by measuring the position of the ‘main X-ray’
of the multilayer and solving for the 2d in the Bragg

equation. | asked about how they determined ‘K
factor’ and he had no answer.

Well, the K factor does matter — although one could

get along with erroneous values as long as there is no
inquisitiveness about higher order interferenceson
ones layered synthetic diffractors. 3




Here is my first cut at figuring out the 2d and K values of my
LDESs: the assumptions are that the crystals have been
reasonably well aligned by the Cameca builder. There are
two unknowns, and below the K is varied to find an average
2d that is similar to the value marked on the side of the LDE.

Peak Meas|averages| [Bearden ["2d" k=0 k=.002 k=.02 k=.021 Cameca A
#1#\# 0.24741 23.62 95.83] 96.02 97.78 97.88 24.14038

#
#

#[# 0.33324 31.60 94.84 95.03 96.78 96.88 32.41438
# 0.46124 44.70 95.40/ 95.59 97.35 97.45 44.82466
0.71390 67.60 93.85] 94.04 95.77 95.87 67.64049
average| 95.17 96.92
0.30937 18.32 59.18 59.29 60.38 60.45 18.3193
0.39302 23.62 60.32 60.45 61.56 61.62 24.14038
0.52229 31.60 60.51 60.63 61.75 61.81 32.41438
0.72987 44.70 60.29 60.41 61.52 61.58 44.82466
average
0.26892 11.91 44.29 44.37 45.19| 45.24 11.909
0.41619 18.32 43.99 44.08 44.89] 44.93 18.3193
0.53731 23.62 44.12 44.21 45.03| 45.07 24.14038
0.71954 31.60 43.92 44.01 44.82| 44.87 32.41438
average| 45.03
0.60820 114.00 187.89| 188.26 191.72| 191.92 114.27200
200R 0.35000 67.60 191.43] 191.81 195.34| 195.53 67.64049
nom average

|+

H|F |

xtals say on them
PC1 61.0
PC2 95.2
PC3 200

The next iteration is to find a 2nd order reflection near a first
order line and verify that the above K value is correct.




Summary

1. For LDE’ s, the precise form of Bragg' s Law as
modified by Siegbahn should be understood and

used.

2. The K-values can be relatively easily determined,
and should be done so, both to keep the vendors
honest and to have peace of mind.




