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Abstract Some estimates of GPS velocity uncertainties are
very low, <0.1 mm/year with 10 years of data. Yet, residual
velocities relative to rigid plate models in nominally stable
plate interiors can be an order of magnitude larger. This dis-
crepancy could be caused by underestimating low-frequency
time-dependent noise in position time series, such as ran-
dom walk. We show that traditional estimators, based on
individual time series, are insensitive to low-amplitude ran-
dom walk, yet such noise significantly increases GPS veloc-
ity uncertainties. Here, we develop a method for determining
representative noise parameters in GPS position time series,
by analyzing an entire network simultaneously, which we
refer to as the network noise estimator (NNE). We analyze
data from the aseismic central-eastern USA, assuming that
residual motions relative to North America, corrected for
glacial isostatic adjustment (GIA), represent noise. The posi-
tion time series are decomposed into signal (plate rotation and
GIA) and noise components. NNE simultaneously processes
multiple stations with a Kalman filter and solves for aver-
age noise components for the network by maximum like-
lihood estimation. Synthetic tests show that NNE correctly
estimates even low-level random walk, thus providing better
estimates of velocity uncertainties than conventional, single
station methods. To test NNE on actual data, we analyze
a heterogeneous 15 station GPS network from the central-
eastern USA, assuming the noise is a sum of random walk,
flicker and white noise. For the horizontal time series, NNE
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finds higher average random walk than the standard individ-
ual station-based method, leading to velocity uncertainties a
factor of 2 higher than traditional methods.
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1 Introduction

GPS station velocities are widely used for studying various
geophysical phenomena (Segall and Davis 1997), including
plate movement (Thatcher 2003), strain accumulation (Ben-
nett et al. 2003; Serpelloni et al. 2005), volcanic deformation
(Puskas et al. 2007; Bonforte and Puglisi 2006), post-glacial
rebound (Lidberg et al. 2007; King et al. 2010), subsidence
(Lü et al. 2008; Psimoulis et al. 2007), and sea-level change
(Wöppelmann et al. 2007; Teferle et al. 2006). Permanent
high-precision GPS networks are becoming more common,
and today it is possible to find time series spanning over 20
years. However, to fully utilize the GPS data it is necessary to
know the uncertainties in the station velocities. For example,
in intraplate regions, such as the New Madrid Seismic Zone in
the central USA, there is controversy as to the significance of
measured GPS velocities (Calais et al. 2006; Calais and Stein
2009; Frankel et al. 2012). More generally, the interpretation
of the data depends crucially on the estimated measurement
noise level. Additionally, signal-to-noise level is crucial in
determining the appropriate level of regularization in geo-
detic inversions (Kusche and Schrama 2005; Pritchard et al.
2002). It is also important to estimate the velocity uncertain-
ties correctly when combining GPS data with independent
geodetic or geologic data (Liu et al. 2000; Papanikolaou et al.
2005; Hill et al. 2010).
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GPS velocity uncertainties are determined by the noise
level in the position data and the length of the time series.
Noise in GPS time series is generally considered to be com-
posed of noise uncorrelated in time (“white”) and noise that is
temporally correlated (Mao et al. 1999). While white noise
affects the uncertainty in velocity, this can be significantly
reduced through repeated measurements. In contrast, time-
dependent noise becomes more influential with increasing
length of the time series and generally dominates the error in
velocity estimates. If not properly accounted for, long period
noise could lead to misleadingly small velocity uncertainties
(Langbein 2012).

Time-dependent noise is commonly characterized by
power-law models, where the spectral amplitude is assumed
to vary as F( f ) ∝ f −n , where f is frequency and n is
the power-law index (Agnew 1992). Time-dependent GPS
noise can be represented as a linear combination of flicker
noise (n = 1) and random walk (n = 2) or with a
non-integer power-law index (e.g., Zhang et al. 1997; Mao
et al. 1999). For the same amplitude, the higher the power-
law index, the more it increases the velocity uncertainty.
Even low levels of random walk can significantly increase
the velocity uncertainty (Williams 2003a). The sources of
time-dependent noise are not completely understood. Some
research has shown that monument instability leads to ran-
dom walk behavior (Wyatt 1989). The origin of flicker noise
is less clear, but time-variable satellite geometry, long-term
orbit mismodeling, and multipath have been suggested as
possible contributors (King and Watson 2010; Ray et al.
2008; Jiang et al. 2014).

Time-dependent noise can be roughly estimated from
a power spectrum of the GPS time series (Langbein and
Johnson 1997; Zhang et al. 1997; Santamaría-Gómez et al.
2011). However, this spectral fitting is not precise. The more
commonly used method is maximum likelihood estimation
(MLE) applied to individual component time series (e.g.,
Langbein 2004, Williams et al. 2004).

In many, but not all, studies a linear trend is estimated and
the residuals about that trend are modeled as a sum of noise
processes. In doing so, the trend is assumed to be true sig-
nal. It is also possible to determine the signal a priori based
on a physical model, and associate the residuals with a sum
of noise processes. In this paper, we refer to MLE estimates
on individual time series with linear trends either estimated
or pre-subtracted as standard MLE (sMLE). In sMLE, each
time series is individually processed by finding noise para-
meters that fit the data with the highest likelihood. Different
groups have estimated either a single non-integer power-law
index or a combination of random-walk and flicker noise.
Langbein (2012) showed that assuming a single power-law
representation, when the underlining model is a combination
of flicker noise and random walk, it can lead to underestima-
tion of velocity uncertainty by a factor of two. Other methods

include least squares variance component estimation (Amiri-
Simkooei et al. 2007) and applying the Allan variance of the
rate to the time series (Hackl et al. 2011).

Most studies suggest that the best representation of time-
dependent GPS noise is flicker noise with no or very little
random walk (Williams et al. 2004; Hackl et al. 2011; Zhang
et al. 1997; Amiri-Simkooei et al. 2007). However, random
walk is difficult to accurately determine with a short time
series or if the variance of flicker noise is large, thus masking
the random walk (Langbein 2012). Hence, it is possible that
random walk is present in the data, but not easily detectable.
This could be a cause for concern since the presence of low-
frequency noise in the data (e.g., random walk) can signifi-
cantly affect velocity uncertainty (Williams 2003a; Langbein
2012). For example, a velocity from 10 years of daily position
data with just white noise with a standard deviation of 1 mm
would have an uncertainty of 0.006 mm/year. With an addi-
tional 4 mm/year0.25 flicker noise, the uncertainty increases
to 0.13 mm/year, and with added random walk with ampli-
tude of 1.5 mm/year0.5 the uncertainty becomes 0.5 mm/year.

There are perhaps two approaches to accounting for noise
in modeling GPS time series. One approach would be to
determine the noise characteristics of each station in a net-
work individually, and then weight the different stations
accordingly (some accounting for spatial correlation between
stations would also be required). This approach is sensible in
that we expect different stations to have variable monument
stability and multipath characteristics. An alternate approach
would be to determine representative noise parameters for
classes of stations, grouped based on monumentation type
or other characteristics. This approach is already used by
many geophysical modeling studies that employ representa-
tive noise parameters gleaned from the literature and is the
approach we take in this study.

Here, we introduce a network noise estimator (NNE)
which processes a network of stations simultaneously, using
a Kalman filter to iteratively compute the likelihood, and
solves for a set of average noise parameters for the network
by maximizing the likelihood. The underlying assumption in
our approach is that tectonic signals must be spatially coher-
ent, whereas at least some noise sources are spatially inco-
herent. From a crustal deformation viewpoint, two stations
with separation smaller than the characteristic lengths of tec-
tonic processes should see similar signals. Any incoherent
motion, such as caused by local processes (e.g., local land-
sliding or subsidence), is considered noise from a tectonic
perspective.

Some GPS noise processes, such as monument instabil-
ity and multipath, are spatially incoherent, whereas others,
such as orbit errors and uncompensated tropospheric delays,
will be spatially correlated. Here, for simplicity in this ini-
tial study, we assume all noise to be spatially incoherent,
although this will be modified in future implementations.
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Because our goal is to characterize average GPS noise
parameters, it is advantageous to focus on areas where the
signal is well understood. Therefore, we analyze data from
stable plate interiors where the signal is dominated by plate
rotation, possibly with effects of glacial isostatic adjustment
(GIA). The key idea behind this approach is that the sig-
nal is assumed to be well characterized, while the noise is
unknown.

NNE has some advantages over sMLE. First, our method
analyzes multiple stations simultaneously, rather than indi-
vidual time series as in sMLE. In doing so we forgo the
ability to estimate noise parameters at every station, in favor
of estimating more robust noise parameters for the ensemble.

We show below that a network estimate is not the same
as the average of individual sMLE estimates. The fact that
NNE estimates a single set of noise parameters for groups of
stations could be viewed as a disadvantage of the approach;
however, we believe that this is compensated by the ability to
obtain more robust estimates of long period noise. Secondly,
with sMLE it is common to remove or estimate best-fitting
trends in the time series. In contrast, we only remove trends
due to known processes, such as plate rotation and GIA. Some
time-dependent noise can produce apparent trends in time
series. If such a trend is removed, it could potentially bias
noise estimation, possibly leading to an underestimation of
velocity uncertainty.

Of course, it is possible to take the same approach with
sMLE and only remove trends due to known processes.
Thirdly, the Kalman filter approach allows one to update esti-
mates with new data without having to reprocess all of the
older data.

Our goal in this paper is to demonstrate a new method that
determines representative levels of noise in the GPS position
time series. We first describe the method and then demon-
strate its capability of working on synthetic and actual GPS
data. We show that the NNE can resolve weak random walk
in the presence of flicker noise that is not revealed by sMLE,
demonstrating the effectiveness of the method.

2 Network noise estimator (NNE) description

We represent the noise as a combination of random walk,
flicker, and white noise. We choose this combination as the
different noise components could represent different physical
noise processes. Additionally, Langbein (2012) showed that
using a sum of power law and white noise may result in a
significant underestimation of low-frequency noise.

We describe the GPS time series as a combination of sig-
nal, which is spatially coherent, and noise. Since we restrict
attention to stable plate interiors, the signal is composed of
plate rotation and possible GIA displacements. The station
coordinate time series is described as

X (t) = X (t0) + (t − t0)(M · � + VGIA) + L(τ 2)

+ FL(ρ2) + ε. (1)

Here, X is station position, t is time, t0 is initial time (i.e.,
the beginning of the time series), M is a matrix of geocentric
station positions that maps the pole of rotation to velocity,
� is the Euler pole, VGIA is the velocity due to GIA, L(τ 2)

is random walk at t (with variance τ 2), FL(ρ2) is flicker
noise at t (with variance ρ2), ε ∼ N (0, R) is observational
white noise, R = σ 2�, where σ is white noise variance,
and � is the normalized data covariance matrix from GPS
processing including off-diagonal terms. In case of uncorre-
lated measurements (e.g., for networks processed with PPP),
� becomes a diagonal matrix.

Note that the plate rotation and GIA signals could be sub-
tracted from the data prior to estimation. For simplicity in the
description of the method, we omit the GIA signal. However
we will keep the plate rotation component to illustrate how
a well-characterized signal can be included in the NNE.

Our algorithm is based on the Kalman filter, in which Eq.
(1) is written in the form of a state-space model. All of the
components in (1), with the exception of flicker noise, are
easily represented in a state-space model. Davis et al. (2005)
showed that flicker noise can be approximated over a finite
bandwidth as a linear combination of independent first-order
Gauss–Markov (FOGM) processes, yielding what we refer
to as finite bandwidth flicker noise (FBFN). Flicker noise has
power spectral density

P( f ) = ρ2

π f 1/2
s

1

f
, (2)

where f is frequency, fs is the sampling frequency, and ρ is
the square root of the variance of the flicker noise with units
mm/year0.25 (e.g., Langbein 2004).

An FOGM process has a spectral density function

P( f ) = β2

f̄
2 + 4π2 f 2

. (3)

The FOGM spectrum is flat at long periods, but decays as
1/ f 2 above the corner frequency f̄. With FBFN the sum of
shifted FOGM processes approximates a f −1 spectrum as
a combination of f 0 and f −2 segments. Davis et al. (2005)
recommend a sum of GM processes such that the periods at
the corner frequencies, 1/f̄ j of successive FOGM processes,
are chosen to increase geometrically with a spacing ratio s, so
that f̄ j+1 = f̄ j/s, and the spectral densitiesβ2

j are chosen such

that β2
j /2f̄ j are equal (Fig. 1). From a practical standpoint,

we only need the FBFN to approximate f −1 for frequencies
where flicker noise influences the total noise spectrum. We
discuss an appropriate choice of corner frequencies of FBFN
later in this article.
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Fig. 1 Representation of flicker noise as a sum of Gauss–Markov com-
ponents. Power spectrum of independent Gauss–Markov components
offset in amplitude and frequency (black dashed lines). Sum of the
Gauss–Markov components (solid blue line). Power spectrum of flicker
noise (1/ f ) (dashed red line). Blue vertical lines mark the corner fre-
quencies of the first and the last Gauss–Markov components

The relationship between the flicker noise variance ρ2 and
spectral density β2 can be derived from Eqs. 2 and 3:

ρ2 =
m∑

j=1

β2
j π f 1/2

s fm(
f̄
2
j + 4π2fm

) , (4)

where m is the number of FOGM components and fm is a
geometrical midpoint between the highest and the lowest
corner frequencies.

Let Zm be the vector of Gauss–Markov process at t . Each
FOGM process is defined by its spectral density β2

j and cor-

ner frequency f̄ j . However, we write Zm as functions of
flicker noise variance ρ2, as our goal is to estimate this para-
meter. Now, dropping the GIA component, Eq. (1) becomes

X (t) = X (t0) + (t − t0)(M · �) + L(τ 2)

+ Z1(ρ2) + Z2(ρ2) + · · · + Zm(ρ2) + ε. (5)

The Kalman filter recursively evaluates the state of a
dynamical system based on the measurements and an under-
lying model. The state at each time step k is represented by
the state vector xk . For the model described above, we write
the state vector as

xk = [�1,�2,�3, L1, L2, . . . , Ln, Z1
1, . . . ,

Zm
1 , . . . , Z1

n, . . . , Zm
n ]T , (6)

where Li is the random walk of the i th time series, Z j
i is the

j th Gauss–Markov component of the i th time series, and n is
the number of time series. Note that each FOGM process is
represented individually as a component of the state vector.

The length of the state vector is 3 + n + nm: three terms
for the rotation pole, a term for random walk for each time
series, and m terms for each time series representing flicker
noise as a sum of FOGM processes.

The observation equation can be written in general form
as:

dk = Hkxk + ε, (7)

where k indexes an epoch or time step, d is the vector of data,
H is a measurement matrix, and ε ∼ N (0, R) is the vector
of observation errors. In our case, the observation equation
implements Eq. (5), where H is a n × (3 + n + nm) matrix
given by

H = [
(t − t0)M, In×n(1+m)

]
, (8)

where I denotes a block matrix of identity matrices (for the
random walk and flicker noise components). Assuming the
measurement errors are equal and uncorrelated between sta-
tion components, the observation noise covariance matrix is
R = σ 2I.

The equation relating state vectors x at times tk, and tk+1

is the state transition equation:

xk+1 = Fk+1xk + ηk+1, (9)

where F is a state transition matrix that maps state at k to
state k + 1, and η ∼ N (0, Qk+1) is a vector of process noise
with covariance matrix Q.

To create the state-space model, we need to construct the
matrices F, H, Q, and R (H and R previously defined). The
state transition matrix F is a block diagonal matrix with each
block corresponding to each part of the state vector, which
in our case includes the pole of rotation, random walk, and
flicker noise. For both the rotation pole and random walk, the
blocks in F are identity matrices. The state transition matrix
can thus be written as

Fk =
⎡

⎣
I3×3 0 0

0 In×n 0
0 0 FFN

k,nm×nm

⎤

⎦ , (10)

where I3×3 and In×n are identity matrices for the pole of
rotation and random walk, respectively, and FFN

k,nm×nm is a
state transition matrix for all Gauss–Markov components for
each station.

The process noise covariance matrix is constructed as fol-
lows:

Qk =
⎡

⎣
03×3 0 0

0 τ 2δtk 0
0 0 QFN

k

⎤

⎦ , (11)

where δtk = (tk − tk−1) is the time step. The first block
03×3 corresponds to the pole of rotation (constant in time)
and the two other blocks correspond to random walk (n × n)
and flicker noise (nm × nm), respectively. Here, we have
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Fig. 2 An example of simulated noise components input and estimated
by the Kalman filter. Light green, cyan, and magenta indicate input ran-
dom walk noise, flicker noise, and white noise, respectively. Dark green,
blue, and black indicate the corresponding Kalman filter estimates of
these noise components. Input noise: 1 mm/year0.5 of random walk, 4
mm/year0.25 of flicker noise, and 1 mm of white noise, fixed to correct
values during filtering. Arbitrary offsets for clarity

taken account of the fact that for random walk Fk = I and
Qk = τ 2δtk (e.g., Segall and Matthews 1997).

Davis et al. (2005) gives the state transition matrix FFN

and process noise covariance matrix QFN to implement the
approximation of flicker noise. (These matrices are found in
the Appendix of this paper.)

The Kalman filter recursively solves Eqs. (7) and (9)
through a series of prediction and update steps. During the
prediction step, state and state covariance are predicted based
on the underlying stochastic model. Then the predicted data
are compared to the actual data and the state is updated
depending on the relative accuracy of the observation and
the prediction. (The Kalman filter equations are found in the
Appendix.)

To illustrate how the Kalman filter distinguishes the dif-
ferent noise components in the data, we generate 20 different
time series each spanning 10 years with daily sampling. Syn-
thetic time series are constructed with random walk noise (1
mm/year0.5), flicker noise (4 mm/year0.25) and white noise
(1 mm). The Kalman filter decomposes the time series into
different constituents. The noise components estimated by
the Kalman filter are reasonably consistent with the input
noise, as shown by an example in Fig. 2.

We seek the maximum likelihood estimate of the noise
parameters (τ, ρ, σ ). NNE recursively computes the likeli-
hood within the Kalman filter for a given set of (τ, ρ, σ ), as
described below. A constrained optimization routine is then
used to find the parameter set that maximizes the likelihood.

Define a vector of unknowns � = [τ 2, ρ2]T. It was shown
(Tremayne and Harvey 1983; Segall and Matthews 1997) that
the likelihood can be expressed as:

L(�/σ 2|d) = −0.5(Nd − Nd log Nd)

− 0.5
N∑

k=1

log |Vk | − 0.5Nd log

[
N∑

k=1

vT
k V−1

k vk

]
, (12)

where Nd is the total number of data, N is the number
of epochs, vk = dk − Hk xk|k−1 is the kth innovation,
Vk = Rk + Hk�k|k−1HT

k is the covariance matrix of the
kth innovation, xk|k−1 is a conditional mean, and �k|k−1 is
the state covariance. The notation i | j denotes the mean or
covariance at epoch i given data through epoch j . The MLE
estimate of σ 2 is

σ̂ 2 =
N∑

k=1

1

Nd
vT

k V−1
k vk . (13)

The optimization routine returns the value �̂/σ 2 that max-
imizes L(�/σ 2|d) in (12), and given σ̂ 2 from (13) we deter-
mine the MLE estimates τ̂ 2, ρ̂2.

While there are certain advantages to employing a Kalman
filter, it should be noted that for every state-space model there
is an equivalent “batch” estimator that treats all time series in
one estimate. Thus, it is possible to estimate a network-wide
MLE estimate without using a Kalman filter.

3 Tests of the method

3.1 Tests of FBFN

FBFN is characterized by four parameters: flicker noise vari-
ance (ρ2), the highest and the lowest corner frequencies
(f̄1 and f̄m), and spacing ratio s. ρ2 is the variance of the
flicker noise we aim to approximate. Our goal is to approx-
imate flicker noise within a certain frequency band. One
reasonable way to choose the corner frequencies is to con-
sider the crossover frequencies between white and flicker
noise for the highest corner frequency and between flicker
noise and random walk for the lowest frequency. However,
Langbein (2012) showed that random walk can contribute to
the velocity uncertainty at frequencies higher than flicker
noise–random walk crossover. Additionally, Fig. 1 shows
that the rollover in an FOGM process is gradual, meaning
that the FBFN close to the first and last corner frequen-
cies will not represent flicker noise properly. For these rea-
sons, we are conservative in choosing the corner frequen-
cies. We set the lowest frequency at a period longer than
the duration of the time series, and the highest corner fre-
quency at half the sampling rate or 0.5/day (the Nyquist fre-
quency).

The spacing ratio determines how many FOGM processes
are used in the FBFN approximation. Increasing the number
of FOGM processes makes the FBFN spectrum closer to true
flicker noise, but results in a heavier computational burden.
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Fig. 3 High-frequency part of the averaged power spectrum of 100
FBFN components with spacing ratio of 8 (red) and 2 (green) and
100 averaged flicker noise components created using covariance matrix
(magenta). The black dashed line indicates the theoretical power spec-
trum of flicker noise

Davis et al. (2005) recommend using a multiple of 2 as the
spacing ratio. Figure 3 shows the high-frequency part of the
power spectrum for FBFN generated with spacing ratios of 8
and 2 as well as the flicker noise generated using the covari-
ance matrix approach (Langbein 2004). Since a spacing ratio
of 2 provides the closest approximation to theoretical flicker
noise, we choose to use this value. Note that at very high fre-
quencies (>0.21/day), all realizations of flicker noise “flat-
ten”. This happens due to aliasing (Kirchner 2005); noise
at frequencies higher than the sampling frequency (1/day)
is aliased into the power spectrum. This effect could bias
estimates of white noise, but it appears to be a small effect
for s = 2 and we save further quantification of this effect
for future investigation. In this work, we take s = 2 and set
the highest corner frequency to be half the sampling rate, or
0.5/day. With 16 FOGM components, this yields an FBFN
model that spans periods of 2 days to much longer than 20
years (e.g., longer than the data series).

To examine how accurately FBFN approximates flicker
noise within the NNE, we test it on synthetic data. We gen-
erate a network of eight time series with 10 years of daily
positions, consisting of random walk, flicker noise and white
noise, and then estimate the noise parameters. We repeat this
100 times for the same noise parameters, but different real-
izations. This is done twice: first, we generate flicker noise as
FBFN, in accordance with our state-space model. Secondly,
we generate flicker noise with the covariance matrix approach
(Langbein 2004). Figure 4 shows histograms of the estimated
parameters for both representations of flicker noise, as well
as the true value of each parameter. The histograms show no
significant difference between the two methods of generat-

Fig. 4 Distributions of estimated noise amplitudes after running NNE
on synthetically generated data (100 trials). The vertical black dashed
lines indicate the true values of the noise parameters. Blue histograms
correspond to flicker noise created using a covariance matrix approach,
and red histograms correspond to flicker noise created as FBFN

ing flicker noise. This supports the use of FBFN in the state
space model.

3.2 Comparison of NNE and sMLE using synthetically
generated data

In this section, we test the performance of both NNE and
sMLE (e.g., Langbein 2004) in estimating noise variances on
synthetic data. We implement sMLE employing a Cholesky
factorization of the covariance matrix for computational effi-
ciency. Maximization of the likelihood is performed by a
built-in MATLAB constrained optimization routine.

We generate seven synthetic networks with 10 years of
data at ten stations (20 horizontal time series). Each time

123



Network-based estimation of time-dependent noise

series is a sum of random walk, flicker noise, and white noise.
Since there is no plate rotation, only spatially uncorrelated
noise, the geometry of the network is not important. To test
the method’s performance at different ratios of random walk
to flicker noise variance, we keep white and flicker noise the
same for all seven networks (σ = 1 mm,ρ = 4 mm/year0.25),
but vary random walk from 0.1 to 1.5 mm/year0.5 for each
test. Synthetic flicker noise is generated using the power-law
covariance matrix.

We show theoretical as well as empirical power spectra of
three of the seven synthetic networks in Fig. 5. When random
walk is the smallest (τ = 0.1 mm/year0.5), it barely con-
tributes to the total noise. Moderate random walk (τ = 0.8
mm/year0.5) dominates the spectra only at very low frequen-
cies. Strong random walk (τ = 1.5 mm/year0.5) dominates
the time series at periods longer than ∼2 years.

The results of NNE and sMLE estimates are shown in Fig.
6. Since sMLE estimates random walk, flicker, and white
noise for every time series, while NNE provides a single set
of average parameters for the whole network, we compare
network estimates with median and quartile sMLE estimates.
Both methods estimate white noise and flicker noise well for
all seven values of random walk variance. However, NNE
outperforms sMLE in estimating the random walk variance.
The lower the random walk, the more does sMLE underes-
timate its value. For example, for a random walk variance
of τ = 0.5 mm/year0.5, sMLE estimates zero random walk
variance in 75 % of the cases, whereas the NNE estimate
is remarkably similar to the true value. Even for larger val-
ues of random walk, sMLE underestimates random walk,
while NNE estimates more accurate values of τ . sMLE esti-
mates become more accurate when random walk increases in
amplitude. We conclude that sMLE may not detect low-level
random walk even when it is present in the data.

We calculate velocity uncertainty from the noise esti-
mates. For all the cases when sMLE underestimated ran-
dom walk, the estimated velocity uncertainty is also under-
estimated (Fig. 6). For example, for random walk τ = 0.5
mm/year0.5, the median sMLE velocity uncertainty is 0.13
mm/year, while the true value is 0.21 mm/year, which is 1.8
times higher. For τ = 1 mm/year0.5 the median sMLE veloc-
ity uncertainty is 0.19 mm/year, while the true value is 0.35
mm/year. Once random walk is large, 1.5 mm/year0.5, the
discrepancy between sMLE estimated velocity uncertainty
and the true value is smaller (0.41 vs 0.5 mm/year, only 1.2
times higher). Note that NNE estimates are much closer to
the true value for all values of τ .

3.3 Anomalous random walk motion

NNE estimates a single random walk variance for the whole
network of stations. Here, we explore the possibility that a
single station with anomalously high random walk biases
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Fig. 5 Theoretical power spectral densities for different noise compo-
nents (dashed lines) and empirical power spectrum densities (average
of 20 spectra) for the data synthesized using the same parameters (solid
lines). Amplitudes of flicker and white noise are held constant, while
random walk is allowed to vary. Here, small random walk is τ = 0.1
mm/year0.5, moderate random walk is τ = 0.8 mm/year0.5, and large
random walk is τ = 1.5 mm/year1.5

the network estimate, using synthetic data. Specifically, we
create a network where one station has random walk of
3 mm/year0.5 and nine stations have random walk of 0.3
mm/year0.5. NNE estimates random walk at 1.22 mm/year0.5

for this network, between the high and low values. As
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Fig. 6 Estimates of noise
components from NNE and
sMLE compared to true values
(synthetic data). Box plots show
the distribution of sMLE noise
estimates for 20 time series for
each set of noise parameters.
Red central mark with a black
circle indicates the median, box
edges mark the 25th and 75th
percentiles, and whiskers
include the most extreme data,
but exclude outliers shown by
red stars. The average sMLE
estimate is shown with a red
circle. Green diamonds show
NNE estimates of the
parameters. Blue dashed lines
indicate true values

0.1 0.3 0.5 0.8 1 1.2 1.5

0

0.5

1

1.5

2

true random walk, mm/yr0.5

ra
n

d
o

m
 w

al
k 

es
ti

m
at

ed
, m

m
/y

r0.
5

0.1 0.3 0.5 0.8 1 1.2 1.5

3.6

3.8

4

4.2

4.4

4.6

true random walk, mm/yr0.5

fl
ic

ke
r 

n
o

is
e 

es
ti

m
at

ed
, m

m
/y

r0.
25

0.1 0.3 0.5 0.8 1 1.2 1.5

0.9

0.95

1

1.05

true random walk, mm/yr0.5

w
h

it
e 

n
o

is
e 

es
ti

m
at

ed
, m

m

0.1 0.3 0.5 0.8 1 1.2 1.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

true random walk, mm/yr0.5ve
lo

ci
ty

 u
n

ce
rt

ai
n

ty
 e

st
im

at
ed

, m
m

/y
r

0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

8

10

12

14

years

ra
nd

om
 w

al
k 

dr
ift

 (
m

m
)

Fig. 7 Kalman filter output of random walk components for synthetic
time series. 18 times series have random walk with τ = 0.3 mm/year0.5

(red), while 2 time series have random with τ = 3.0 mm/year0.5 (black).
The anomalous time series are easily identified

expected with least-squares based estimators, the anom-
alously high value pulls the network estimate up.

We should be able to mitigate against this effect to some
degree by examining the estimated random walk time series

for the various stations. The NNE provides not only max-
imum likelihood estimates of the noise parameters, but
also estimates of the different noise components for each
station. Figure 7 illustrates the random walk components
for each time series when the Kalman filter is run with
the MLE estimates of the noise parameters. The east and
north components of the anomalous station are clearly iden-
tifiable in this plot. The implication is that if the net-
work estimate is contaminated by a few outlier stations,
it should be easy to identify and remove the offending
data.

4 Application to data from central and eastern USA

In this section, we apply the NNE to GPS time series from
the central and eastern USA. The network is small (15 sta-
tions) and heterogeneous in terms of station quality. Thus,
the derived network noise estimates are not representative
of high-quality geodetic stations. Future work will incorpo-
rate more stations and subdivide them in terms of monument
and other characteristics. However, application of the NNE
to actual data and, in particular, comparison with standard
MLE approaches is informative.
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Fig. 8 East, north and up components of daily GPS position time series used in this paper. Station names are on the left. Arbitrary offsets for
clarity. Note that the y-axis scale is different for horizontal and vertical components

4.1 Data

All the GPS data used in the study were processed with
release 6.1 of the GIPSY software from the Jet Propul-
sion Laboratory. Non-fiducial daily GPS station coordi-
nates were estimated using a precise point-positioning
strategy (Zumberge et al. 1997). Constraints on the daily
GPS solutions include a priori tropospheric hydrostatic
and wet delays from Vienna Mapping Function (VMF1)
parameters (http://ggosatm.hg.tuwien.ac.at), elevation- and
azimuthally-dependent GPS and satellite antenna phase cen-
ter corrections from IGS08 ANTEX files (available via
ftp from ftp://sideshow.jpl.nasa.gov), and the FES2004 cor-
rections for ocean tidal loading, which are in a Earth
center-of-mass frame of reference (http://holt.oso.chalmers.
se). GIPSY’s single-station ambiguity resolution feature was
used to resolve phase ambiguities (Bertiger et al. 2010). All
daily station locations are expressed in IGS08, which con-
forms with ITRF2008 (Altamimi et al. 2011). The day-to-day
scatter of the 3D continuous site locations with respect to sta-
tion locations averaged over 30-day-long windows for each
site averaged 2 mm (1σ ) in the horizontal components and 4–
6 mm in the vertical components prior to any correction for
common-mode errors. The day-to-day scatter was reduced
to 1 and 3 mm in the horizontal and vertical components,

respectively, after correcting station coordinates for spatially
coherent, common-mode noise following Márquez-Azúa and
DeMets (2003).

The positions are rotated into the North American ref-
erence frame from ITRF2008. The Euler pole used for the
transformation is located at 7.6 S, 88.3 W, with a rotation
rate of 0.184◦/Ma (Merkouriev and DeMets 2014). We chose
15 stations with the longest time series (spanning between
10 and 20 years; the average length is 14 years) and few
data gaps. Outliers greater than 6 mm were removed using a
median filter with a window of 20 days. Seasonal signals were
removed with a notch filter with central period/bandwidth
of 1/0.25 years, which removes the annual as well as the
draconic period. It would be straightforward to add annual
and semi-annual terms to the state-space model, however the
notch filter does a better job of removing non-harmonic sea-
sonal signals. We do not estimate a rotation pole, as rigid
plate motion is already subtracted from the data. (This is
equivalent to tightly constraining the pole in Eq. 1.)

We interpolate the predicted displacement due to GIA
from the Stable North American Reference Frame (SNARF)
model (Blewitt et al. 2005; Hill et al. 2010) onto the station
locations using 2D cubic spline interpolation (Fig. 9), and
then subtract it from the time series. The time series after
the corrections described above are plotted in Fig. 8. We first
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Fig. 9 GPS stations used in the
preliminary estimation with
velocities (prior to removal of
common-mode errors) in fixed
North American reference frame
(black vectors). The top panel
shows horizontal velocities, and
the bottom panel shows vertical.
The interpolated GIA velocities
(from SNARF model) are in red,
and the error ellipses (95 %
confidence) for velocities
calculated from the estimated
noise parameters (for 15 years
of data) are shown in green
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analyze the cleaned time series as described above and next
analyze those with common-mode errors removed following
the approach of Márquez-Azúa and DeMets (2003).

The stations have various monument types, purposes, and
quality. Six of the sites are maintained by state transporta-
tion departments (VCAP, WIL1, PSU1, DNRC, HIPT and
STKR), six are maintained by NOAA/ESRL (WLCI, BLKV,
WDLM, DQUA, BARN and PATT), two by NGS (GAIT and
USNO), and one by NASA (GODE). The most common type
of the monumentation is a steel mast on the top of a build-

ing (VCAP, WIL1, GAIT, PSU1, DNRC, HIPT and STKR),
four stations are located on an antenna on the corner of a
chain link fence (WLCI, WDLM, DQUA and PATT), two
stations are monumented on concrete pillars with concrete
bases (GODE and BLKV), one station is installed on a steel
mast in concrete base (BARN) and one antenna is installed
on a rod in a mortar rooftop parapet (USNO). Examples are
shown in Fig. 12.

First, we analyzed the horizontal time series. We ran NNE
on the north and east components simultaneously. With NNE,
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Fig. 10 Power spectrum of the individual times series is shown in
gray, median power spectrum in blue, and average power spectrum in
green. NNE estimated noise components and their sum are shown with
dashed lines. The top panel shows the horizontal spectrum, and the
bottom panel shows the vertical

we found random walk τ = 0.82 mm/year0.5, flicker noise
ρ = 3.96 mm/year0.25, and white noise σ = 1.05 mm. The
theoretical spectrum agrees well with the averaged spectrum
for ten stations (20 components) as shown in Fig. 10. Note
that the flicker noise fits the spectrum reasonably well at
periods from approximately 10–1000 days. NNE and sMLE
results are compared in Fig. 11. The NNE results for white
and flicker noise are generally in agreement with the median
of the sMLE results; however, our estimate for random walk
is substantially higher. The median of the sMLE random walk
estimates is zero, while the mean is 0.29 mm/year0.5. Using
the NNE estimates, the predicted velocity uncertainty is 0.29
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Fig. 11 NNE and sMLE noise estimates of horizontal (top) and ver-
tical (bottom) time series. Yellow histograms show the distribution of
noise parameters as estimated by sMLE. The mean sMLE noise para-
meter estimate is shown with a red dashed line and median with a blue
dashed line. NNE estimates are shown with black solid lines

mm/year with 10 years of data and 0.23 mm/year for 15 years
of data. For the median sMLE estimates the predicted veloc-
ity uncertainties are two to three times lower: 0.12 mm/year
for 10 years of data and 0.08 mm/year for 15 years.

We also analyzed the vertical time series. NNE finds no
random walk, flicker noise ρ = 7.92 mm/year0.25, and white
noise σ = 2.34 mm. These estimates lead to predicted veloc-
ity uncertainties of 0.45 mm/year with 10 years of data. sMLE
estimates are in good agreement with NNE for the vertical
data.
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4.2 Common-mode errors

There is considerable evidence that flicker and white noise
are spatially correlated (Amiri-Simkooei 2009). Removing
common-mode error decreases flicker noise in time series
(Williams et al. 2004; Langbein 2012). We run NNE on the
data, but with common mode removed based on the approach
of Márquez-Azúa and DeMets (2003). The most significant
change in the estimated parameters is in the flicker noise. For
the horizontal time series, the flicker noise decreased from
3.96 to 2.55 mm/year0.25 after the removal of common-mode
errors. The vertical flicker noise decreased from 14.15 to 7.91
mm/year0.25 after common-mode error removal. The white
noise did not change significantly and the random walk esti-
mate was slightly higher for the common-mode corrected
data in the horizontal (0.95 vs 0.82 mm/year0.5 originally)
and significantly higher for the common-mode corrected ver-
tical (2.21 vs 0 mm/year0.5).

This indicates that the random walk and flicker noise esti-
mates are negatively correlated, as expected.

5 Observations and discussion

Current estimates of flicker noise in GPS data differ substan-
tially from study to study. Among the studies that used at least
7 years of data, the results vary from 2.6 to 7.5 mm/year0.25

(Baldi et al. 2009; Santamaría-Gómez et al. 2012). The NNE
estimate of flicker noise of 4 mm/year0.25 for the data before
removal of common-mode errors is well within that range.
The common-mode corrected estimate of flicker noise, 2.55
mm/year0.25, is on the lower side of the commonly cited
results.

Contrary to some previous studies (e.g., Williams et al.
2004; Santamaría-Gómez et al. 2011; Amiri-Simkooei 2013;
King and Williams 2009), we find non-negligible random
walk. This could have several explanations. First, as shown
in the synthetic tests above, our method of combining all
the stations together for MLE is more sensitive to low val-
ues of random walk in the presence of flicker noise. Second,
we analyzed much longer time series than previous studies,
which makes it easier to detect random walk. Third, we ana-
lyzed data taken from antennas mounted on variable quality
monuments (Fig. 12), so it is possible that a few stations
with higher levels of random walk bias the estimate toward
a higher value, since we estimate a single random walk vari-
ance for the whole network of stations.

NNE finds white and flicker noise in vertical time series
significantly higher than in the horizontal, consistent with
previously published results (Williams et al. 2004). How-
ever, NNE does not find any random walk in the vertical
time series prior to removing common-mode errors. After
removing the common-mode error, the random walk vari-

Fig. 12 Examples of station monuments (http://geodesy.noaa.gov/
CORS/, http://www.profiler.noaa.gov/npn/). PATT is located on the cor-
ner of a chain link fence. DNRC and PSU1 are installed on metal masts
on top of buildings. BARN’s antenna is located on a metal mast in a
concrete base. GODE is installed on a concrete pillar drilled into the
ground

ance actually increases, which is likely due to trade-off with
flicker noise, which decreased with removal of common-
mode errors.

The estimated noise parameters, including that for flicker
noise, differ depending on whether common-mode signals
are removed or not. This is consistent with previous find-
ings indicating that GPS noise is spatially correlated (Amiri-
Simkooei 2009; Williams et al. 2004). In future implementa-
tions of the NNE, we could directly include spatial correla-
tions in the state-space model, through the process of noise
covariance.

In this study, we subtracted the predicted velocities due
to plate rotation and GIA, without accounting for the uncer-
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Fig. 13 Distribution of residual velocities is shown in the histogram.
The red curve is the normal density function fitted to the histogram.
The green curve is a normal distribution with zero mean and standard
deviation equal to the velocity uncertainty of 0.23 mm/year for 15 years
of data as estimated by the NNE

tainties in those values. As discussed in the method section,
it is straightforward to include these processes directly in the
state-space model. One might reasonably expect that uncer-
tainties in plate rotation and GIA would influence the esti-
mated noise parameters.

One could, for example, test an ensemble of GIA predic-
tions and weight the resulting estimates by their respective
likelihoods. However, we empirically observe the noise esti-
mates are the same, whether or not the GIA velocities are
removed from the time series. That is, a null GIA prediction
does not change the results. More generally, we observe that
subtracting (or adding) linear trends in the order of mm/year
or less to the data does not affect the estimated noise parame-
ters for daily sampled data. This is consistent with experience
with sMLE where removing modest trends does not alter the
noise estimates.

The main advantage of the NNE comes from maximiz-
ing the likelihood of the fit to the full network. As we have
seen from the simulations, the mean of the individual time
series maximum likelihood estimates is not equivalent to the
network maximum likelihood estimate. While it is possible
to compute the likelihood for a network without the Kalman
filter, the Kalman filter-based network approach offers other
advantages in that inclusion of spatial correlation should be
straightforward and more general seasonal models can be
implemented (Murray and Segall 2005). There is not a sig-
nificant difference in computation time between NNE and a
well-designed sMLE algorithm that factors the data covari-
ance matrix; both are substantially faster than inverting the
covariance directly.

Even with larger random walk than commonly reported,
we find that the predicted velocity uncertainty is system-

atically smaller than the residual velocities with respect to
North America (Fig. 13). According to our assumptions,
after removing GIA and plate motion signals from the data,
the residual time series should be composed solely of noise.
With velocity uncertainty estimated at 0.23 mm/year for 15
years of data, we expect 95 % of the residual velocities to
be less than 0.56 mm/year. However, we see in Fig. 13 that
the distribution of residual velocities is wider than predicted
from the theoretical velocity uncertainty. This suggests that
the noise model is not capturing the true uncertainty in the
data.

As discussed regarding GIA signals, modest, unmodeled
trends barely influence the estimated random walk variance.
Therefore, trends due to local processes may not be captured
by the formal velocity uncertainty.

Other possible sources of error are undetected offsets.
Williams (2003b) showed that the presence of such offsets
can produce an error very similar to random walk. While
the larger antenna offsets were removed from the data, it has
been shown that there is no foolproof method for removing
small offsets (Gazeaux et al. 2013), and these could certainly
bias station velocities.

In this study, we estimated a single set of noise parame-
ters characterizing a network of mixed quality sites (Fig.
12). However, we suspect that stations with poor monu-
ments have larger random walk displacements than well-
monumented stations, as a monument wobble is known to
follow a random walk process (Wyatt 1989; Johnson and
Agnew 1995). The relationship between random walk and
monument types and materials has been explored previously
(Williams et al. 2004; Langbein 2008; King and Williams
2009). In the future, we plan to subdivide stations into
groups based on their monument and soil type, and esti-
mate separate noise parameters for each group of stations.
This will help us understand noise and velocity uncertainty
for different types of monuments in different surface condi-
tions.

6 Conclusions

We have introduced a NNE, which allows one to esti-
mate random walk, flicker noise, and white noise vari-
ances for networks of continuous GPS stations. The NNE
approach includes linear trends due to plate rotation, GIA,
and potentially other well-characterized processes. Although
not explicitly considered here, it is possible to include other
noise types, as long as the the noise can be represented in a
state-space model.

Based on synthetic tests, NNE provides accurate estimates
of random walk variance, even with weak random walk. We
therefore view NNE as a significant improvement over stan-
dard MLE approaches, in determining representative values
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of noise parameters. While network estimates are intrinsi-
cally averages, we suggest that NNE is beneficial in accu-
rately estimating random walk for groups of stations with
with similar monument quality and soil type.

Preliminary NNE results with a small, very heteroge-
neous network of horizontal GPS time series from the central
and eastern USA show larger random walk than estimated
by standard MLE. Since even low values of random walk
can greatly affect velocity uncertainty, previous estimates of
velocity uncertainty may be optimistic. For example with
10 years of data, standard estimates yield 1σ uncertainties
of 0.12 mm/year, whereas the network estimates are 0.29
mm/year, 2.4 times higher than traditional estimates.

We suggest that NNE can be used to develop representa-
tive error models for continuous GPS sites. This will lead to
improved uncertainties in derived station velocities.

Appendix

Design matrices for first-order Gauss–Markov process

Here, we provide the state-space matrices for FBFN (Davis
et al. 2005). The state transition matrix for the Gauss–Markov
processes representing flicker noise is defined by:

FFN
k =

⎛

⎜⎝
exp(− f̄1δt) . . . 0

...
. . .

...

0 . . . exp(− f̄mδt)

⎞

⎟⎠ , (14)

where m is the number of FOGM processes, 1/ f̄m are time
constants of the FOGM processes that are chosen to increase
geometrically, and the spectral densities βm are chosen such
that all β2

m/2 f̄m are equal. The covariance matrix is

QFN
k =

⎛

⎜⎜⎜⎝

1−exp(− f̄1δt)β1

2 f̄1
. . . 0

...
. . .

...

0 . . .
1−exp(− f̄mδt)βm

2 f̄m

⎞

⎟⎟⎟⎠ . (15)

Kalman filter formulation

Here, we provide the main Kalman filter equations (Welch
and Bishop 1995). The recursive linear Kalman filter esti-
mates the state vector xk at each state tk . The conditional
mean x̂k| j and covariance matrix �k| j at epoch k given data
through epoch j are

x̂k| j = E
[
xk | d1, . . . , d j

]
, (16)

�k| j = Cov
[
xk | d1, . . . , d j

]
. (17)

The left side of (16) is read “x̂ at k given j”.
The conditional means and covariances satisfy the one-

step-ahead prediction equations,

x̂k+1|k = Fk+1 x̂k|k (18)

�k+1|k = Fk+1 �k|k FT
k+1 + Qk+1, (19)

and the update equations

x̂k|k = x̂k|k−1 + Gkνk (20)

�k|k = �k|k−1 − Gk Hk �k|k−1, (21)

where νk is the innovation. The innovation, or the prediction
residual, is the difference between the observed data at time
tk and the predicted data. The predicted data are calculated
using the state vector given data up to time tk−1

νk ≡ dk − Hk x̂k|k−1, (22)

and the Kalman gain Gk is given by

Gk ≡ �k|k−1 H T
k

(
Rk + Hk �k|k−1 H T

k

)−1
. (23)

The Kalman filter starts with a prior estimate x̂1|0 and
covariance �1|0. The prior may be precise, reflecting a pri-
ori information from previous studies, or may have a large
uncertainty. The first observation d1 is used to update the
state (20) and (21), which leads to the posterior mean x̂1|1
and associated covariance �1|1. Following this, x̂2|1 and its
covariance are estimated using the prediction Eqs. (18) and
(19), and so on.
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