Characterization of Corning Standard Glasses 95IRV, 95IRW, and 95IRX

P Carpenter

Alliance for Microgravity Materials Science and Applications, SD46/USRA/NASA, Marshall Space Flight Center, AL 35812

D Counce and E Kluk Los Alamos National Laboratory, EES-1 MS D469, Los Alamos, NM 87545

C Nabelek

Department of Geological Sciences, University of Missouri, Columbia MO 65211

Outline: Corning 95-Series Standards

- History.
- Analytical methods summary.
- X-ray spectra -- EDS and WDS.
- EPMA element migration and homogeneity measurements.
- ICP-AES and XRF analysis.
- Results and comparision of analyses.
- Summary.
- Contact information.

History

- 1971: Art Chodos and Arden Albee at Caltech contracted Corning Glass Works to prepare glasses. Ultimately to be used as microanalysis trace element standards.
- NIST SRM 612-616 are Na-bearing high SiO₂ glasses. EPMA use is problematic due to migration and beam damage. Utilized as secondary standards.
- Higher trace element concentrations requested.
- Trace element inventory chosen to avoid peak overlaps as well as possible.
- Ca-Al-Mg borosilicate matrix chosen to avoid migration and beam damage.
- 22 elements were batched at a nominal concentration of ~0.79 % oxide in 3 glasses.

History

- Each batch subjected to two cycles of melting and stirring in Pt-Rh lined container.
- Continuous ~ 0.25 inch glass rod was formed by slowly drawing from the melt.
- Master rod cut into 9 sections and numbered.
- Material made available to MAS. End users were supplied with ~ 1/8-inch thick disc from the end of each rod.
- Glasses were distributed as GLV, GLW, and GLX.
- Bulk wet chemistry performed on material from beginning of rod; also middle and end were used to evaluate homogeneity along length.

Matrix Composition and Dopant Inventory

Average Matrix Composition, Weight %							
B ₂ O ₃	4.4	Similar to	Similar to An ₄₀₋₆₀ Plagioclase Feldspar				
MgO	9.2	95 (-B, N	95 (-B, Mg, dopants) + (Na) \sim = Plagioclase				
Al ₂ O ₃	19.2	Recommend 20 µm minimum beam diameter					
SiO ₂	60	Probe current ~100 nA					
CaO	6.7	95IRV K Ti Cr Fe Ce Hf Green					
Sum	~ 95	95IRW V Mn Co Cu Cs Ba La Th Blue					
Dopants	~ 5	95IRX	Ni Zn Rb Sr Y Zr Pb U	Brown			

Source Materials: 95-Series Glasses

		95IRV		95IRW		95IRX	
Oxide	Source Material	Oxide g	Weight %	Oxide g	Weight %	Oxide g	Weight %
B ₂ O ₃	Anhydrous B_2O_3	56.00	4.42	56.00	4.36	56.00	4.35
MgO	Magnesium Oxide MgO (Bac)	112.00	8.84	112.00	8.72	112.00	8.70
Al ₂ O ₃	T 61 Alumina, 100 mesh (Al_2O_3)	226.00	17.84	226.00	17.60	226.00	17.56
SiO ₂	Milled African Sand (SiO ₂)	733.00	57.86	733.00	57.09	733.00	56.95
K ₂ O	$K_2CO_3 dry (5.6 g)$	3.82	0.30				
K ₂ O	$K_2 Cr_2 O_7 (19.4 \text{ g})$	6.21	0.49				
CaO	CaSO ₄ *1/2 H ₂ O (208 g)	80.36	6.34	80.36	6.26	80.36	6.24
TiO ₂	Titanium Dioxide TiO ₂ (F.M.A.)	10.00	0.79				
V ₂ O ₃	Vandium Pentoxide A.R. (V ₂ O ₅ 10 g)			8.24	0.64		
Cr ₂ O ₃	$K_2 Cr_2 O_7 (19.4 \text{ g})$	10.02	0.79				
MnO	Manganese Dioxide A.R. (MnO ₂ 10 g)			8.16	0.64		
FeO	Iron Oxide Fe_2O_3 (10 g)	9.00	0.71				
CoO	Cobalt Oxide, A.R. (CoO)			10.00	0.78		
NiO	Nickel Oxide NiO, A.R.					10.00	0.78

Source Materials: 95-Series Glasses, Cont.

		95IRV		95IRW		95IRX	
Oxide	Source Material	Oxide g	Weight %	Oxide g	Weight %	Oxide g	Weight %
CuO	Copper Oxide, Black, A.R. (CuO)			10.00	0.78		
ZnO	Zinc Oxide ZnO (F.G.S8)					10.00	0.78
Rb ₂ O	Rb_2CO_3 (12.4 g)					10.04	0.78
SrO	$SrCO_3$, Allied, (14.4 g)					10.11	0.79
Y_2O_3	Yttrium Oxide (Y_2O_3)					10.00	0.78
ZrO ₂	ZrO ₂ (Tizon)					10.00	0.78
Cs ₂ O	Cs ₂ CO ₃ (11.7 g)			10.12	0.79		
BaO	BaCO ₃ Allied 1404 (12.9 g)			10.02	0.78		
La ₂ O ₃	Lanthanum Oxide (La_2O_3)			10.00	0.78		
Ce ₂ O ₃	CeO_2 (W.R. Grace, 10 g)	10.49	0.83				
HfO ₂	Hafnium Oxide (HfO ₂)	10.00	0.79				
PbO	Lead Oxide PbO (E.F.)					10.00	0.78
ThO ₂	Thorium Oxide (ThO ₂)			10.00	0.78		
UO ₂	Uranium Oxide U_3O_8 (10 g)					9.62	0.75
Sum		1266.9	100	1283.90	100	1287.13	100

4/2002

Analytical Methods 1971 - 1990' s Excluding EPMA

- Atomic Absorption Spectrophotometry, Colorimetry: Eugene Jarosewich, Smithsonian Institution Jun Ito, University of Chicago (including analyses at 3 positions along length of rod)
- Gravimetry: Corning Glass Works
- X-ray Fluorescence Spectrometry: Corning Glass Works NASA, Johnson Space Center
- Instrumental Neutron Activation Analysis: Oregon State University, Undergraduate Project.

Analytical Methods 1990's - Present

- Electron probe microanalysis: Paul Carpenter, Caltech and MSFC No formal EPMA Round Robin Program
- X-ray fluorescence spectrometry: Emily Kluk, Los Alamos National Laboratory (WDXRF) Paul Carpenter, Caltech (EDXRF)
- Inductively-coupled plasma atomic-emission spectrometry: Dale Counce, Los Alamos National Laboratory Carol Nabelek, University of Missouri

EDS: 95IRV 40 KeV 3000 sec

EDS: 95IRW 40 KeV 3000 sec

EDS: 95IRX 40 KeV 3000 sec

WDS Scan: PET Crystal 95IRV Green, 95IRW Blue, 95 IRX Red

WDS Scan: PET Crystal Th Mβ on U Mα, K Kα Peaks & Ovlp U Mβ

Element Migration Studies: K, Rb, Cs

- Element migration measured at 20 KeV, 100 nA, variable beam diameter: 100 µm, 50, 20, 10, 5, focused beam.
- Count interval of 20 sec, total count time ~ 30 minutes.
- Immediate migration:
 5 µm beam: K 95IRV
 Focused beam: Cs 95IRW, Rb 95IRX
- Slow migration:
 10 μm: ~1000 sec K 95IRV
 5 μm: X00 sec Rb 95IRX
- No migration: 20 μm or greater @ 100 nA
- ΔT (degrees K) calculated using Castaing equation: $\Delta T = 4.8 E_0 i / \lambda d$

 E_o = beam voltage KeV, i probe current uA, λ thermal conductivity W/cm deg K, d beam diameter in μ m

4/2002

EPMA Homogeneity Measurements

- Bulk chemistry data along rod length (Ito): variation similar to or less than quoted analytical error of ± 0.01 wt% oxide.
- EPMA point count technique applied to circular cross-section of each glass rod, using a 60 point grid with 600 µm point spacing.
- Analysis conditions:
 25 keV, 100-250 nA probe current
 100 µm probe diameter
 250-500 sec peak, 100-200 sec background
- Asynchronous and synchronous data collection modes used. Instrument must be very stable!
- Contour plots generated using Tecplot
- Sigma ratio = $\sigma_{act} / \sigma_{counting statistics}$

Homogeneity Point Count Grid Tecplot Triangulation Mesh

4/2002

95IRV Homogeneity Maps: K, Ti, Cr, Fe, Ce, & Hf Contour 0.01 Wt. %

95IRW Homogeneity Maps: V, Mn, Co, & Cu Contour 0.01 Wt. % Two Runs

95IRW Homogeneity Maps: Cs, Ba, La, & Th Contour 0.01 Wt. % Two Runs

4/2002

95IRX Homogeneity Maps:(L) Ni, Zn, Rb, & Sr(R) Y, Zr, Pb, & U Contour 0.01 Wt. %

Analytical Method – ICP-AES

Microwave digestion: From 5 g allotment, ~0.25 g sample, 3.5 ml HCL, 2 ml HNO₃, and 1.5 ml HF all combined. Heated to 200 psi for 30 minutes in digestion bombs. Digestion good: K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb, U. Digestion bad (?): Ti, Sr, Y, Ba, La, Ce, Th.

• Fusion:

From 5 g allotment, ~0.25 g sample, 2 g LiBO₂ flux all combined. Heated at 950 degrees C for 30 minutes, followed by dissolution of the fused bead in 5% HNO₃.

Fusion good: Ti, Sr, Y, Zr, Ba, La, Ce, Hf, Th, U

 Problem: Some elements present at higher concentration than established working ranges by ICP-AES for silicate rocks at LANL.

Analytical Method – WDXRF

- ~5 g total glass rod was pulverized in an alumina shatterbox.
- Separate aliquots prepared by fusion:
 Sample fused in LiBO₂ flux at 9:1 and 36:1 dilutions and poured into disc mold for subsequent analysis.
- Crucible contamination procedures used for V.
- Normal XRF procedures at LANL for analysis of trace elements in silicate rock samples were used.
- Problem: Some elements are present at higher concentration than the primary XRF standards.
- X-ray peak overlaps similar to those seen in EPMA

95IRV Analytical Data

Oxide	Weighed	Avg	1σ	Rel	Sigma Ratio
	In, %	Bulk	Bulk	WI	$\sigma_{ m act}$ / $\sigma_{ m cs}$
K ₂ O	0.79	0.792	0.073	+ 0.3%	3.4
TiO ₂	0.79	0.787	0.040	- 0.4	3.7
Cr ₂ O ₃	0.79	0.747	0.023	- 5.5	2.8
FeO	0.71	0.744	0.039	+ 4.7	2.8
Ce ₂ O ₃	0.83	0.760	0.076	- 8.4	2.6
HfO ₂	0.79	0.744	0.055	- 5.8	3.6

Aı	Analytical Data – Blank values 95IRV								
Oxide	Bulk avg	Bulk 1 o	EPMA avg	EPMA 1 σ	EPMA comments				
V ₂ O ₃	0.001	0.000x	0.006	0.001	Ti Kβ int				
MnO	0.005	0.001	0.005	0.001	Mn Kα peak, Cr Kβ int				
CoO	0.001	0.000x	0.002	0.001	Hf LL int, Fe Kβ int				
NiO	0.011	0.011	0.00x						
CuO	0.002	0.001	0.00x		Hf L α int				
ZnO	0.004	0.003	0.006	0.003	Zn K α peak, Hf L β 1 int				
Rb ₂ O					Si K α limb, Hf M β int				
SrO	0.080	0.011	0.111	0.004	Sr Lα peak				
Y ₂ O ₃	0.007	0.003	0.00x						
ZrO ₂	0.027	0.003	0.033	0.004	Zr Lα peak				
Cs ₂ O			0.015	0.001	Ti Kα int				
BaO	0.016	0.003	0.014	0.001	Ba L α peak, Ti K α int				
La ₂ O ₃	0.002		0.00x		Ti Kα int				
PbO	0.007	0.001	0.083	0.007	Hf Lγ1 int				
ThO ₂	0.012	0.010	0.00x						
UO ₂			0.037	0.004	Ar K edge, flow counter				
2002					30				

95IRW Analytical Data

Oxide	Weighed	Avg	1 σ	Rel	Sigma Ratio
	In, %	Bulk	Bulk	WI	$\sigma_{ m act}$ / $\sigma_{ m cs}$
V ₂ O ₃	0.64	0.638	0.011	- 0.3%	3.5
MnO	0.64	0.637	0.018	- 0.5	2.1
CoO	0.78	0.734	0.018	- 6.0	2.9
CuO	0.78	0.700	0.019	-10.2	3.4
Cs ₂ O	0.79	0.710	0.012	-10.1	6.5
BaO	0.78	0.776	0.012	- 0.6	3.5
La ₂ O ₃	0.78	0.783	0.004	+0.4	(3.3)*
ThO ₂	0.78	0.838		+ 7.4	2.8

* La in 95IRW has built-in overlap by Cs L β 1 and L β 4

Analytical Data – Blank values 95IRW

Oxide	Bulk avg	Bulk 1 o	EPMA	EPMA 1 σ	EPMA comments
			avg		
K ₂ O	0.019	0.004	0.011	0.001	K Kα peak
TiO ₂	0.008	0.005	0.046	0.001	Ba L α int
Cr_2O_3	0.002	0.000x	0.021	0.001	V K β int, La L β 2 int
FeO	0.084	0.003	0.034	0.001	Fe K α peak, Mn K β int
NiO	0.005	0.003	0.007	0.001	Ni K α peak, Co K β int
ZnO	0.008	0.001	0.007	0.002	Zn K α peak, Cu K β int
Rb ₂ O					Si Ka limb
SrO	0.044	0.004	0.075	0.003	Sr Lα peak
Y_2O_3	0.009	0.005	0.003	0.003	Small Y L α peak
ZrO_2	0.007	0.002	0.005	0.004	Small Zr La peak
Ce_2O_3			0.064	0.002	Ba L β 1,L β 4 int
HfO_2	0.003	0.001	0.001	0.002	Cu K α int, Co K β int
PbO	0.006	0.000x	0.004	0.004	
UO ₂	0.001	0.000x	0.049	0.005	Th M β int, Ar K edge

95IRX Analytical Data

Oxide	Weighed	Avg	1 σ	Rel	Sigma Ratio
	In, %	Bulk	Bulk	WI	$\sigma_{ m act}$ / $\sigma_{ m cs}$
NiO	0.78	0.730	0.022	- 6.4 %	4.4
ZnO	0.78	0.787	0.019	+ 1.0	3.8
Rb ₂ O	0.78	0.494	0.016	- 36.7	5.2
SrO	0.79	0.762	0.034	- 3.6	3.3
Y ₂ O ₃	0.78	0.851	0.049	+ 9.1	2.8
ZrO ₂	0.78	0.789	0.032	+ 1.1	3.1
PbO	0.78	0.754	0.009	- 3.3	4.6
UO ₂	0.75	0.754	0.010	+0.5	3.1

Analytical Data – Blank values 95IRX

Oxide	Bulk avg	Bulk 1 o	EPMA	EPMA 1 σ	EPMA comments
			avg		
K ₂ O	0.028	0.008	0.017	0.000x	K K α peak, U M β tail
TiO ₂	0.006	0.002	0.028	0.002	
V ₂ O ₃	0.003	0.001	0.003	0.001	
Cr ₂ O ₃	0.001	0.000x	0.001	0.001	
MnO	0.005	0.001	0.004	0.001	Mn Kα peak
FeO	0.063	0.010	0.030	0.001	Fe Kα peak
CoO	0.004	0.000x	0.003	0.001	
CuO	0.005	0.001	0.002	0.001	Cu K α peak, Ni K β int
Cs ₂ O			0.003	0.001	
BaO	0.017	0.002	0.017	0.001	Ba Lα peak
La ₂ O ₃	0.004	0.002	0.000x	0.000x	
Ce ₂ O ₃			0.009	0.002	Zn Kβ1,3 II int
HfO ₂	0.019	0.006	0.018	0.003	Zr Ka II int
ThO ₂	0.016	0.002	0.000x	0.001	

Summary 95IRV

- Very good agreement between analytical methods: Cr (best), Fe, Ti, Hf, K, Ce (worst)
 95IRV poorest agreement relative to 95IRW and 95IRX
- Ce: need more analyses
- Blank values (increasing, ppm oxide):

<50: V, Co, Cu, La, Zn, P

- <100: Mn, Y, Pb
- <200: Th, Ba, Na
- Zr: 270 (EPMA 330)
- Sr: 800 (EPMA 1110)

 Excellent homogeneity: Cr (lowest σ), Fe, Ce, K, Ti, Hf (highest σ) 100 - 150 ppm oxide range on contour maps

Summary 95IRW

- Excellent agreement between analytical methods: Th (best, n = 1), La, V, Cs, Ba, Mn, Co, Cu (worst)
 95IRW best agreement relative to 95IRV and 95IRX
- Th: value needs refining
 La: built-in overlap from Cs Lβ₁ and Lβ₄; Use La Lβ₁
- Blank values (increasing, ppm oxide):
 - <50: U, Cr, Na, Hf <100: P, Ni, Pb, Zr, Ti, Zn, Y <200: K Fe: 840 (EPMA 340)
 - Sr: 440 (EPMA 750)
- Excellent homogeneity, except Cs
 Mn (lowest σ), Th, Co, La, Cu, V, Ba, Cs (highest σ)
 200 350 ppm oxide range on contour maps (Cs: 1000)

What can these glasses be used for?

- As primary standards for trace elements.
- Spectrometer peaking and primary calibration can be performed by WDS — carefully.
- As secondary standards to check against primary calibration presumably performed using higher concentration standards. Check of trace element setup.
- Peak overlaps at trace element concentration.
- Much needed standards for Rb, Sr, Cs, Th, and U.
- Other techniques: SIMS etc.

What Needs to Be Done in the Future

- Round Robin EPMA:
 - Values relative to EPMA standards.
 - Consensus values relative to bulk chemistry.
- SIMS and other probe techniques.
 - Oxidation state: Valences are assumed.
- Traceability? Certified values? How does the EPMA community pursue this?
- EPMA Analysts: Please use these standards.

Conclusions

- Corning 95-series trace element glasses characterized by bulk chemical and x-ray analytical techniques. Excellent agreement.
- Doped and blank values determined. Can be used as primary and secondary EPMA standards.
- Homogeneous on micro and macro scales.
- EPMA wavelength scans available to aid selection of background offsets, illustrate overlaps, etc.
- All analytical work done on gratis basis by volunteers.
- Distribution program set up with Smithsonian Institution.

How to Obtain Corning 95-Series Glasses

- Smithsonian Institution will be distribute material as a crushed glass, placed in a vial.
- USNM numbers have been assigned: 95IRV = USNM 117083 95IRW = USNM 117084 95IRX = USNM117085
 - Contact:

Edward Vicenzi Department of Mineral Sciences Smithsonian Institution Washington, DC 20560-0119 ph: 202-357-2594 fax: 202-357-2476 vicenzi@volcano.si.edu