

AMAS 2017

Experiments with low voltage FE-EPMA: toward achieving improved spatial resolution

John Fournelle¹, Aurélien Moy¹ and Phillip Gopon²

¹Department of Geoscience, University of Wisconsin, Madison, Wisconsin, USA ²Department of Earth Science, University of Oxford, Oxford, England

6-10 February 2017, Brisbane, Australia

Dark host = plagioclase; Grey = Si metal; White = Fe silicides

Image Edge Resolution of BSE Image (W source)

Here defined as 12-88% change from min to max intensity

Free application from Peter Sobol at UW-Madison Geoscience

Image Edge Resolution of BSE Image

Here defined as 12-88% change from min to max intensity

Free application from Peter Sobol at UW-Madison Geoscience

Image Edge Resolution

≠

Analytical Spatial Resolution !

Barksdale et al. (2000):

... instead of simply being able to resolve the feature in an image, the entire X-ray information volume must be contained within the feature; lateral resolution is diameter which includes some fraction of total X-ray intensity, e.g. 99%

Barkshire I, Karduck P, Rehbach W P and Richter S 2000 *Mikrochim. Acta* **132** 112

To reduce the interaction volume....

But then Fe Ka no longer available below 7.1 keV...

Sub micron low keV analysis

I ran EDS with Si and Fe metal standards, low keV, Fe La line.... And got ~120 wt% totals...

And then same results with WDS....

10.0um

FIG. 3. (Color online) Experimental (this work) and theoretical [34] mass attenuation coefficients for metallic Fe in the energy region 500–1550 eV. The solid line represents the smoothed mean experimental values obtained by multiple transmittance energy scans.

Fe L3 "707 eV" Fe La "705 eV"

Fe L2 "720 eV" Fe Lb "719 eV"

Sokaris'et al paper (2011 Phys Rev A 83, 052511): experiment with Fe metal absorption (includes Fe L3 and L2 edges)

Ah ha moment...

Gopon, Fournelle, Sobol and Llovet, 2013, Microscopy & Microanalysis, 19, 1698-1708

Use the Fe Ll line for Low keV Analysis

However, while Fe Ll offers some opportunities, for many materials the intensity is weak.

Therefore, we are currently working on full Fe L spectral deconvolutions to see if it might be possible to utilize the La/Lb lines, particularly for silicate EPMA. No time here to discuss other important issues pertinent to low keV EPMA:

- Possible issues due to adventitious carbon contamination, particularly on low energy X-rays
- For fully focused FE-beams on many materials, sample alteration/damage very likely

Exactly how small can we resolve features with low voltage FE EPMA?

= Accurate quantitative analysis

Calculations of X-ray Range

"<u>average path length</u> that electrons travel before slowing down equal to an energy equal to the excitation energy of the considered electron shell" (Merlet and Llovet, 2012)

Castaing (1952)
$$R_X = \frac{33A(E_0^{1.7} - E_{Cr}^{1.7})}{\rho * Z}$$
 Range in nm

Various researchers have modified this x-ray range formulation:

- Anderson and Hasler (1966)
- Reed (1966)

 \rightarrow All with similar form

• Hovington et al (1997)

Calculations of ANALYTICAL RESOLUTION

- Duncumb (1960) suggested need to multiply X-ray Range by 1.6 <u>for analytical resolution</u>
- Reed (1975) suggested need to multiply X-ray Range by ~3 for analytical resolution.
- Merlet and Llovet (2012) suggested explicit inclusion of beam diameter:

$$R_{\rm S} = \sqrt{4(R_{\rm x} - Z_{\rm m})^2 + d_0^2}$$

 Monte Carlo programs such as PENEPMA provide possible simulations with less simplification and averaging used in range approximations

These are all theoretical estimates of "X-ray Range": can they be evaluated experimentally as far as "lateral analytical spatial resolution?

NBS/NIST K409, a 'failed experiment'

(I have some fragments I can distribute here at the AMAS meeting)

K409 Line Traverses – SXFive FE

Using K409 to model low keV X-ray spatial resolution

Lateral distance in microns between two K409 Feoxide grains = how close can they be to still achieve the same X-ray intensity as 'far away from Fe-oxide'?

Note: Na Ka X-rays are immediately "lost" under the focused FE beam (there is $10.8 \text{ wt}\% \text{ Na}_2\text{O}$ in the glass)

Revised experiment: 50 second measurement in middle between 2 crystals (10 nA)

Spacing in nm between crystal edgesSpacing in nm between crystal edgesThere does not appear to be any significant benefit in droppingfrom 7 to 5 keV, as both reach the 'far' glass value at 600-700 nm

Table 4. Comparison of experiments at 5 and 7 keV with various estimations of analytical X-ray lateral resolution, for Si-K α , Al-K α and Fe-L α in K409 glass, using various published formulations and results from Monte Carlo simulations. For Merlet-Llovet formula, (a) uses phi-rho-Z max from CASINO, (b) uses phi-rho-Z max from Merlet (pers. comm.). PENEPMA for Fe-L α not included due to poor statistics.

	5 keV	5 keV	5 keV	7 keV	7 keV	7 keV
X-ray ranges	Al-Kα	Si-Ka	Fe-Lα	Al-Kα	Si-Ka	Fe-Lα
Castaing 1952	351	321	405	664	625	730
Anderson-Hasler '66	322	311	352	602	590	632
Reed '66	273	257	314	491	475	531
Hovington et al '97	297	281	333	558	543	1065
Analytical resolution						
Duncumb (x1.6)	437	411	502	785	759	849
Reed (x3)	820	772	940	1472	1424	1593
Merlet-Llovet '12 (a)	578	512	619	989	909	1065
Merlet-Llovet '12 (b)	515	465	607	974	900	1091
PENEPMA (100 %)	500	500	*	700	700	*
CASINO (99.9 %)	360	360	436	674	674	755
K409 point experiments	575-650	575-650	575-650	600-700	600-700	600-700

Can we create an EPMA "app" to estimate analytical lateral spatial resolution for <u>small</u> <u>inclusions in a matrix</u>, that uses the definition of Barksdale et al (2001), such that it achieves at least 99% of the total X-ray intensity?

- \rightarrow Use PENEPMA (PENELOPE) for Monte Carlo model
- →Provide several geometries (currently half sphere and rectangular box)
- →Easy-to-use GUI
- →Use as many processors simultaneously as available on computer
- →Raw data immediately displayed (though tighter error bars may take 30+ minutes, depending upon problem)

"WISC-Resolution"

Aurelien Moy has created this interface to PENEPMA which provides estimates of analytical spatial resolution for two inclusion shapes (half sphere; rectangle)

work/Resolution/CuPdMg-6kV	penepma.exe C:\Work\Resolution\base\pi material.exe c:\Penelope Stuff\Penelope2 Number of processor core used to run p	anepma.exe 2014\penelope\pendbase\material.exe	File name: pe-intens-06.dat	Results of the selected working directory:		
- 2015 w Penepma2014 - 2016 Penepma - compile - gnuplot for penepma - old stuff (2015runs) - Resolution - Resolution	material.exe c:\Penelope Stuff/Penelope Number of processor core used to run p	2014\penelope\pendbase\material.exe		C:\work\Besolution\CuPdMa_6k\ABulk_ind_6.0kM		
compile gnuplot for penepma ⊕- old stuff(2015runs) ⊖- Resolution	Material definitions	arallel simulations. Z (up to Z)	Ett X-ray Cu La AND	Cu La 1.661E-5 1.014E-7 0.61 Pd La 1.788E-6 3.320E-8 1.86		
	Material definitions		Convergence: 5 % Convergence: 5 %	C:\work\Besolution\CuBdMa-6kV		
Resolution				\Bulk_Matrix_6.0kV		
	Material defined by:	Material defined by:	Results of the running simulations:	Cu La 0.000E0 0.000E0 NaN Pd La 5.669E-6 2.798E-7 4.94		
CuPdMg-6kV	weight fraction	weight fraction ▼		C:\work\Resolution\CuPdMg-6kV \incl_in_Matrix_R=0.100µm_6.0kV		
	Name incl	Name Matrix		Cu La 4.906E-6 3.113E-7 6.35 Pd La 3.815E-6 1.906E-7 5.00		
mincl_in_Matrix_R=0.100µm, mincl_in_Matrix_R=0.150µm,	Density 2.8 g/cm3	Density 4.56 g/cm3		C:\work\Resolution\CuPdMg-6kV \incl_in_Matrix_R=0.150µm_6.0kV		
…incl_in_Matrix_R=0.200µm …incl_in_Matrix_R=0.250µm	Create	e material files		Cu La 8.127E-6 3.165E-7 3.89 Pd La 2.954E-6 1.469E-7 4.97		
…incl_in_Matrix_R=0.300µm, ⁼⁼ …incl_in_Matrix_R=0.350µm, …incl_in_Matrix_R=0.400µm,	Inclusion geometries and input condition	is		C:\work\Resolution\CuPdMg-6kV \indi_in_Matrix_R=0.200µm_6.0kV Cu La 1.124E-5 2.965E-7 2.64 Pd La 2.362E-6 1.177E-7 4.98		
… incl_in_Matrix_H=0.450µm, … incl_in_Matrix_R=0.500µm, … incl_in_Matrix_R=0.550µm, ⊕ K409-5kV ⊕ K409-7kV	Radius (µm): Depth offset (µm) Min 0.1 0 Max 5 5 Steps 6 6	n): Beam energy 5 kV Takeoff angle 40 ° Beam diam 0.040 µm		C:\work\Resolution\CuPdMg-6kV \inol_in_Matrix_R=0.250µm_6.0kV Cu La 1.36TE-5 2.799E-7 2.06 Pd La 2.030E-6 1.014E-7 5.00		
Muscovite-zircon-15kV	Bulk files C	reate files Cutoff energy 1.0 keV	Name and Id of the number simulations:	C:\work\Resolution\CuPdMg-6kV \\incl_in_Matrix_R=0.300µm_6.0kV Cu La 1.522E-5 2.728E-7 1.79 Pd La 1.860E-6 9.295E-8 5.00		
kun Folder name	INEXT SIMULATIONS.			C:\work\Resolution\CuPdMg-6kV		
incl_in_Matrix_R=0.350µm_6.0kV				Vincl_in_Matrix_R=0.350µm_6.0kV Cu La 1.588E-5 2.696E-7 1.70 Pd La 1.808E-6 9.022E-8 4.99		
inci_n_Matrix_R=0.400µm_5.0kV incl_in_Matrix_R=0.450µm_6.0kV incl_in_Matrix_R=0.500µm_6.0kV	E			C:\work\Resolution\CuPdMg-8kV \incl_in_Matrix_R=0.400µm_6.0kV Cu La 1.622E-5 2.700E-7 1.65 Pd La 1.788E-6 8.921E-8 4.99		
incl_in_Matrix_R=0.550µm_6.0kV	*		Stop selected simulation	C:\work\Resolution\CuPdMg-6kV		
Run selection Stop all P L E	Image: Non-Strain Strain S					

Experimental data

FE EPMA of various sizes of Cu-Mg-Pd phases in a Mg-Pd host (6 keV, 20 nA) from Hombourger & Outrequin, 2013

Summary

- Need to understand distinction between imaging resolution and analytical resolution
- May need to explore "non-traditional" X-ray lines if decrease beam energy
- May be a limit to "how low you can go"; here, no apparent improvement dropping from 7 to 5 keV in K409 glass example
- Fully focused beam can rapidly alter/damage some samples
- Two apps available from UW Madison EPMA lab
 - Beam size calculator
 - Lateral analytical resolution simulation (WISCresolution)

Funding for this research: National Science Foundation grants

NSF EAR-1554269 NSF EAR-1337156

CASINO Monte Carlo Simulation in K409 Experiments

At 5 kV

Penepma Monte Carlo Simulation of K409 Experiments

Sw Compare Predictions of Analytical Resolution with K409 Experiments

	5 kV X-ray Ranges	Al Ka	Si Ka	Fe La	
	Castaing 1952	351	321	405	
	Anderson&Hasler '66	322	311	352	
	Reed '66	273	257	314	
	Hovington et al '97	297	281	333	
	5 kV Analytical Resolution				
	Duncumb (*1.6)	437	411	502	
	Reed (*3)	820	772	940	
	Merlet&Llovet '12 (Casino Zmax)	578	512	619	
	Merlet&Llovet '12 (Merlet Zmax)	515	465	607	
	PENEPMA point	400	400		
	CASINO 99%	320	320		
	Experimental K409	450-500	450-500	450-500	
-					_

Compare Predictions of Analytical Resolution with K409 Experiments

7 kV X-ray Ranges	Al Ka	Si Ka	Fe La
Castaing 1952	664	625	730
Anderson&Hasler '66	602	590	632
Reed '66	491	475	531
Hovington et al '97	558	543	1065
7 kV Analytical Resolution			
Duncumb (*1.6)	785	759	849
Reed (*3)	1472	1424	1593
Merlet&Llovet '12 (Casino Zmax)	989	909	
Merlet&Llovet '12 (Merlet Zmax)	974	900	1091
PENEPMA point	600-700	600-700	
CASINO 99%	510	510	
Experimental K409	700-750	700-750	700-750

Problems of Soft X-ray analyses of iron

Llovet et al (2012) showed problems of Fe analyses at 5-6 keV (using Fe L α) with interlaboratory study

Table 5: Results of quantitative WDS analyses of the P11 sample (all values in wt.%).									
Lab code	Si	Cr	Mn	Fe	Co	Ni	Cu	Mo	Total
Reference	0.483	17.18	1.483	66.51	0.336	11.24	0.309	2.163	
composition									
1	0.57	14.42	0.88	66.65	0.38	14.65	0.35	2.39	100.29
	(0.02)	(0.27)	(0.25)	(0.7)	(0.04)	(0.43)	(0.03)	(0.10)	
2	0.52	15.77	1.10	67.86	0.4	14.45	0.35	2.16	102.59
	(0.01)	(0.14)	(0.11)	(0.5)	(0.05)	(0.27)	(0.02)	(0.04)	
3	0.39	14.33	0.21	86.25	0.27	15.33	0.34	7.54	124.64
	(0.02)	(0.82)	(0.28)	(1.24)	(0.05)	(0.53)	(0.01)	(0.24)	
4	0.46	15.24	1.49	70.04	0.31	16.0	0.35	2.25	106.14
	(0.06)	(0.35)	(0.54)	(0.3)	(0.16)	(0.6)	(0.06)	(0.15)	
5	0.50	14.82	1.03	72.97	-0.04	15.13	0.39	2.15	106.99
	(0.004)	(0.77)	(0.06)	(0.5)	(0.04)	(1.6)	(0.06)	(0.05)	
6	0.51	16.91	0.24	70.36	"Not	14.04	0.59	2.16	104.80
	(0.05)	(0.64)	(0.63)	(0.81)	measured'	(0.36)	(0.18)	(0.35)	
Numbers in parenthese, are one candard deviation uncertainties									
		low		high		high			
				Ŭ		Ŭ	Llovet,	et al (202	12)

Compare Predictions of Analytical Resolution with K409 Experiments

.....Very Preliminary....

One reason low voltage may be preferable to low over-voltage

10 kV X-ray Ranges	Al Ka	Si Ka	Fe La	Fe Ka
Castaing 1952	1265	1205	1351	601
Anderson&Hasler '66	1133	1121	1163	514
Reed '66	879	863	919	375
Hovington et al '97	1055	1040	1091	481
10 kV Analytical Resolution				
Duncumb (*1.6)	1406	1380	1470	600
Reed (*3)	2636	2588	2757	1125
Merlet&Llovet '12 (Casino Zmax)	1873	1753	1985	1007
Merlet&Llover'12 (Merlet Zmax)	1881	1757	2041	
PENEPMA point				
CASINO 99%	780			
Experimenetal K409	1000-1500	1000-1500	1000-1500	

Part 3: Other considerations

Does more intense FE beam cause different behaviors in materials?

 Dieter Rhede has found that different minerals respond differently, as in having different carbon contamination spot behavior

Current research:

Using K409 to model low keV X-ray spatial resolution

5 kV -325 nm spacing

Current research:

Using K409 to model low keV X-ray spatial resolution

5 kV -325 nm spacing

Courtesy Dieter Rhede, GFZ JXA-8530

Courtesy Dieter Rhede, GFZ JXA-8530

Defocus the FE beam??

 One of first things I learned from an early 8500F prober : defocus the beam (not just for glasses):

"For routine quantitative analyses under conventional conditions, the beam diameter can be defocused to a few microns to reduce damage of the sample or the carbon coating."

→ Makes sense....but what if you want to go for very small features?

Intense FE beams \rightarrow Significant Beam Damage Possible

Relative to W filament's beam

- With Temperature increase 100 X or more
- Concentrated electron charge implantation??

ASU 8530 Field Emission 7 keV 10 nA

Intense FE beams \rightarrow Significant Beam Damage Possible

Relative to W filament's beam

- With Temperature increase 100 X or more
- Concentrated electron charge implantation??

ASU 8530 Field Emission 7 keV 10 nA

8530 ASU 15 kV 10 nA **Focused beam** Calcite -- 6 nm Ir coating

15.0kV x5.00k SE

15.0kV x16.0k SE

Does more intense FE beam cause different behaviors in materials?

- Consider materials which shouldn't be impacted particularly deleteriously by the FE electron beam ... Fe metal ... Si metal...
- Time series experiments, 100 measurements, ~250 seconds length ("1 second measurements")
- Comparison: FE electron probe vs traditional W filament electron probe

7 kV, 20 nA, LN anti-contamination

Si Metal: SX51 (W)

Si Metal: SXFive FE vs SX51 (W) ^{7 kV, 20 nA,} LN anti-contamination

7 kV SXFive FE experiments on Wollastonite, 20 nA, from fully focused to 1 um and 2 um defocused. 100 counting intervals of 1 second each (~250 seconds total time)

Other Challenges for High Spatial Resolution EPMA with Low kV FE-EPMA

- 1. Traditional K and L lines no longer accessible, so use less well known L and M ones.
- 2. Machine stability at high mag (e.g. spectrometer movement, FA cup insertion)
 3. Higher level of quality of reference materials
 4. Surfaces...contamination etc

Fe-silicides: problem with Fe La

But using Ll line, avoid severe spectral issues (self-absorption etc)

REE: Ma/Mb lines can be severely affected by self-absorption—until <u>extremely low</u> kV used

Fischer and Baum, 1967, Self-Absorption effects in the soft x-ray Ma and Mb emission spectra of the REE, J. Applied Physics, 38, 4830.

Dy Ma and Mb spectra at various kV

Thus, need to consider "non-traditional" M lines

REE @ 5 kV: Nd Mz vs Nd Mb (in Mg-Zn-Nd material)

<u>Nd Mb</u>	Nd Mz	Nd Mz
Nd 72.9	35.4	39.9
Zn 1.2	1.7	1.9
Mg 55.1	56.8	57.2
0 1.9	2.1	1.8
Sum 131	96	101

Not easy to get the current software to accept Mz as analytical line...have to 'trick it' and this creates complications...

Kakanui hornblende – used by hundreds of EPMA labs

- FE EPMA can show complexity in traditional geological probe standards
- Which composition is 'correct'? That acquired by defocused or by focused beam?

What could be going on here?

Initial thoughts....

- 1. Chemical peak shifts?
- 2. Mass absorption factor errors? Self absorption?

Part 4:

Wish List for SubMicron EPMA

- What the next generation of submicron electron beam microanalyzers might need:
 - 24/7 "CryoTiger" closed cycle refrigerant cooled cold plate
 - Better mechanical/electronic stability at high magnification
 - In-chamber cleaner (UV?)
 - Can a sample be chilled?
 - Alternative metal coating

Why Field Emission EPMA?

 \rightarrow Accurate Probe Analysis for submicron regions

Thank You

NBS/NIST K409, a 'failed experiment'

(b) 5 keV 10nA ¹									
Analysis #	SiO2	Al ₂ O ₃	Fe ₃ O ₄	MgO	CaO	Na ₂ O	K₂O	о	Total
1	10.40	4.08	83.4	0.16	0.52	0.77	0.00	-0.06	99.2
2	9.23	2.16	88.8	0.12	0.08	0.64	-0.06	-0.93	100.0
3	9.58	2.71	87.4	0.09	-0.14	0.87	0.01	-0.70	99.8
4	10.17	3.01	86.9	0.18	-0.04	0.92	-0.05	-0.52	100.6
5	10.40	2.65	88.2	0.19	0.16	0.83	0.28	0.09	102.7
6	10.41	3.25	84.7	0.11	0.01	1.01	-0.07	-0.17	99.2
7	9.82	3.29	86.7	0.16	0.34	0.95	-0.02	-0.99	100.2
8	10.70	2.79	86.0	0.13	0.30	0.75	0.06	-0.29	100.4
9	9.22	2.80	88.7	0.07	0.30	0.86	-0.15	-0.94	100.9
Average	9.99	2.97	86.7	0.13	0.17	0.84	0.00	-0.50	100.3
SD	0.55	0.54	1.8	0.04	0.21	0.11	0.12	0.41	1.1

Issue: self-absorption artifacts related to reversible injection of electrons into partially filled 4f orbital. This is anomalous, not like normal self-absorption. Reversable transitions possible and complicate

Implanted Er into homogeneous materials

Found for Er, Mb worked well, an N6 filled (M4-N6 is Mb)

Thibault Y., 2014. Strategy for efficient high-spatial resolution X-ray microanalysis of trace REE in complex materials. Abstracts in conference program, 27th Rare earth research conference 2014, Squaw Valley, California, RERC98.

Does more intense FE beam cause different behaviors in materials?

 An experiment with perhaps the most sensitive minerals, carbonates... testing out whether a thick coat of Ir might offer some 'protection' to beam damage

Intense FE beams \rightarrow Significant Beam Damage Possible

Relative to W filament's beam

- Electron charge implantation concentrated
- With Temperature increase 25-150 X

Armstrong (2012, AGU) suggested benefits of Iridium metal coating:

- Extremely thin coats conduct well
- Possible protection by enhanced thermal conductivity vis a vis C
- Where measuring C Ka

Outline

- Review:
 - Benefits of low kV EPMA
 - Low voltage vs low overvoltage
 - Some challenges with low kV
 - Determination of analytical spatial resolution
- Experiments:
 - Evaluate spatial resolution of Si and Al Ka in silicate glass K409
 - 5, 7 kV
 - Effect of high intensity FE beams on metals
 - Effect of high intensity FE beams on minerals
- Other considerations for FE low voltage EPMA
 - Carbon contamination differences (Dieter Rhede)
 - Re-evaluation of some standard reference materials
 - Need to experiment with non-traditional X-ray lines
- What the next generation of submicron electron beam microanalyzers need:
 - 24/7 "CryoTiger" closed cycle refrigerant cooled cold plate
 - Better mechanical/electronic stability at high magnification
 - In-chamber cleaner (UV?)
 - Can a sample be chilled???

FE vs W vs LaB6 @ 10 kV

Field Emission image – submicron features – but EPMA?

Fig. 12—A schematic representation of the interaction of an electron beam with a solid of moderate to low atomic number. Most of the different signals emitted, their means of detection, and the diameters of the excited volumes from which they originate are shown. L is the mean free path, n the number of events, I the distance traveled between each event, E the average energy of the impinging electron, and X_a the depth where complete electron diffusion occurs.

Electron Scattering in Sample

Figure 3. CASINO Monte Carlo simulations of various beam energies scattering in the same silicate glass (NIST K409). Blue shows the traces of the electrons scattered until all energy lost; red shows backscattered electrons. <u>The electron source's beam</u> <u>size for all is the same.</u>

Beam Scattering-Energy Loss

Predicted % of energy remaining of the gun E0 kV by CASINO -- here, 15 kV in olivine, (Mg,Fe)2SiO4.

Beam Scattering-Energy Loss

CASINO modeling

100 nm beam

Ran tests on 'large' commercial FeSi...

15 keV, Fe Ka

5 keV, Fe La

EM:	Si	Fe	Fe	Fe	Fe		ELEM:	Si		Fe	Fe Fe	Fe Fe Fe
PE:	ANAL	ANAL	ANAL	ANAL	ANAL		TYPE:	ANAL		ANAL	ANAL ANAL	ANAL ANAL ANAL
DS:	LIN	EXP	LIN	LIN	LIN		BGDS:	LIN		EXP	EXP LIN	EXP LIN LIN
ME:	10.00		10.00		.00		TIME:	10.00		10.00	10.00	10.0000
EAM:	30.12	ನ ಕಾನ್ಸ್	30.12	0.000	.00		BEAM:	30.13	-	30.13	30.13	30.1300
GGR:			2	0.00 0			AGGR:			2	2	2
EM:	Si	Fe-D	Fe	Fe-D	Fe	SUM	ELEM:	Si		Fe	Fe Fe-D	Fe Fe-D Fe
RAY:	(ka)	(la)	(ka)	(la)	(ka)		XRAY:	(ka)	(1a	1	u) (ka)	u) (ka) (la)
288	31.669	<u>1,1,1,1</u>	68.333	0.000	.000	100.003	388	33.860	90.178	3	3	3000
289	31.686		67.460		.000	99.146	389	31.960	85.637		1222.12	000
290	31.904	1.7.7 .	66.808	0.000	.000	98.712	391	33.319	89.973		222	000
291	31.937	ನ ಕಾನ್ಸ್	66.896	0.000	.000	98.832	392	33.286	89.134		222.2	000
292	31.581	ನ ಕಾನ್ಸ್	66.769	0.000	.000	98.350	393	33.078	89.214		2222	000
293	31.684	ನನನ	68.783	0.000	.000	100.467	394	32.859	89.692		2222	000
294	31.532	ನ ಕಾನ್ಸ್	67.770	0.000	.000	99.302	395	33.561	89.429			000
295	31.585	5.57 8	68.192	0.000	.000	99.776	396	32.979	90.139		10000	000
296	31.535	ನವನ	68.944	0.000	.000	100.478	397	33.106	89.099			000
297	31.645	ನವನ	67.846	0.000	.000	99.491	398	33.527	89.262		10000	000
298	31.755	ನವನ	67.987	0.000	.000	99.743	399	33.485	88.127		2222	000
300	31.790	ನವನ	67.889	0.000	.000	99.680	400	33.619	90.231		10000	000
301	31.851	ನನಾಡ	68.621	0.000	.000	100.473	401	33.674	89.364			000
302	31.324	ನನನ	67.845	0.000	.000	99.169	402	33.399	89.348			000
303	31.605	ನನನ	68.510	0.000	.000	100.115	403	33.618	89.385			000
304	31.622	ನವನ	68.777	0.000	.000	100.400	404	33.144	88.402		1222.02	000
305	31.939	ನವನ	66.946	0.000	.000	98.885	405	33.226	89.358		222.22	000
306	31.655	ರೆ. ಕೆ.ಕೆ.	67.554	0.000	.000	99.209	406	33.561	89.296			000
307	31.838		68.912	0.000	.000	100.750	407	33.444	88.804		222.0	000
VER:	31.691		67.939		.000	99.631	AVER:	33.300	89.162		222	000
DEV:	. 158		. 728	-	.000	. 700	SDEV:	.416	1.015		122	000
ERR:	.036	0.000	. 167	0.070	.000		SERR:	.095	.233			000
RSD :	.50		1.07		.05		*RSD :	1.25	1.14		222.2	04
DS:	66		65		0		STDS:	66	65		1000	0

Peter Sobol's "Image Resolution Measurement App" – Get @ UW Madison EPMA Lab Web Page

NBS/NIST K409, a 'failed experiment'

NBS/NIST K409, a 'failed experiment'

K409 Line Traverses

5 kV	X-ray Intensi	ty Relative to	Plateau Points		
spacing nm	Al Ka	SI Ka	Fe La	Al, Si	Fe
300	0.81	0.91	1.20	2, 2	2
325	0.87	1.03	0.95	2, 2	0
360	0.97	0.97	1.03	2, 2	2
416	0.81	0.87	0.91	3, 3	0
478	0.94	0.99	0.98	4,4	4
490	1.01	0.96	0.99	3, 5	3
528	0.95	1.00	1.00	4, 4	4

→ 450-500 nm spatial resolution @ 5 kV for Al Ka, Si Ka and Fe La in K409 glass

7 kV	X-ray Intensi	ty Relative to	Plateau Points		
spacing nm	Al Ka	SI Ka	Fe La	Al, Si	Fe
454	0.92	0.96	1.19	3, 2	2
485	0.88	0.94	1.18	2,2	0
571	0.95	0.95	1.05	3, 3	3
586	0.93	0.97	1.18	2, 2	2
670	0.85	0.99	0.87	4, 3	3
675	0.93	0.97	0.87	3, 4	4
686	1.01	0.99	0.96	4, 3	3
749	0.98	1.01	0.93	5, 5	5
776	0.98	1.01	0.89	5, 5	5
882	1.01	0.99	0.96	6, 6	5

→ 700-750 nm spatial resolution @ 5 kV for Al Ka, Si Ka and Fe La in K409 glass

Question of statistics...

 Each measurement of 5 second duration: count rates limited, so wide possible variability in counting statistics

Counting Statistics for 7 kV					
Al, Si Ka	For nominal ratio of 1.00				
1 sigma	0.96-1.04				
2 sigma	0.93-1.08				
Fe La	For nominal ratio of 1.00				
1 sigma	0.91-1.09				
2 sigma	0.83-1.20				

 Future: to improve statistics -- measure 3x3 grids between Fe-oxides / 3 parallel lines