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Abstract The Laguna del Maule (LdM) volcanic field in the southern volcanic zone of the Chilean Andes
exhibits a large volume of rhyolitic material erupted during postglacial times (20-2 ka). Since 2007, LdM
has experienced an unrest episode characterized by high rates of deformation. Analysis of new GPS and
Interferometric Synthetic Aperture Radar (InSAR) data reveals uplift rates greater than 190 mm/yr between
January 2013 and November 2014. The geodetic data are modeled as an inflating sill at depth. The results
are used to calculate the temporal evolution of the vertical displacement. The best time function for
modeling the InSAR data set is a double exponential model with rates increasing from 2007 through 2010
and decreasing slowly since 2010. We hypothesize that magma intruding into an existing silicic magma
reservoir is driving the surface deformation. Modeling historical uplift at Yellowstone, Long Valley, and Three
Sisters volcanic fields suggests a common temporal evolution of vertical displacement rates.

1. Introduction

Inflationary processes occur at numerous volcanoes in a broad range of tectonic settings prior to eruptive
events (e.g., Okmok [Lu et al., 2000] and Kilauea [Cayol et al., 2000]) or intrusive episodes (e.g., dike injections
during the rifting episodes at Krafla and Dabbahu [e.g., Grandin et al., 2009; Wright et al., 2012]). Deformation
of the volcanic edifice is usually interpreted in terms of magma dynamics (mass flux and/or pressurization)
that may presage an eruption [e.g., Sparks, 2003; Dzurisin, 2007]. In other cases, however, repeated cycles
of measurable ground motion are observed without any subsequent magmatic events. For example, the
caldera-scale silicic volcanic system of Campi Flegrei, Italy, inflated by more than 1.5 m between 1982 and 1984
but did not erupt [e.g., Trasatti et al., 2011; Del Gaudio et al., 2010]. Recently, satellite geodetic measurements
from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS) have shown
significant crustal deformation above other large silicic volcanic systems such as Yellowstone (USA) [Chang
et al., 2007, 2010], Santorini (Greece) [e.g., Newman et al., 2012; Parks et al., 2012; Papoutsis et al., 2013], and
Uturuncu (Bolivia) [e.g., Henderson and Pritchard, 2013; Pritchard and Simons, 2002; Walter and Motagh, 2014].

In the Southern Volcanic Zone of the Chilean Andes between 34° and 36°S, several large-volume silicic erup-
tions have occurred during the Quaternary behind the volcanic front. These include the Maipo-Diamante
caldera, the Calabozos caldera, the Puelche volcanic field, and the Laguna del Maule (LdM) volcanic field
[Hildreth etal., 1999, 2010]. The LdM volcanic field covers 500 km? and includes 350 km? of material erupted in
the last 1.5 Ma, ranging from basalt to rhyolite and including caldera collapses at 1.5 Ma and 950 ka [Hildreth
et al., 2010]. Postglacial volcanism over the last 20 ka has been characterized by a concentration of modest
(<1.3 km3) effusive and explosive rhyolitic eruptions and a dearth of mafic-to-intermediate lavas [Hildreth
etal, 2010]. The result is an exceptional spatial and temporal concentration of rhyolite that is unique in the
Andes [Singer et al., 2014].

An inflationary event centered between several of the postglacial rhyolite vents of the LdM volcanic field
began some time after 2004 but no later than 2007, based on InSAR measurements [Fournier et al., 2010].
Subsequently, the rate of vertical uplift exceeded 250 mm/yr through January 2012 [Feigl et al., 2014]. Here
we use an extended data set with three additional years of GPS and InSAR measurements to update the time
series of deformation from that published by Feigl et al. [2014], to introduce a double exponential model of
the temporal evolution of uplift, and to compare the character of Laguna del Maule deformation to that of
other restless systems.
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Figure 1. Geodetic data used in this study. InSAR pairs are shown as colored rectangles; each color indicates a different
Synthetic Aperture Radar (SAR) mission. Time spanned by GPS measurements are shown as black lines; each square
represents one occupation of a campaign site. COSMO-Skymed stack includes 71 interferograms. Details appear in Table
S1 in the supporting information.

2. Methods

Our InSAR data set includes 37 interferometric pairs from four satellite missions (Figure 1 and Table S1 in
the supporting information). Interferograms from the ENVISAT, ALOS, and TSX/TDX missions were calculated
using the DIAPASON software developed at the French Space Agency CNES [Massonnet, 1997] (Text S1).
COSMO-Skymed data were analyzed using the InSAR Scientific Computing Environment (ISCE) (Text S1 and
Figure S1). In addition, the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) system flew over
LdM in 2013 and 2014, allowing the calculation of two interferograms (Table S1 and Figure S2). The UAVSAR
data were processed by the UAVSAR project at the Jet Propulsion Laboratory (JPL) (Text S1). To estimate the
model parameters that best fit each interferometric pair, we use the General Inversion of Phase Technique
(GIPhT), as developed by Feigl and Thurber [2009] and extended by Ali and Feigl [2012] (e.g., Figure S3). To
simulate the deformation, we use the same model of an expanding sill in a half-space with uniform elastic
properties via a dislocation formulation [Okada, 1985], as described by Feigl et al. [2014]. The model includes
eight parameters for the dislocation and three “nuisance” parameters to account for the phase gradient vector.

We then estimate the best fitting values of the 11 model parameters for each interferometric pair, following
the same procedure as in Feigl et al. [2014]. Using these estimates, we calculate the modeled rate of vertical
displacement for the time interval corresponding to each of the 39 interferometric pairs (Figure 2a). To evalu-
ate their time dependence, we then perform a time series analysis using temporal adjustment, as in Feigl et al.
[2014]. As described in previous studies, this procedure converts the rate of (relative) vertical displacement
estimated over several time intervals into the total (absolute) displacement at each point (“epoch”) in time
[e.g., Beauducel et al., 2000; Schmidt and Biirgmann, 2003; Feigl and Thurber, 2009; Grandin et al., 2009]. The
temporal adjustment is implemented in Matlab by the GraphTreeTA software (E. Baluyut et al. “Graph
theory for analyzing pair-wise data: Application to interferometric synthetic aperture radar at Okmok volcano,
Alaska,” manuscript in preparation, 2015). In the case of LdM, we consider several parameterizations to model
the cumulative uplift from 2007 through 2014, including: (a) a constant rate (Figure S4), (b) a piecewise linear
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isplacement rates (colored bars) for each calculated InSAR pair from the best fitting estimates of
for that pair and their weighted mean (black circle). Colors indicate satellite mission as in Figure 1.

(b) Time series (black curve) of cumulative vertical displacement for a point located at GPS station MAU2 from 2003 to
2014, as derived from InSAR data and assuming a double exponential model (equations (1) and (2)). Black dashed line is
the 69% confidence interval for the modeled black curve. Each red segment represents an individual INSAR pair
connecting two SAR epochs (black circles). In each InSAR pair, the value of displacement is plotted to fall on the model
curve and the value of relative displacement at the second epoch is plotted with its 69% confidence interval (vertical

blue bars).
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Figure 3. Velocity field estimated at permanent GPS (circles) and campaign (squares) sites with respect to the
continuous GPS site MAUL, located 30 km NNW of Laguna del Maule, outside the actively deforming area. (left)
Horizontal velocity field estimated from GPS data recorded between February 2013 and July 2014 (black arrows). Ellipses
denote 95% confidence. (right) Vertical component of the velocity field over the same time interval (red arrows). Thick
gray bars indicate the 95% confidence interval for each vertical rate.

adjustment (Figure S5), and (c) a double exponential parameterization consisting of an exponentially increas-
ing rate followed by an exponentially decreasing rate via equations (1) and (2) (Figure 2b).

GPS measurements at Laguna del Maule, including data from five continuous sites installed by Observatorio
Volcanolégico de los Andes del Sur (OVDAS) in 2012 and 2013 (Figure 3), allow us to track deformation even
during the ~7 months per year when the snow cover on the ground causes SAR images to decorrelate. The
GPS data were analyzed with the GIPSY software (release 6.2) from JPL (Text S2, Figure S6, Tables S2, and S3).

3. Evolution of the Unrest Episode

Eight years of InNSAR acquisitions and 2.5 years of continuous GPS measurements constrain the spatial distri-
bution and temporal evolution of the deformation. For interpretation, we divide the time series into several
intervals separated by changes in deformation rates.

3.1. The Onset

When did the current episode of rapid deformation begin? To answer this question, we consider interfero-
metric combinations of SAR data acquired between 2004 and 2007 by several satellites. For images acquired
before 2003 or between 2004 and 2007, no coherent interferogram could be made. A single ENVISAT inter-
ferogram spanning 2003 to 2004 indicates that the deformation had not yet begun in March 2004, as first
noticed by Fournier et al. [2010]. In the following time series analysis, we assume that the deformation began
in February 2007 (t, on Figures 2, S4, and S5), at the first SAR epoch of the InSAR pair showing deformation.
Thus, the estimated value of the total accumulated displacement is a lower bound. The InSAR time series was
calculated for the pixel corresponding to the location of the continuous station MAU2 (Figures 2 and 3).

3.2. From 2007 to Early 2010: Exponentially Increasing Rates
The rate of upliftincreased rapidly through March 2010. Of the three parameterizations that we tested for this
period, the following expression best fits the displacements inferred from the InSAR data:

u(t) = a, expl(t — ty) /71 fort, <t<t, (1

where the magnitude a; = 304 mm and the characteristic time constant 7; = 2.4 years. The fit is significantly
better with 95% confidence than using a constant rate of 240 + 6 mm/yr for the same time interval (Figure S4),
as calculated by an F test [Wackerly et al., 2007]. This time interval is thus characterized by an accelerating rate
of uplift.
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Figure 4. Vertical displacement time series for five continuous GPS stations, showing (a) observed position and
(b) residual position calculated by subtracting the best fitting linear trend from January 2013 to November 2014,
with respect to station MAUL. Daily vertical position uncertainties are smaller than the symbols. Gray line indicates
the seismic swarm of 11-12 January 2013. Labels indicate displacement rate in mm/yr.

3.3. From 2010 to Late 2014: Exponentially Decaying Rates
3.3.1. InSAR

Between March 2010 and February 2011, the vertical displacement rate decreased to approximately
220 mm/yr. We estimate the time t, of this transition to occur in March 2010 (Figure 2). Subsequently, the
displacement is modeled as:

u(t) = a, exp[—(t —t,)/7,] fort>t,, (2)

where a, =—3058 mm and z, = 10 years. During this 4 year interval, the characteristic time constant z, is much
longer than 7, consistent with a nearly linear temporal evolution of the vertical displacement after 2010.
3.3.2. GPS (March 2012 to November 2014)

Beginning in March 2012, the GPS stations show high rates of uplift and horizontal displacement radiating
outward from the SW region of the lake (Figures 3 and 4). The velocities of stations MAU2 and PUEL changed
in January 2013, as shown by the different slopes prior to 2013 (Figure 4b). These changes in velocity are
significantly different from zero with 95% confidence, as indicated by a two-tailed t test [Wackerly et al., 2007].
The vertical velocities at MAU2 and PUEL are 26% and 22% higher before 2013, respectively. The deceleration
coincided with a swarm of more than 200 volcano-tectonic (VT) seismic events on 11-12 January 2013, the
largest yet recorded at LdM by OVDAS [Singer et al., 2014].

Figures 3 and 4 show the motion of the GPS stations estimated from January 2013 to October 2014. Station
MAU2 moves upward at 192 + 3 mm/yr with respect to MAUL in the far field, more rapidly than any other
site. The horizontal velocity is highest at campaign site LMCU with 100 +£7 mm/yr toward the NW. The small
(<10 mm) zero-centered residuals (Figure 4b) confirm that the vertical displacement has been linear in time
since early 2013. The residual motions of all five continuous GPS stations include similar oscillations, indicating
alocal source of seasonal effects that could be associated with changes in lake level, temperature, snow cover,
or a combination of the three.

4. Discussion

The spatial pattern revealed by the GPS and InSAR data (Figure 3) is consistent with radial expansion of a source
at depth below the central southwest region of the lake, between the andesitic peninsula, and the youngest
rhyolite flow to the south (units apj and rin, as mapped by Hildreth et al. [2010] and shown by Singer et al.
[2014]). The ratio of maximum horizontal to vertical displacement is ~35%, indicating an elongated source,
as sill geometries tend to create more vertical displacement [e.g., Dieterich and Decker, 1975; Davis, 1986]. The
horizontal gradient of velocity (strain rate) is ~3 x 107%/yr and 20 x 1075/yr for the horizontal and vertical
components of velocity, respectively. The spatial extent of the inflation pattern as revealed by InSAR is about
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Figure 5. (a) Best models of vertical displacement time series from GPS or InSAR for the three other studied uplift
episodes: Yellowstone caldera, WY (USA) (original GPS data from USGS, Figure S4), Three Sisters volcanic center, OR
(USA) (data from Riddick and Schmidt [2011] and Figure S5), and Long Valley caldera, CA (USA) model from Newman

et al. [2001]. Vertical ground movement data from Campi Flegrei (Italy) [Berrino et al., 1984; Bianchi et al., 1987; Orsi et al.,
1999] are represented for comparison but not modeled; (b) normalized uplift v’ (equation (3)) as a function of
normalized time t’ (equation (4)) since the beginning of unrest.

20 by 26 km, affecting the entirety of the postglacial portion of the volcanic field. These observations suggest
that processes within a large magma reservoir underlying the LdM volcanic field are driving the deformation.
Geological observations, such as the spatial and temporal distribution of the recent silicic eruptive vents, also
support the hypothesis of a large reservoir likely of rhyolitic composition [Singer et al., 2014].

Modeling the InSAR data indicates that the source geometry remains fairly constant in time, as found previ-
ously [Feigletal., 2014].On the other hand, the rate of vertical displacement has evolved with time, as indicated
by the good fit of the double exponential model to the InsAR data. Its mean squared error (MSE) of ag =25
is significantly better than that using the constant-rate model (Figure S4) where ag = 54, as indicated by
an F test with 95% confidence. A piecewise linear parameterization with six changes in rate reaches a bet-
ter fit (Figure S5). We prefer the double exponential solution, because it is smooth in time and explains the
post-2012 signal well. We cannot identify any precursory deformation or determine the exact epoch t, of the
uplift episode because no useable interferometric pair exists between 2004 and 2007. On 27 February 2010,
a large M,, 8.8 megathrust earthquake struck offshore central Chile, about 200 km west of Laguna del Maule
[Vigny et al., 2011]. The transition from increasing rates to decreasing rates, in March 2010, might be related to
this regional stress change, as suggested for other volcanoes [Pritchard et al., 2013]. The trends in INSAR and
GPS agree for the time interval between 2012 and 2014 within their uncertainties (Figure S9).
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Newman et al. [2001] have modeled the 1997 -1998 uplift of the Long Valley caldera using a double exponen-
tial model like that described above, with 7, = 61 days and 7, = 64 days. These values are significantly shorter
than at LdM, where 7, = 2.4 years and 7, > 10 years, although the second time constant is only weakly con-
strained. The exponential increase of the displacement rate could be explained by an intrusion of magma into
the reservoir and/or the pressurization of fluids. The magnitude of such processes would control the timescale
and thus the amount of displacement at the surface. The second time interval of exponentially decaying rates
could be explained by viscoelastic relaxation of the crust; then the difference in time constants would be
related to the rheological properties of the crust surrounding the reservoir [e.g., Jellinek and DePaolo, 2003].

Similarly, rapid rates of inflation have been observed at other volcanoes over shorter timescales (Figure 5a).
For comparison, we have compiled and modeled available geodetic time series from examples of recent,
well-studied deformation episodes including the following volcanic systems: Long Valley caldera [Newman
etal.,, 2001], Yellowstone, and Three Sisters [Riddick and Schmidt, 2011] (Figures 5, S7, and S8), using the same
double exponential model. The estimated characteristic time constants vary between 0.2 and 10 years for
uplift episodes lasting between 2 and 14 years (Figure 5a).

To emphasize the similarities, we consider the time series in terms of normalized displacement:
u'(0) = u(®)/(Upax = Uo)s 3

where up,,, is the maximum vertical displacement, and u, is the displacement value at t,, as a function of
normalized time:

t, = (t - tO)/(tmax - tO)’ (4)

where ¢, is the onset epoch of uplift, and t,,,, is the time when the rate of vertical displacement becomes
negligible, such that t, < t, < t,,,. The epoch t,,, is arbitrarily set to the last measurement epoch for LdM
and Three Sisters, which are still showing uplift. The temporal evolution of the deformation follows the same
pattern for each of these different volcanic systems. The normalized displacement u’ as a function of the nor-
malized time t’ since the onset of inflation reveals a surprisingly similar pattern (Figure 5b), consistent with
the hypothesis that similar processes are at work. For these volcanic systems, the displacement rate increases
exponentially at the beginning of each deformation episode. The uplift rates then begin to slow (at t,) and
eventually pause and/or change to subsidence (at t,,,,). The transitions from uplift to subsidence at both
Yellowstone [Chang et al., 2010] (Figure S7) and Long Valley [Newman et al., 2001] were related to large seis-
mic events and/or hydrothermal changes, but no eruption occurred. Indeed, these mechanisms could have
relieved some of the stress accumulated during pressurization of the magma system, thus slowing the rate of
deformation.

AtLdM, although at least a dozen other episodes of seismicity have been reported by OVDAS from preliminary
results, the only seismic swarm that appears to coincide with a significant change in the GPS estimates of
vertical velocity is the largest one (in cumulative magnitude) on 11-12 January 2013.

5. Conclusions

Geodetic results indicate that an inflation episode began between 2004 and 2007 at LdM volcanic field in
Chile and has continued through at least November 2014. The inflation pattern covers the entire postglacially
erupted portion of the volcanic field. Based on the time series analysis of the InSAR data, we interpret the
unrest in two time intervals after its onset. The uplift rate increased exponentially from zero to more than
400 mm/yr in early 2010, but began to decrease exponentially in March 2010 and eventually slowed to less
than 220 mm/yr in 2014. The recent trend is confirmed by GPS measurements at the same location to be
192 + 3 mm/yr from January 2013 to November 2014. The decrease in uplift rate in January 2013 coincides
with the largest episode of high recorded seismicity (Figure 4). A comparison with episodes of unrest at three
other volcanic systems reveals (1) the high rate of deformation (more than 200 mm/yr), (2) the long timescale
(more than 8 years) of the unrest episode at LdM, and (3) a temporal evolution similar to inflation episodes
at other volcanoes. We can expect the rate of uplift to keep decreasing before changing to subsidence or
pausing prior to the next inflation event [e.g., Tilling, 2008].
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