Supplemental text, figures, and tables

"High-resolution reconstructions of South America plate motion relative to Africa, Antarctica, and North America: 34 Ma to present"

by C. DeMets & S. Merkouriev

Overview

The supplementary materials include this document, which has eight figures and five tables that are referenced in the main document, a second document with nine large-scale maps, and a third document with eight tables of rotations in text format, four that reproduce Tables 1 through 4 from the main document and four that reproduce Supplemental Tables 2 through 5 below. All of the supplemental materials are referenced in the main document.

List of supplementary contents

- 1. Supplemental Figures 1 to 8: These figures show the fits to all 43 fracture zones that were used to estimate the Nubia-South America rotations in this study. Figures 1-3 show the fits in a manner that facilitates more detailed examinations of the fracture zone misfits. Figures 4 to 8 overlay our digitized and predicted fracture zone flow lines on the GeoMapApp bathmetry from which the flow lines were digitized.
- 2. *Supplemental Table 1*: Summarizes the data inverted to estimate Nubia-South America rotations for all 37 reversals identified in this study and other information pertinent to the reversals and data inversions.
- 3. *Supplemental Table 2*: Nubia-South America finite rotations that best fit the data listed in Supplemental Table 1. Each rotation is the mean of 1000 rotation sequences that best fit bootstrapped realizations of the data, as described in the main document.
- 4. *Supplemental Table 3*: This table lists angular velocities that we derived via a REDBACK analysis of the best-fitting Nubia-South America finite rotations in Supplemental Table 2 for a stationary South America plate. The angular velocities are appropriate for calculations of stage velocities in a frame of reference that is tied to the South America plate (such as the stage velocities that are shown in Figure 15a of the main document). The Nubia-South America noise-reduced angular velocities given in Table 2 of the main document are appropriate for velocity calculations in a Nubia plate frame of reference.
- 5. *Supplemental Table 4*: North America-South America angular velocities determined from the North America-South America finite rotations in Table 3 of the main document and using reversal ages from Supplemental Table 1.
- 6. *Supplemental Table 5*: Antarctic-South America angular velocities determined from Antarctic-South America finite rotations labeled "noise-reduced" in Table 4 of the main document and using reversal ages from Supplemental Table 1. The footnotes to Table 4 in the main document provide the necessary information about the derivation of the closure-derived Antarctic-South America finite rotations.

- 7. *Text file with rotations*: This text file contains all of the finite rotations and angular velocities used for the analysis. It is included for reader convenience.
- 8. Supplemental Maps 1 to 9: Due to the large geographic area that is spanned by our study and the abundance of data in many areas, we constructed large-scale maps that subdivide the study area into five regions. Each map displays all the original, along-track magnetic anomaly data within its boundaries overlaid on seafloor bathymetry. The maps also display our magnetic reversal identifications in their original locations as large solid or bold-outlined colored symbols. The small colored symbols filled with aquamarine show each reversal crossing after rotating it from its original location onto the opposite plate with the best-fitting rotations in Supplemental Table 2.

Each map includes short-hand labels to help identify the ship and airplane tracks. Tracks with labels that begin with "abgt" and "Zarja" are Russian data not previously available for these studies (see Section 2.1 in the main document).

The small white circles show the digitized fracture zone flow lines described in the main document. Synthetic flow lines constructed with our best-fitting rotations are shown by the small colored circles near the digitized fracture zones. The color-coding scheme used for the synthetic flow lines is the same as for the reversals in the figure.

For the northernmost region, where the data are relatively sparse, we created only one map (Map 1). For the sub-regions south of the equator, we created two maps per region, one with our identifications of 18 of the 37 reversals and the other with our identifications of the other 19 reversals. Each map includes a legend that identifies the reversals identified on each map and their associated color. None of the maps are captioned.

Because the native size of all nine maps is 33 by 47 inches, they are well suited for examination at high magnification or printing in large format.

Magnetic	Age	Number of data			WRMS misfits in km			
reversal	Ma	Anom	FZ	TF	Anom	FZ	TF	
1no	0.781	460	637	2480	1.09	0.41	0.69	
2ny	1.778	458	751	_	1.74	0.74	_	
2An.1y	2.581	475	600	_	2.01	1.12	_	
2An.3o	3.596	438	706	_	2.32	1.36	_	
3n.1y	4.187	363	453	_	2.28	1.46	_	
3n.40	5.235	342	770	_	2.19	1.61	_	
3An.1y	6.033	286	559	_	2.27	1.96	_	
3An.2o	6.733	268	567	_	2.52	2.04	_	
4n.1y	7.528	260	673	_	2.32	2.04	_	
4n.2o	8.108	233	449	_	2.76	2.03	_	
4Ao	9.105	220	797	_	2.93	2.06	_	
5n.1y	9.786	224	544	_	2.85	2.04	_	
5n.2o	11.056	219	1074	_	2.72	2.27	_	
5An.2o	12.474	197	1303	_	2.60	2.60	_	
5ACy	13.739	195	1238	_	2.95	3.06	_	
5ADo	14.609	208	844	_	2.72	3.15	_	
5Cn.1y	15.974	186	1150	_	2.79	3.62	_	
5Dy	17.235	149	1027	_	2.89	3.46	_	
5Ey	18.056	153	747	_	2.84	3.24	_	
6ny	18.748	117	683	_	3.74	3.28	_	
6no	19.722	124	860	_	3.09	3.47	_	
6An.2o	20.709	92	955	_	3.09	3.31	_	
6Bn.1y	21.767	85	957	_	3.88	3.51	_	
7n.1y	23.962	78	1784	_	3.38	3.93	_	
7n.2o	24.474	76	283	_	3.47	4.42	_	
8n.1y	25.099	87	590	_	3.72	4.18	_	
8n.2o	25.987	79	500	_	3.56	4.20	_	
9ny	26.420	83	478	_	3.97	4.53	_	
9no	27.439	76	554	_	3.38	4.34	_	
10n.1y	27.859	82	338	_	2.34	5.15	_	
10n.20	28.278	79	291	_	3.09	5.40	_	
11n.1y	29.183	88	585	_	4.20	5.69	_	
11n.20	29.970	85	430	_	4.07	5.49	_	
12ny	30.591	80	351	_	2.69	5.52	_	
12no	31.034	85	269	_	3.74	5.07	_	
13ny	33.157	110	1373	_	2.98	4.87	_	
13no	33.705	112	240	_	3.38	5.19	_	

Supplemental Table 1. Data and inversion fitting summary

The letters "o" and "y" that are appended to the magnetic reversal identifiers respectively indicate the old or young edge of the magnetic reversal. Reversal ages are from the GTS12 time scale (Hilgen et al. 2012; Ogg 2012). Anom, FZ, and TF respectively indicate the number of magnetic reversal, fracture zone, and transform fault crossings used to estimate the finite rotations listed in

subsequent. Ages estimated for the fracture zone crossings are approximated from their distances along their respective flow lines, although in the inversion, every fracture zone crossing contributes information to the finite rotation estimates for each chron. WRMS is the weighted root-mean-square misfit in km of the best-fitting rotation adjusted for the number of parameters that were estimated in order to fit the given data subset.

Chron	DOF	Lat.	Long.	Ω	Covariances from bootstrap procedure					
		(°N)	(°E)	(degrees)	а	b	с	d	e	f
1n	3574	60.09	321.45	-0.219	4.9	-1.4	1.1	4.0	0.1	6.9
2n	1206	61.11	321.44	-0.513	66.9	11.8	-1.2	49.2	3.6	34.1
2An.1	1072	62.55	317.74	-0.757	887.3	202.4	-238.9	100.0	-47.8	108.8
2An.3	1141	63.13	320.23	-1.038	161.6	24.1	-50.9	87.0	19.8	73.5
3n.1	813	62.62	319.37	-1.223	167.3	8.8	-40.3	65.1	4.9	45.0
3n.4	996	61.22	320.28	-1.549	168.8	40.1	-23.9	105.9	-5.5	41.8
3An.1	774	61.89	320.53	-1.776	260.1	26.2	-46.2	239.2	38.1	74.4
3An.2	752	61.51	319.62	-2.007	301.4	65.1	-46.4	104.3	-3.6	77.7
4n.1	854	59.99	321.10	-2.303	210.1	57.3	-16.0	76.4	4.1	48.4
4n.2	619	61.29	320.11	-2.498	447.5	35.2	-47.2	108.3	-15.5	114.7
4A	950	61.33	320.03	-2.868	425.9	26.4	-34.0	105.4	-16.7	202.2
5n.1	705	61.32	319.72	-3.120	342.8	43.2	-47.5	98.3	-2.5	106.3
5n.2	1234	61.08	320.54	-3.617	774.4	135.2	-95.1	148.8	5.8	132.3
5An.2	1447	61.80	319.55	-4.193	1039.5	152.5	-178.9	166.1	18.4	122.1
5AC	1394	61.82	319.73	-4.750	881.0	-18.4	-33.7	310.0	28.5	99.1
5AD	1011	59.84	321.39	-5.163	505.5	72.9	-10.2	393.0	51.2	54.4
5Cn.1	1291	60.95	320.71	-5.729	508.9	120.5	-31.3	324.7	-1.4	91.0
5D	1127	59.98	321.61	-6.278	344.2	36.0	-48.9	215.3	3.7	175.4
5E	853	60.24	321.67	-6.661	517.7	-66.6	-15.0	195.0	-22.1	170.4
6ny	753	60.49	321.59	-7.023	660.8	-69.5	-81.8	194.5	-42.2	285.7
6no	929	60.61	321.57	-7.467	530.1	15.7	-76.1	171.8	-15.8	113.9
6An.2	1047	60.41	321.76	-7.972	670.0	-32.5	-83.9	222.6	-16.3	233.7
6Bn.1	1042	60.01	322.34	-8.479	1354.1	378.0	-287.2	734.3	-43.4	448.9
7n.1	1862	58.52	323.54	-9.464	1045.9	411.7	-200.3	971.7	85.8	427.4
7n.2	359	58.92	323.21	-9.620	653.0	293.0	-50.9	768.5	32.8	291.9
8n.1	677	58.44	323.63	-9.962	960.7	43.8	11.6	836.4	-50.4	525.7
8n.2	579	57.91	324.07	-10.252	685.1	-11.3	142.7	448.6	-62.0	320.2
9ny	561	58.20	324.01	-10.534	861.3	-21.1	11.9	597.0	-46.9	330.9
9no	630	57.24	324.68	-10.868	496.1	86.8	-40.3	432.1	-6.7	321.0
10n.1	420	57.32	324.58	-11.082	537.2	-113.0	20.4	321.0	-20.2	124.6
10n.2	370	57.17	324.83	-11.277	1018.7	-137.5	-37.8	383.3	-43.5	323.9
11n.1	673	57.55	324.84	-11.639	1395.7	-135.5	-25.5	757.7	-74.1	413.7
11n.2	515	57.07	325.18	-11.939	1094.5	-216.2	155.8	552.3	-58.1	362.5
12ny	431	57.23	325.15	-12.161	545.6	-84.4	29.9	406.6	-13.9	175.2
12no	354	57.07	325.35	-12.353	664.7	-128.3	59.5	467.1	-32.5	243.4
13ny	1483	56.85	325.78	-13.373	673.5	15.8	-26.5	808.3	80.2	150.2
13no	352	56.78	325.69	-13.580	1261.4	77.9	-177.4	583.7	-32.0	259.5

Supplemental Table 2. Nubia-South America best-fitting finite rotations

These finite rotations reconstruct movement of the Nubia plate relative to the South America plate and include a 2-km correction for outward displacement. The rotation angles Ω are positive CCW. Each rotation is the mean of 1000 bootstrap solutions (see text). DOF, the degrees of freedom, equals the total number of magnetic reversal, transform fault, and fracture zone flow-line crossings

used to estimate the rotation for a given time reduced by the number of estimated parameters. The weighted RMS misfits for these rotations are given in Supplemental Table 1. The bootstrap-derived Cartesian rotation covariances, which specify the 2-D position uncertainty when rotating points from the Nubia onto the South America plate or vice versa, and have units of 10^{-10} radians². See footnotes to Table 1 in the main document for information on how to build the rotation covariance matrix from the elements in the table.

Age(y)	Age(o)	Lat.	Long.	ŵ	Covariances					
(Ma)	(Ma)	(°N)	(°E)	° Myr ⁻¹	а	b	c	d	e	f
0.000	0.781	60.35	321.26	0.284	7.23	-5.78	16.04	4.64	-12.87	36.29
0.781	1.778	60.79	320.79	0.287	1.61	-1.16	2.86	0.96	-2.35	6.92
1.778	2.581	61.15	320.37	0.292	1.37	-0.79	1.54	0.71	-1.37	4.37
2.581	3.596	61.35	320.11	0.300	1.27	-0.68	1.19	0.62	-1.10	3.67
3.596	4.187	61.41	320.02	0.306	1.39	-0.77	1.38	0.74	-1.26	4.20
4.187	5.235	61.42	319.99	0.309	1.35	-0.78	1.53	0.71	-1.38	4.42
5.235	6.033	61.43	319.97	0.311	1.73	-1.00	2.02	0.89	-1.84	5.80
6.033	6.733	61.40	320.01	0.331	2.33	-1.38	2.86	1.21	-2.59	8.14
6.733	7.528	61.36	320.07	0.355	2.52	-1.33	2.27	1.16	-2.18	7.24
7.528	8.108	61.35	320.11	0.359	2.79	-1.33	1.99	1.17	-2.04	7.00
8.108	9.105	61.28	320.24	0.361	2.92	-1.26	1.64	1.09	-1.83	6.48
9.105	9.786	61.13	320.46	0.367	4.08	-1.90	2.93	1.65	-3.07	10.37
9.786	11.056	60.88	320.81	0.387	4.88	-2.42	4.30	2.07	-4.28	13.87
11.056	12.474	60.36	321.45	0.423	3.96	-1.74	2.35	1.54	-2.57	9.07
12.474	13.739	59.62	322.28	0.436	3.53	-1.54	0.97	1.41	-1.34	6.21
13.739	14.609	59.04	322.89	0.438	9.02	-3.18	-2.03	2.27	-0.29	7.84
14.609	15.974	58.94	323.17	0.438	4.01	-1.86	0.52	1.54	-1.02	6.19
15.974	17.235	58.53	323.64	0.446	4.36	-2.00	0.76	1.63	-1.25	6.81
17.235	18.056	58.29	323.93	0.463	6.27	-3.00	1.78	2.40	-2.29	11.05
18.056	18.748	58.07	324.18	0.474	7.93	-3.71	1.34	2.97	-2.27	12.77
18.748	19.722	57.59	324.59	0.479	9.09	-4.17	1.28	3.41	-2.34	13.85
19.722	20.709	56.56	325.28	0.481	10.89	-5.03	1.95	4.20	-2.98	16.89
20.709	21.767	54.86	326.26	0.477	12.35	-5.54	-0.46	4.57	-1.36	15.05
21.767	23.962	51.82	327.91	0.446	10.66	-4.73	-3.11	3.49	0.72	9.34
23.962	24.474	50.09	328.94	0.430	20.23	-8.32	-8.81	5.72	3.13	13.28
24.474	25.099	49.71	329.23	0.429	19.95	-7.82	-9.98	5.22	3.77	11.50
25.099	25.987	49.42	329.58	0.427	16.89	-6.27	-9.15	4.36	3.54	9.14
25.987	26.420	49.41	329.80	0.426	19.31	-6.84	-10.91	5.02	4.26	10.08
26.420	27.439	50.08	329.84	0.425	14.86	-4.98	-8.29	3.87	3.08	7.95
27.439	27.859	51.46	329.64	0.423	18.44	-5.82	-10.39	4.73	3.80	9.40
27.859	28.278	52.23	329.50	0.422	17.11	-5.29	-9.46	4.34	3.36	8.79
28.278	29.183	53.46	329.23	0.421	10.66	-3.43	-5.37	2.91	1.84	6.13
29.183	29.970	54.38	329.05	0.421	8.75	-3.10	-3.63	2.91	1.23	6.25
29.970	30.591	54.70	329.03	0.421	8.37	-3.11	-3.16	3.11	1.14	6.45
30.591	31.034	54.81	329.07	0.423	8.60	-3.29	-3.00	3.39	1.08	6.98
31.034	33.157	54.81	329.28	0.428	9.43	-3.67	-3.34	3.98	1.30	7.82
33.157	33.705	54.58	329.65	0.429	21.19	-7.30	-3.71	9.08	0.17	20.96

Supplemental Table 3. Nubia-South America stage angular velocities from REDBACK

These angular velocities specify Nubia plate motion in a South America plate frame of reference for time intervals given in the first two columns, as determined from the REDBACK noise-reduction software (Iaffaldano *et al.* 2014). They include corrections for 2 km of outward displacement, as described in the text. The angular rotation rates $\dot{\omega}$ are positive anti-clockwise. The Cartesian angular velocity covariances are calculated in a frame of reference tied to the South America plate and have units of 10^{-8} radians² Myr⁻².

Age(y)	Age(o)	Lat.	Long.	Ω	Covariances					
Ma	Ma	(°N)	(°E)	$^{\circ}$ Myr ⁻¹	а	b	с	d	e	f
0.781	0.00	9.53	-56.96	0.133	1.33	-0.16	0.25	0.66	-0.83	1.04
1.778	0.781	11.32	-57.30	0.138	1.69	-0.13	0.19	0.86	-1.08	1.38
2.581	1.778	13.04	-57.32	0.144	2.92	-0.01	-0.05	1.50	-1.93	2.57
3.596	2.581	15.36	-56.62	0.153	2.17	0.16	-0.38	1.10	-1.46	2.08
4.187	3.596	16.68	-55.95	0.159	7.42	1.06	-2.32	3.69	-5.06	7.61
5.235	4.187	17.02	-55.36	0.162	2.73	0.59	-1.23	1.36	-1.92	3.05
6.033	5.235	17.02	-54.78	0.165	5.69	1.37	-3.00	2.88	-4.22	6.96
6.733	6.033	19.52	-53.87	0.180	8.72	1.94	-4.59	4.39	-6.57	11.24
7.528	6.733	18.10	-53.91	0.194	7.83	1.49	-3.81	3.55	-5.44	9.97
8.108	7.528	15.67	-54.27	0.195	17.77	2.40	-6.58	6.76	-10.43	21.05
9.105	8.108	15.41	-54.04	0.199	8.37	0.57	-1.68	2.67	-4.00	8.98
9.786	9.105	16.11	-53.78	0.205	25.44	0.94	-2.21	7.32	-10.43	25.70
11.056	9.786	19.62	-53.06	0.216	10.60	0.35	-0.46	2.89	-4.04	10.64
12.474	11.056	24.97	-53.05	0.239	12.01	0.58	-0.80	3.09	-4.53	12.38
13.739	12.474	22.52	-55.55	0.229	19.24	1.48	-1.47	4.46	-6.81	19.32
14.609	13.739	13.52	-59.82	0.205	48.58	3.75	-0.09	9.46	-14.27	43.31
15.974	14.609	13.29	-62.30	0.182	21.90	0.34	2.14	3.50	-5.54	17.07
17.235	15.974	15.48	-61.58	0.173	25.85	-1.82	3.81	3.85	-6.74	19.01
18.056	17.235	20.06	-59.66	0.174	59.35	-7.51	8.83	9.30	-16.80	43.89
18.748	18.056	23.32	-57.76	0.175	87.51	-13.73	14.21	14.30	-25.94	65.42
19.722	18.748	27.88	-57.50	0.150	50.24	-11.24	10.91	10.79	-18.30	40.60

Supplemental Table 4. North America-South America stage angular velocities

Angular velocities that specify the movement of the North America plate relative to South America for the time period given in the first two columns. The angular velocities and their Cartesian covariances are derived from the finite rotations given in Table 3 of the main document and are in a South America plate reference frame. The angular rotation rates $\dot{\omega}$ are positive anticlockwise for the old to the young limit of each time interval. The covariances have units of 10^{-8} radians² Myr⁻². See Table 1 in the main document for instructions on constructing the covariance matrix from elements a-f in the table.

Age(y)	Age(o)	Lat.	Long.	$\dot{\Omega}$	Covariances					
Ma	Ma	(°N)	(°E)	$^{\circ}$ Myr ⁻¹	а	b	с	d	e	f
0.781	0.00	-85.92	36.10	0.263	1.87	-1.28	0.48	0.96	-0.45	1.53
1.778	0.781	-85.89	44.37	0.271	2.50	-1.57	0.54	1.23	-0.47	2.02
2.581	1.778	-85.72	49.02	0.280	4.69	-2.41	0.71	2.12	-0.50	3.71
3.596	2.581	-85.74	56.89	0.288	3.82	-1.47	0.32	1.53	-0.12	2.96
4.187	3.596	-85.93	65.58	0.290	13.91	-4.14	0.32	5.09	0.46	10.57
5.235	4.187	-85.84	89.96	0.285	5.17	-1.26	-0.25	1.74	0.36	3.85
6.033	5.235	-84.75	110.33	0.280	11.00	-2.61	-1.28	3.59	0.88	8.10
6.733	6.033	-84.15	110.42	0.299	18.17	-4.53	-3.00	5.88	1.72	13.21
7.528	6.733	-84.25	103.56	0.324	16.87	-3.74	-3.32	5.19	1.75	12.17
8.108	7.528	-84.61	96.12	0.328	35.93	-6.63	-7.13	10.50	2.99	26.13
9.105	8.108	-84.82	90.68	0.329	14.59	-2.28	-2.41	4.11	0.33	10.90
9.786	9.105	-84.70	94.02	0.330	38.17	-5.32	-5.23	10.50	-1.36	29.24
11.056	9.786	-83.61	105.98	0.349	13.77	-1.70	-1.87	3.62	-1.23	10.74
12.474	11.056	-81.66	116.78	0.388	13.91	-1.16	-2.38	3.30	-1.58	10.90
13.739	12.474	-81.14	120.70	0.403	19.64	-0.33	-4.15	4.04	-1.80	15.31
14.609	13.739	-80.78	124.47	0.404	43.62	1.86	-8.96	8.32	-2.06	34.06
15.974	14.609	-81.03	128.18	0.403	20.45	1.44	-2.55	4.15	0.44	16.08
17.235	15.974	-79.36	139.82	0.397	30.62	3.09	0.34	6.73	2.99	24.36
18.056	17.235	-77.46	146.75	0.394	87.49	12.59	10.29	19.90	13.24	70.97
18.748	18.056	-73.28	162.66	0.346	137.15	25.30	23.94	30.91	24.78	113.22
19.722	18.748	-53.95	196.18	0.347	70.41	13.06	10.27	14.77	11.40	58.20

Supplemental Table 5. Antarctica-South America angular velocities

Angular velocities that specify Antarctic plate motion relative to South America during the time period given in the first two columns. The angular velocities and their Cartesian covariances are in a South America plate reference frame and are derived from the noise-reduced finite rotations in Table 4 of the main document. The angular rotation rates $\dot{\omega}$ are positive anticlockwise for the old to the young limit of each time interval. The covariances have units of 10^{-7} radians² Myr⁻². See Table 1 footnotes from the main document for instructions on constructing the covariance matrix from elements a-f in the table.

coded lines) and noise-reduced (red lines) synthetic fracture zone traces, 2-15°N. The flow lines, extend to the ridge or the youngest off-axis fracture zone point. Transform faults are omitted from distances are exaggerated by three times relative to horizontal distances to emphasize the misfits. axes respectively show linear distance along or orthogonal to each fracture zone. bathymetry in Figure 5 of the main document and Supplemental Figure 8a. Horizontal and vertical Zero distance on the horizontal axis marks the ridge-transform intersection for fracture zones that assume symmetric seafloor spreading. which are created with the rotations in Supplemental Table 2 and Table 1 of the main document, Supplemental Figure 1. this plot. Digitized fracture zone traces (black) compared to best-fitting (color-The same fracture zones and flow lines are shown with Vertical-axis

lines) and noise-reduced (red lines) synthetic fracture zone traces, 33-50°S. The same fracture Supplemental Figure 3. Digitized fracture zone traces (black) compared to best-fitting (color-coded to Supplemental Figure 1 for further information. zones and flow lines are shown with bathymetry in Supplemental Figures 7 and 8. See the caption

study area are shown at larger scale in Supplemental Maps 1 to 9. bathymetry, 2°N-8°S. Blue and red lines are best-fitting and noise-reduced flow lines, respectively. noise-reduced rotation covariances. Reconstructions and the original magnetic data for the entire 2 ings rotated onto the opposite side of the ridge with the best-fitting rotations in Supplemental Table Solid circles are reversal identifications at their original locations. Open circles are reversal crossfracture zone flow lines and transform faults and fracture zone crossings overlaid on GeoMapApp Supplemental Figure 4. The red-shaded ellipses for selected flow lines show the $1-\sigma$ uncertainties propagated from the Reconstructed (blue and red) and digitized (black) Nubia-South America

Supplemental Figure 5. Reconstructed (blue and red) and digitized (black) Nubia-South America bathymetry, 10°S-19°S. See the caption to Supplemental Figure 4 for further information. fracture zone flow lines and transform faults and fracture zone crossings overlaid on GeoMapApp

Supplemental Figure 6. bathymetry, 19°S-30°S. See the caption to Supplemental Figure 4 for further information. fracture zone flow lines and transform faults and fracture zone crossings overlaid on GeoMapApp Reconstructed (blue and red) and digitized (black) Nubia-South America

