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Abstract Magnetic anomaly identifications underpin plate tectonic reconstructions and form the
primary data set from which age of the oceanic lithosphere and seafloor spreading regimes in the ocean
basins can be determined. Although these identifications are an invaluable resource, their usefulness to the
wider scientific community has been limited due to the lack of a central community infrastructure to
organize, host, and update these interpretations. We have developed an open-source, community-driven
online infrastructure as a repository for quality-checked magnetic anomaly identifications from all ocean
basins. We provide a global sample data set that comprises 96,733 individually picked magnetic anomaly
identifications organized by ocean basin and publication reference, and provide accompanying Hellinger-
format files, where available. Our infrastructure is designed to facilitate research in plate tectonic
reconstructions or research that relies on an assessment of plate reconstructions, for both experts and
nonexperts alike. To further enhance the existing repository and strengthen its value, we encourage others
in the community to contribute to this effort.

1. Introduction

Marine magnetic anomaly data are one of the primary data sources for the interpretation of seafloor spread-
ing in the world’s ocean basins and were instrumental in the development of the theory of plate tectonics
[Dietz, 1961; Hess, 1962; Vine and Matthews, 1963]. These data record recognizable patterns formed due to
reversals in the Earth’s magnetic field over geological time. The majority of marine magnetic anomaly data,
collected through marine ship track, aeromagnetic, and helicopter surveys, have been made available to
the scientific community through the GEODAS (GEOphysical Data System) archive, developed by the US
National Geophysical Data Center (NGDC) [Sharman et al., 2001]. A subset of these data, which have been
error-checked for observational outliers, excessive gradients, metadata consistency, and agreement with
satellite altimetry-derived gravity and bathymetry grids [Chandler and Wessel, 2008, 2012] is available
through the MGD77 supplement to the Generic Mapping Tools software suite [Wessel et al., 2013]. Experts
in marine geophysical data interpretation compare these magnetic anomaly data against synthetic crustal
magnetic models and the geomagnetic reversal time scale to create a set of so-called magnetic anomaly
identifications—a spatiotemporal representation of the magnetic anomalies themselves. From these mag-
netic anomaly identifications, the age and spreading regime of the ocean floor can be ascertained and a
plate kinematic model constructed. Often, nonexperts in marine geophysical data interpretation are inter-
ested in constructing and/or assessing alternative plate kinematic scenarios but lack the necessary expertise
to interpret the raw data. Previous global and regional compilations of magnetic anomaly identifications
have been presented as maps with no accompanying digital data [e.g., Karasik and Sochevanova, 1981,
1990; S�egoufin et al., 2004] limiting their usefulness for other researchers. The exception is the lineations of
Cande et al. [1989] which are available through the NDGC website (http://www.ngdc.noaa.gov) but these
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are outdated and contain minimal metadata. An infrastructure that houses a freely available, downloadable
repository of magnetic anomaly identifications that can be updated indefinitely is therefore of genuine
value to the wider scientific community.

We have established a new infrastructure and repository for magnetic anomaly identification data. The
infrastructure is open-source and community-driven, where consistent and well-documented information
on magnetic anomaly identifications is collected, quality-controlled and made accessible to the public via a
dedicated website (http://www.soest.hawaii.edu/PT/GSFML). We have initially populated the repository with
a global set of 96,733 published magnetic anomaly identifications (Figure 1), and further additions will
make the global database an evolving resource. A team of trusted, expert users are responsible for the addi-
tion and/or revision of contributions and overall management of the repository to ensure consistency and
integrity of information. All information is stored under version control, allowing the history of the database
to be reconstructed. The data are provided in three commonly used file formats: OGR/GMT multisegment
files, KMZ Google Earth files, and ESRI Shapefiles. These data can be loaded directly into the plate recon-
struction software, GPlates [Boyden et al., 2011], for visualization and interrogation or to construct or assess
plate tectonic reconstructions. Where possible, we also provide any additional information (such as further
details of the picking technique; the data source; processing techniques) in readme files for individual data
sets. The infrastructure is complementary to the Global Fracture Zone database [Matthews et al., 2011],
which enhances the power of the magnetic anomaly database for plate reconstruction studies.

2. Magnetic Anomaly Identifications

Marine magnetic anomaly identifications are an interpretation of the age of the oceanic crust, made by cor-
relating individual magnetic anomaly patterns along profile against a synthetic crustal magnetic model and
geomagnetic reversal time scale. The two-dimensional forward modeling of magnetic anomalies [e.g.,

Figure 1. The global magnetic anomaly identification data set that is provided as part of our infrastructure. Magnetic anomaly identifications are colored by age based on the time scale
of Gee and Kent [2007].
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Blakely, 1995; Modmag, Mendel et al.,
2005, and Magan, Schettino, 2012]
take into account factors that skew
the shape of the magnetic anomalies
such as remanent magnetization
parameters, ambient geomagnetic
field directions, spreading rates,
spreading asymmetry, and spreading
ridge orientation. Synthetic models
predominantly assume a vertical mag-
netized body. An alternative, but
equivalent, approach is to deskew
[Schouten, 1971] the magnetic anom-
aly profiles taking into account the
same parameters. The technique of
‘‘picking’’ magnetic anomalies and
assigning their temporal component
has been performed using methods
that differ slightly in their design. This
has led to inconsistencies in metadata
assignment and storage, making it dif-
ficult to combine disparate studies
into one self-consistent data set. It is
therefore often left to individual
researchers to collate various data sets
and ensure self-consistency.

2.1. Picking Technique
The picking technique employed for

magnetic anomalies differs between researchers. Picking is made by eye on hardcopy printouts or digitally,
or by using numerical approaches to ‘‘objectively’’ pick the location of the magnetic contrasts. Researchers
commonly pick the ‘‘young’’ or ‘‘old’’ end of a magnetic chron (Figure 2). As the geomagnetic reversal time
scale is calibrated to the start and end of a magnetic chron, assigning an age to a magnetic anomaly identi-
fication based on this method is straightforward. In other cases, researchers pick the ‘‘center’’ or ‘‘middle’’ of
an anomaly from which to make their magnetic anomaly identification, i.e., at the maximum or midpoint of
the peak or trough that constitutes that anomaly (Figure 2). This approach may be valuable in places, where
the edges of neighboring anomalies are unclear due to superposition owing to short isochron durations
and/or slow spreading rates, even though correlating this type of identification with the geomagnetic rever-
sal time scale becomes problematic. This information is usually depicted as ‘‘y,’’ ‘‘o,’’ ‘‘c,’’ or ‘‘m’’ following the
chron number. The absence of this information could potentially lead to tens of km of difference in the
location/age association of a magnetic anomaly identification, with serious implications for plate motion
studies. It is therefore crucial to preserve the chron end of each magnetic anomaly identification and also a
measure of the confidence of this information.

An inherent assumption of magnetic anomaly identifications is that they are based on magnetic anomaly
data recorded by elongated bodies formed by seafloor spreading parallel to the ridge axis. However, recent
studies [e.g., Croon et al., 2008; Granot et al., 2009; Keller, 2004] have added additional picks using tectonic
trends, i.e., abyssal hills from high quality multibeam data. In these cases, two additional picks are identified
on the edges of the swath multibeam to define three picks from a single voyage track. The identification
method for each pick is noted to distinguish identifications not based on magnetic anomaly data.

2.2. Magnetic Chron and Time Scale
The temporal component of a magnetic anomaly identification is based on a geomagnetic reversal time
scale. Many alternative time scales exist [e.g., Cande and Kent, 1995; Gee and Kent, 2007; Gradstein et al.,
1994, 2004; Heirtzler, 1968] and modifications continue as new constraints are obtained [e.g., Ogg and

Figure 2. Schematic of how to ‘‘pick’’ a magnetic anomaly identification. We track
the confidence in the anomaly end assignment using a numerical code, where (1)
anomaly end clearly listed in the original paper; (2) some problem exists from the
original paper but there is confidence in the anomaly end assignment; (3) anomaly
end unclear in original paper and the end has been inferred.
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Lugowski, 2012]. For this reason, the age of an identification is not explicitly stored but rather, we provide
look-up tables for some commonly used time scales, such as [Cande and Kent, 1995; Gee and Kent, 2007;
Gradstein et al., 2004], with the option of including other time scales in the future. A planned GMT5 supple-
ment will provide tools to automate the look-up process.

2.3. Rotation Parameters
Magnetic anomaly identifications, together with fracture zone traces, can be used to reconstruct palaeo-
positions and direction of motion through time between two or more tectonic plates described by a rota-
tion model. When two flanks of a spreading system are preserved, a series of stage or finite rotations can be
computed using either a visual-fitting technique or, more robustly, the least squares approach of Hellinger
[1981] and Royer and Chang [1991] or Eagles [2004]. These approaches compute rotations and their uncer-
tainties based on a set of magnetic anomaly identifications, fracture zones segments, associated uncertain-
ties, and an approximate rotation pole position. The most-widely employed method to estimate
uncertainties in plate reconstructions is that of Hellinger [1981]. Our infrastructure has been designed to pre-
serve, where available, input files for the ‘‘Hellinger’’ methodology (e.g., magnetic anomaly identifications,
fracture zone segments) as well as the output files (e.g., the resultant rotations and covariance matrices).
The ‘‘Hellinger’’ output can be converted to GROT format [Qin et al., 2012], the native rotation file format of
the plate reconstruction software, GPlates.

2.4. Magnetic Survey Information
Ideally, magnetic anomaly interpretations are made along survey lines but this information is rarely pre-
served in digital magnetic anomaly identification compilations, especially for older data sets. Our

North

America

Africa

Eurasia

Caribbean

South America

Klitgord and Schouten (1986)

Muller et al (1999) 

Srivastava and Tapscott (1986)

Gaina et al. (2002)

Gaina et al. (2009)

Merkouriev and DeMets (2008)

Merkouriev and DeMets (2013)

(a) (b)

Figure 3. Regional maps showing magnetic anomaly identification data sets, colored by reference, which is how the data is provided in the repository. (a) South Atlantic, (b) North Atlan-
tic, (c) Western Indian, (d) Eastern Indian, (e) Western Pacific, (f) Northeast Pacific, (g) Southeast Pacific, (h) South pole, and (i) North pole.
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infrastructure provides an optional field allowing for the survey line name to be preserved, such that indi-
vidual magnetic anomaly identifications can easily be traced back to the original source data.

2.5. Limitations
Magnetic anomaly identifications are an interpretation of data, with errors stemming from a variety of sour-
ces: the original data itself; the interpretation technique; the way the information has been preserved.
Source data errors have largely been addressed through error corrections applied to the NGDC data [Chan-
dler and Wessel, 2008, 2012], but the errors originating from the source data remain as these corrections
have not been propagated through to magnetic anomaly identifications made from the uncorrected data.
Sources of error may derive from; errors in the location of the measurements, particular for old, pre-GPS
data; large skewness angles due to magnetization and the ambient geomagnetic field directions; nonverti-
cal magnetic boundaries within the magnetic source layer. Errors in the ‘‘picking’’ technique mainly arise
from digitizing errors; the anomaly end assignment, especially if the center-point of the anomaly was cho-
sen or if this information is not explicitly stored; incorrect chron assignment; and low sampling resolution.
Magnetic anomaly misinterpretations are possibly the largest sources of error but are difficult to quantify,
especially if there are no alternative reconstructions for comparison. The association of Hellinger input and

(c)

(d)

Figure 3. (Continued)
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output files, where available, may provide confidence for one particular interpretation over another. The
establishment of a community-driven repository with multiple, consistently formatted magnetic interpreta-
tions for each area may help partly overcome these limitations.

3. The Infrastructure and Data Repository

Due to their close relationship, both fracture zone traces (and other seafloor fabric data) and the new mag-
netic anomaly and Hellinger-format files are accessible from the same top-level website (http://www.soest.
hawaii.edu/PT/GSFML). Data files will be presented in GMT/OGR ASCII, KML, and shapefile formats for GMT,
GPlates or general-purpose GIS software and will be distributed via zip files. We provide links to relevant
plate reconstruction software and other tools from our site.

4. Sample Magnetic Anomaly Identification Data From the World’s Oceans

As part of our community magnetic anomaly identification repository, we provide a sample data set of
global identifications. This data set has been quality-checked for consistency and only data attributable to a
published data source is included. Our magnetic anomaly identification sample data set is by no means
complete but rather includes those data that have been provided freely to the community either through
publication supplementary data, general online data repositories, or through personal requests from the
authors. Many more magnetic anomaly identifications exist that have yet to reach the public domain. Our
intention for providing this sample data is to initiate the effort for a globally self-consistent magnetic anom-
aly identification repository.

(e) (f)

Figure 3. (Continued)
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4.1. Atlantic Ocean
We have collated magnetic anomaly identifications for the Cenozoic South Atlantic from Cande et al. [1988]
and M€uller et al. [1999], and from Rabinowitz and LaBrecque [1979] for the Mesozoic (Figure 3a). In the south-
ern South Atlantic, magnetic anomaly identifications associated with the Malvinas plate are from LaBrecque
and Hayes [1979] and Marks and Stock [2001]; the Cenozoic South America-Antarctic spreading corridors
from LaBrecque and Cande [1986] and Livermore et al. [2005]; and the early breakup of South America and
Africa by Martin et al. [1982]. The Mesozoic spreading in the Weddell Sea is represented by magnetic anom-
aly identifications from Kovacs et al. [2002]. Magnetic anomaly identifications for the North Atlantic are from
Klitgord and Schouten [1986] for the Mesozoic-Cenozoic Central Atlantic; M€uller et al. [1999] for the Cenozoic
Central Atlantic; Klitgord and Schouten [1986] and Gaina et al. [2002] from Iberia-Newfoundland to
Greenland-Eurasia and the Labrador Sea; Srivastava and Tapscott [1986] and Gaina et al. [2002] for
Greenland-Eurasia and the Eurasian Basin; and Srivastava and Tapscott [1986] and Gaina et al. [2009] for the
Norway Basin (Figure 3b). Numerous identifications of Neogene period reversals (20 Ma and younger) for
the Arctic basin, the Kolbeinsey and Reykjanes Ridges, and the Mid-Atlantic Ridge north of the Azores triple
junction are included from Merkouriev and DeMets [2008]. Similarly detailed identifications of Neogene
period reversals from the Africa-North America segment of the Mid-Atlantic Ridge (15�N–37�N) are included

(g) (h)

Figure 3. (Continued)
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from Merkouriev and DeMets [2014]. AQ1The noticeable absence of magnetic anomaly identifications in the
equatorial Atlantic is due to the combined effect of a north-south striking ridge and its position at the
equator.

Where multiple magnetic anomaly identification data sets are available, we prefer the magnetic anomaly
identifications of M€uller et al. [1999] for the Cenozoic South Atlantic and Central Atlantic. In the North Atlan-
tic a combination of identifications from Merkouriev and DeMets [2008, 2013] for Chron 6 and younger, and
from Gaina et al. [2002, 2009] for reversals older than Chron 6, as the latter four studies each include rota-
tions derived using the Hellinger method and rigorously estimated rotation uncertainties. In addition, the
data for three of the studies [Gaina et al., 2009, 2002; Merkouriev and DeMets, 2013] include fracture zone
identifications based variously on multibeam, sonar, and satellite altimetry data.

4.2. Indian Ocean
We have collated magnetic anomaly identifications in the Indian Ocean from a variety of sources. In the west-
ern Indian Ocean, these include Royer et al. [1988] for the Southwest Indian Ridge; Baines et al. [2007] for two
detailed spreading corridor studies proximal to the Southwest Indian Ridge; DeMets et al. [2005] and Merkour-
iev and DeMets [2006] for the Central Indian and Carlsberg Ridges; Cande et al. [2010], Eagles and Hoang
[2013], and Eagles and Wibisono [2013] for the Central Indian Basin; and Eagles and Konig [2008] for the Meso-
zoic spreading history (Figure 3c). In the eastern Indian Ocean, these include Cande and Stock [2004], Tikku
and Cande [1999], Veevers [1986], Granot et al. [2013], and Whittaker et al. [2007] for the southeast Indian
Ridge; Gibbons et al. [2013] and Williams et al. [2013] for the Mesozoic Enderby Basin; and Mihut and M€uller
[1998], M€uller et al. [1998], and Gibbons et al. [2012] for the Meoszoic anomalies along the western Australian
margin (Figure 3d). In addition, we incorporate a data set covering the entire Indian Ocean from the Red Sea
to the southeast Indian ridge from Segoufin et al. [2004] (Figures 3c and 3d). We acknowledge the existence of
many more unpublished magnetic anomaly identifications in the Indian Ocean [e.g., Yatheesh et al., 2013],
which will be incorporated into our magnetic anomaly repository once they are published.

(i)

Figure 3. (Continued)
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Where multiple magnetic anomaly identification data sets are available in the Indian Ocean we prefer a
combination of Whittaker et al. [2007] and Tikku and Cande [1999] for the magnetic anomaly identifications
in the southeast Indian Ocean, Cande et al. [2010] in areas of data overlap in the Central Indian Basin, the
data of Gibbons et al. [2012, 2013] for the Mesozoic eastern Indian Ocean, Royer et al. [1988] and Baines et al.
[2007] for the southwest Indian Ridge and Eagles and Konig [2008] for the Mesozoic spreading between
Africa, Madagascar, and Antarctica. These interpretations were chosen as they were derived using newly
collected data, recent fracture zone identifications, provide all the necessary metadata and/or incorporate
uncertainties in derived rotations using the Hellinger method.

4.3. Pacific Ocean
The Pacific Ocean is vast and many of the magnetic anomaly identifications are old (pre-1980s), poorly docu-
mented, and subject to larger data source and digitizing uncertainties than the more recent identifications
found in many of the other ocean basins. We have collated magnetic anomaly identifications for the Mesozoic
western Pacific from Nakanishi et al. [1992], Sharman and Risch [1988], and Atwater [1989] (Figure 3e); the
Mesozoic-Cenozoic northeast Pacific from Atwater [1989], Bassinger et al. [1969], Caress et al. [1988], Currie and
Riddihough [1982], Elvers et al. [1967, 1973], Klitgord and Mammerickx [1982], Mason and Raff [1961], Lonsdale
[1991], and Vaquier et al. [1961]; and the Cenozoic southeast Pacific from Atwater [1989], Barckhausen et al.
[2013], Cande and Haxby [1991], Handschumacher [1976], Handschumacher et al. [1981], Herron [1972], Klitgord
and Mammerickx [1982], Mammerickx et al. [1980], Mayes et al. [1990], Munschy et al. [1996], Pardo-Casas and
Molnar [1987], Tebbens and Cande [1997], Tebbens et al. [1997], Theberge [1971], and Weissel et al. [1977]. Much
recent focus has been on the remote Pacific-Antarctic spreading system due to its crucial role in the global
plate circuit. Magnetic anomaly identifications have been made in the following publications: Croon et al.
[2008], Larter et al. [2002], Wobbe et al. [2012], and Cande et al. [1995]. Magnetic anomaly identifications for
West Antarctic-Australia spreading in the Balleny corridor come from Cande et al. [2000], Cande and Stock
[2004], and Granot et al. [2013], identifications from the Adare Trough representing spreading between East
and West Antarctica come from Cande et al. [2000], Davey et al. [2006], and Granot et al. [2013], identifications
around the Macquarie Ridge com from Keller [2004]. Finally, picks of Neogene period reversals from the north-
ern end of the East Pacific Rise are included from DeMets and Traylen [2000].

Our preferred magnetic anomaly identifications for the southeast Pacific include a combination of the identifi-
cations from Barckhausen et al. [2013], Cande and Haxby [1991], Handschumacher [1976], Munschy et al. [1996],
Pardo-Casas and Molnar [1987], Mammerickx et al. [1980], Tebbens and Cande [1997], and Weissel et al. [1977].
For the northeast Pacific, our preferred magnetic anomaly identifications consist of a combination of interpre-
tations from Atwater [1989], Bassinger et al. [1969], Elvers et al. [1967, 1973], and Vaquier et al. [1961]. Our pre-
ferred set of magnetic anomaly identifications for the Pacific-Antarctic ridge includes a combination of Croon
et al. [2008], Wobbe et al. [2012], and Cande et al. [1995] as well as a few identifications from the earlier part of
seafloor spreading from Larter et al. [2002] for the Pacific-Antarctic spreading system. We use the recent mag-
netic anomaly identifications for East-West Antarctic motion from Granot et al. [2013], which significantly
reduces uncertainties in rotation parameters to define this motion compared to Cande et al. [2000].

4.4. Backarc Basins and Marginal Seas
Seafloor spreading in back-arc basins and marginal seas produce identifiable magnetic anomalies even
though spreading is often quite complex with chaotic seafloor spreading fabric, faster seafloor spreading
rates, and shorter time sequences of activity. In the southwest Pacific, we have collated the magnetic anom-
aly identifications for the Tasman Sea [Gaina et al., 1998], Coral Sea [Gaina et al., 1999], and North Loyalty
and South Fiji Basins [Sdrolias et al., 2003]. In southeast Asia, we incorporate the magnetic anomaly identifi-
cations for the South China Sea [Briais et al., 1993], Caroline Basin [Gaina and M€uller, 2007] and the Parece
Vela and Shikoku Basins [Sdrolias et al., 2004]. We have collated magnetic anomaly identifications for the
Scotia Sea from Barker and Burrell [1977] and Eagles et al. [2005] for the Drake Passage and Hill and Barker
[1980] for the Sandwich plate, eastern Scotia Sea.

5. Discussion and Conclusion

Plate tectonic motion models provide the framework to place features on the Earth’s surface in their spatio-
temporal context and are important for assessing global and regional geological relationships and
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processes. These models are underpinned by magnetic anomaly and fracture zone interpretations. In addi-
tion, some key models of real value to the community rely directly on the constraints provided by magnetic
anomaly identifications, e.g., the age of the ocean floor [M€uller et al., 1997, 2008a], spreading rates and
asymmetries [M€uller et al., 2008a; Seton et al., 2009], predicted bathymetry [M€uller et al., 2008b], and heat
flow and hydrothermal flux [M€uller et al., 2013].

The open-access, community-driven infrastructure that we have developed provides access to these funda-
mental constraints for the broader community. Our infrastructure allows for studies requiring the assess-
ment of alternative plate reconstructions to be achieved by nonspecialists or alternatively, for the specialist
community to have access to previous interpretations of an area and assess which areas require further
data collection and interpretation. We anticipate that the sample data provided with this infrastructure will
be continuously updated and we strongly encourage the community to contribute their magnetic anomaly
identifications to this effort.
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Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 8.0 or 

above). (Note that this document uses screenshots from Adobe Reader X) 

The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/reader/ 

 

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:  

 

 

 
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Replace (Ins) Tool – for replacing text. 

 

Strikes a line through text and opens up a text 

box where replacement text can be entered. 

How to use it 

 Highlight a word or sentence. 

 Click on the Replace (Ins) icon in the Annotations 

section. 

 Type the replacement text into the blue box that 

appears. 

This will open up a panel down the right side of the document. The majority of 

tools you will use for annotating your proof will be in the Annotations section, 

pictured opposite. We’ve picked out some of these tools below: 

 

2. Strikethrough (Del) Tool – for deleting text. 

 

Strikes a red line through text that is to be 

deleted. 

How to use it 

 Highlight a word or sentence. 

 Click on the Strikethrough (Del) icon in the 

Annotations section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Add note to text Tool – for highlighting a section 

to be changed to bold or italic. 

 

Highlights text in yellow and opens up a text 

box where comments can be entered. 

How to use it 

 Highlight the relevant section of text. 

 Click on the Add note to text icon in the 

Annotations section. 

 Type instruction on what should be changed 

regarding the text into the yellow box that 

appears. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Add sticky note Tool – for making notes at 

specific points in the text. 

 

Marks a point in the proof where a comment 

needs to be highlighted. 

How to use it 

 Click on the Add sticky note icon in the 

Annotations section. 

 Click at the point in the proof where the comment 

should be inserted. 

 Type the comment into the yellow box that 

appears. 
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For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: 

5. Attach File Tool – for inserting large amounts of 

text or replacement figures. 

 

Inserts an icon linking to the attached file in the 

appropriate pace in the text. 

How to use it 

 Click on the Attach File icon in the Annotations 

section. 

 Click on the proof to where you’d like the attached 

file to be linked. 

 Select the file to be attached from your computer 

or network. 

 Select the colour and type of icon that will appear 

in the proof. Click OK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Add stamp Tool – for approving a proof if no 

corrections are required. 

 

Inserts a selected stamp onto an appropriate 

place in the proof. 

How to use it 

 Click on the Add stamp icon in the Annotations 

section. 

 Select the stamp you want to use. (The Approved 

stamp is usually available directly in the menu that 

appears). 

 Click on the proof where you’d like the stamp to 

appear. (Where a proof is to be approved as it is, 

this would normally be on the first page). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Drawing Markups Tools – for drawing shapes, lines and freeform 

annotations on proofs and commenting on these marks. 

Allows shapes, lines and freeform annotations to be drawn on proofs and for 

comment to be made on these marks.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to use it 

 Click on one of the shapes in the Drawing 

Markups section. 

 Click on the proof at the relevant point and 

draw the selected shape with the cursor. 

 To add a comment to the drawn shape, 

move the cursor over the shape until an 

arrowhead appears. 

 Double click on the shape and type any 

text in the red box that appears. 
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