SUPPLEMENTAL MATERIAL

Ometepec Earthquake Hypocenter - A global network was used to determine the original USGS location, which placed the earthquake hypocenter near the downdip portion of the seismogenic zone. However, analysis of P-wave arrivals from our local network determined the hypocenter to be further updip and away from the SSE. P-waves arrive first at stations OXMA and PNIG, while arrivals at the next nearby locations OXTT, OXTL, and TLIG occur over 8 seconds later. This updated location is similar to another analysis of regional data (*UNAM Seismology Group*, 2013).

Figure S1. Seismograms of the Mw 7.4 Ometepec earthquake showing relative time of first arrivals on the vertical channel. Vertical axis is set at 10,000 counts to best view first motions. Note that many of these weak motion instruments clipped.

Distinguishing Earthquakes and Cultural Noise from Tremor - This study uses a frequency scanning detection algorithm developed for Cascadia to seismic data from the local network in the Oaxaca region to exploit the unique frequency content of tectonic tremor (2-5 Hz). Figure S2 illustrates evidence that this technique avoids possible false detections from cultural noise and local earthquakes.

Figure S2. Examples of correlated activity (left) earthquake energy and (right) cultural noise distinguished with help from spectral analysis. Top panels show bandpass (2-5 Hz) filtered seismograms from nearby stations exhibiting non-tremor seismic signals. Bottom panels show spectrograms of unfiltered data with bursts of energy focused above the typical tremor frequency band.

Tremor Epicenters Relative to Slow Slip and Earthquakes – To help illustrate more detail regarding the relationship between the various forms of seismic and slip behavior, Figure S3 shows the locations of tectonic tremor epicenters cataloged by *Fasola et al.* (2016), instead of the contour outlining the distribution of tremor in Figure 1.

Figure S3. Map showing the various forms of seismic and slip behavior, and the slab depth contours (dotted lines) (*Fasola et al.*, 2016). This figure is the same as Figure 1, but shows the tectonic tremor epicenters as red circles (*Fasola et al.*, 2016).

Table S1. List of observations of transient deformation	tion prior to earthquakes.			
Earthquake	Observation	Start Time	Equivalent Moment Magnitude of Pre- Earthquake Slip	References
1. Primarily Geodetic Observations of Transient				
M9 Cascadia, USA and Canada; January 29, 1700	Microfossils	Unknown	Unknown	Shennan et al. 1998
Ms8.2 Tonankai, Japan; December 7,1944	Leveling	1 day	7.8	Sagiya 1998, Linde and Sacks, 2002
Mw8.3 Nankaido, Japan; December 20,1946	Tide Gauges, Water wells	3 days	7.9	Sato, 1982, Linde and Sacks, 2002
Mw9.2 Chile May 22, 1960	Long-period seismometer	14-20 min	8.9-9.1	Cifuentes & Silver, 1989
Mw9.2 Prince William Sound, AK, March 28, 1964	Microfossils	10-12 years	.12 m +/13 m uplift	Hamilton and Shennan, 2005
M7.0 Izu-Oshima-Kinkai, Japan; January 14,1978	Leveling, groundwater levels, geodolite, tide gauges	2 years	15 cm uplift	Inouchi and Sato, 1979, Wakita, 1981
Ms 6.8 Urakawa-oki, Japan; March 21, 1982	Leveling, groundwater levels, geodolite, tide gauges	3-11.5 years	.4 m sllip	<i>Taylor et al.</i> 1991; <i>lio et al.,</i> 2002; <i>Murai et al.,</i> 2003
Ms 7.8 Japan Sea; May 26, 1983	Tide gauges, borehole strain	14 years	7.7	<i>lio et al.,</i> 2002, <i>Mogi,</i> 1985
Mw 6.1 Kettleman HIlls, CA; August 4,1985	borehole strain, water levels	3 days	5.4	Roeloffs and Quilty, 1997
Mw 7.6 Peru; July 7, 2001	CGPS	18 h	7.8	Melbourne & Webb, 2002
Mw 9.0 in 2011 Tohoku, Japan	Pressure gauge + EQ Swarm migrating along strike	40 days	7	lto et al., 2013; Miyazaki et al., 2011
Mw 6.3 in 2009 in L'Aquila, Italy	GPS contrained SSE - 2 week duration	About 6 weeks	Mw 5.9	Borghi et al., 2016
Mw 8.1 in 2014 Iquique, Chile	GPS detected	About 2 weeks	slip of 5 mm-1cm	Ruiz et al., 2014
2. Earthquake Swarms As Indicators of Transier				
Mj 7.1 in 1989 in Sanriku, NE Japan	Local earthquakes including 4 M6 events representing quasi-static slip acceleartion	6 days	greatest slip patch ~10 cm	Uchida et al., 2004
Mj 6.9 in 1992 in Sanriku, NE Japan	Local earthquakes representing quasi-static slip acceleartion	2 days	greatest slip patch ~10 cm	Uchida et al., 2004
Mj 7.6 in 1994 in Sanriku, NE Japan	Local earthquakes representing quasi-static slip acceleartion	8 months	greatest slip patch ~10 cm	Uchida et al., 2004
M>5 from 1985 - 2012 in Sanriku, NE Japan	Repeating earthquakes			Uchida et al., 2016
Mw 7.6 Izmit,Turkey	40 event swarm; Templates M.3-2.7	44 min	largest foreshock - slip patch of 0.8 cm	Bouchon et al., 2011
M 6.0 Parkfield, CA	Deep LFE - increase in LFE rate by 47%	3 months	<3.2	Shelly, 2009
Mw 9.0 in 2011 Toboku Japan	Eq Swarm - 1416 events, more than 4 times original JMA catalogue; Migration observed 2-10 km/day	23 days	~7 1 (~20 cm slin)	Kato et al. 2012
Mw 7.6 in 2012 Nicoya, Costa Rica	Mw7.3 El Salvador EQ 9 days before triggered swarm (M1-2); Mainshock preceded by swarm	9 days before; 35 minute before	none reported	Walter et al., 2015
Mw 8.1 in 2014 Iquique, Chile	earthquake swarm (>M4), 10 times normal amount, migrations 2- 10km/d	About 2 weeks	none reported	Kato and Nakagawa, 2014; Brodsky and Lay, 2014
Mw 6.3 in 2009 in L'Aquila, Italy	Local earthquakes (M0.4-3.9). Migrating swarm occurs during GPS SSE	About 2.5 months; surge of foreshocks in the week prior	none reported	Sugan et al., 2014

Location	Observed Signals	Duration	Equivalent Moment Magnitude of Slow Slip	References
3. Geodetic Observations of Transient Deforma	tion Correlated with Earthquake Sw	varms	· · ·	
Salton Trough, CA - Aug 2005	GPS and INSAR detected aseismic slip combined with a swarm of seismicity 3 orders of magnitude larger than normal observations	35 days	5.75	Lohman and McGuire, 2007
Gisbourne - October 2004	GPS constrained slow slip accompanied by increase in low magnitude earthquakes	10-14 days	~18 cm of slip	Delahaye et al., 2009
Ecuador - August 2010	GPS constrained slow slip accompanied by seismic swarm of 650 earthquakes	~10 days	6-6.3	<i>Vallée et al.,</i> 2013
Boso Peninsula - Oct 2002	GPS constrained slow slip with accompanying adjacent seismic swarm	About 40 days	6.6	Ozawa et al., 2003
Boso Peninsula - April 1996	GPS constrained slow slip with accompanying adjacent offset seismic swarm	About 2 months	6.4-6.5	<i>Ozawa et al.</i> , 2003; <i>Sagiya,</i> 2004
Boso Peninsula - August 2007	GPS constrained slow slip with accompanying adjacent seismic swarm	About 10 days	6.6	Ozawa et al. 2003
Apennines, Central Italy - March 1997	Slow events recorded by a geodetic interferometer accompanied by a few seismic swarms	A couple months?	4.1?	Crescentini et al., 1999
Guerrero - 1998	GPS constrained slow slip accompanied by an increase in seismicity rate of Mc 4.5 events	About 5 months	6.5	Liu et al., 2007; Lowry et al., 2001
Guerrero -2001-2002	GPS constrained slow slip accompanied by an increase in seismicity rate of Mc 4.5 events	About 7 months	7.5	<i>Liu et al.,</i> 2007
Guerrero 2006	GPS constrained slow slip accompanied by an increase in seismicity rate of Mc 4.5 events	About 10 months	7.5	Liu et al., 2007; Larson et al., 2007
San Andreas Fault - December 1992	Week long slow slip event near San Juan Bautista recorded by borehole strain meters with an increase in small (M2-4) seismicity	About a week	4.8	Linde et al., 1996
Cascadia - March 2010	Slight increase in tiny (M<2) earthquakes during slow slip presumed based on tectonic tremor activity that is well correlated to slow slip in Cascadia	About 16 days	none reported	<i>Vidale et al.,</i> 2011
Kilauea - February 1998	GPS constrained slow slip with an earthquake ratio increase of 2.75	About 2 days	none reported	Brooks et al., 2006; Montgomery- Brown et al., 2009
Kilauea - September 1998	GPS constrained slow slip with an earthquake ratio increase of 3.1	About 2 days	5.6 (0.05 m slip)	Segall et al., 2006; Brooks et al., 2006; Montgomery-Brown et al., 2009
Kilauea - November 1999	GPS constrained slow slip with an earthquake ratio increase of 4.0	About 2 days	none reported	Brooks et al., 2006; Montgomery- Brown et al., 2009
Kilauea - May 2000	GPS constrained slow slip with an earthquake ratio increase of 7.15	About 2 days	none reported	Montgomery-Brown et al., 2009
Kilauea - November 2000	GPS constrained slow slip with an earthquake ratio increase of 1.8	About 1.5 days	5.7 (0.06 m slip)	Segall et al., 2006; Brooks et al., 2006; Cervelli et al., 2002

Kilauea - December 2002	GPS constrained slow slip with an earthquake ratio increase of 1.1	About 2 days	none reported	Brooks et al., 2006; Montgomery- Brown et al., 2009
Kilauea - July 2003	GPS constrained slow slip with an earthquake ratio increase of 2.75	About 2 days	5.5	Segall et al., 2006; Brooks et al., 2006; Montgomery-Brown et al., 2009
Kilauea - January 2005	GPS constrained slow slip with an earthquake ratio increase of 10.5	About 2.2 days	5.8 (0.15 m slip)	Segall et al. 2006; Brooks et al., 2006; Montgomery-Brown et al., 2009

Compendium of Transient Deformation Observations Prior to Earthquakes - As a supplement to the discussion section of our paper, Table S1 represents an effort to compile relevant aspects of other published observations of transient deformation, or seismic swarms that imply transient deformation, prior to earthquakes.

Supplement References

- Brodsky, E. E., and T. Lay (2014). Recognizing foreshocks from the 1 April 2014 Chile earthquake. 344, 700–702. doi:10.1126/science.1255202.
- Brooks, B. A., J. H. Foster, M. Bevis, L. N. Frazer, C. J. Wolfe, and M. Behn (2006). Periodic slow earthquakes on the flank of Kilauea volcano, Hawai'i. Earth and Planetary Science Letters, 246, 3-4, 207-216. doi: 10.1016/j.epsl.2006.03.035.
- Bouchon, M., H. Karabulut, M. Aktar, S. Ozalaybey, J. Schmittbuhl, and M,-P. Bouin (2011). Extended nucleation of the 1999 Mw 7.6 Izmit earthquake. Science (New York, N.Y.) 331, 877–80.
- Borghi, A., A. Aoudia, F. Javed, and R. Barzaghi (2016), Precursory slow-slip loaded the 2009 L'Aquila earthquake sequence. Geophysical Journal International, 205, 2, 776-784. Doi:10.1093/gji/ggw046.
- Cervelli, P., P. Segall, K. Johnson, M. Lisowski, and A. Miklius (2002). Sudden aseismic fault slip on the south flank of Kilauea volcano. Nature, 415, 1014-1018. doi: 10.1038./41501014a.
- Cifuentes, I. L., and P. G. Silver (1989), Low-frequency source characteristics of the great 1960 Chilean earthquake. Journal of Geophysical Research, 94, 643-663.
- Crescentini, L., A. Amoruso, and R. Scarpa (1999). Constraints on Slow Earthquake Dynamics from a Swarm in Central Italy. Science 286, 2132–2134.
- Delahaye, E. J., J. Townend, M. E. Reyners, and G. Rogers (2009). Microseismicity but no tremor accompanying slow slip in the Hikurangi subduction zone, New Zealand. Earth and Planetary Science Letters 277, 21–28.
- Fasola, S., M. R. Brudzinski, N. Ghouse, K. Solada, S. Sit, E. Cabral-Cano, A. Arciniega-Ceballos N. Kelly, K. and Jensen, (2016). New perspective on the transition from flat to steeper subduction in Oaxaca, Mexico, based on seismicity, nonvolcanic tremor, and slow slip, J. Geophysical Research - Solid Earth, 121, doi:10.1002/2015JB012709.
- Hamilton, and S., I. Shennan (2005a), Late Holocene great earthquakes and relative sea level Ceballos, N. Kelly, K. and Jensen, (2016). New perspective on the transition from flat to steeper subduction in Oaxaca, Mexico, based on seismicity, nonvolcanic tremor, and slow slip, J. Geophysical Research - Solid Earth, 121, doi:10.1002/2015JB012709.
- Hamilton, S., and I. Shennan (2005b), Late Holocene relative sea level changes and the earthquake deformation cycle around upper Cook Inlet, Alaska, Quantitative Science Review, 24, 1479-1498.
- Iio, T., Y. Kobayashi, and T. Tada (2002). Large earthquakes initiate by the acceleration of slips on the downward extensions of seismogenic faults. Earth and Planetary Science Letters, 202, 337-343.
- Inouchi, N., and H. Sato (1979). Crustal deformation related to the Izu-Oshima Kinkai earthquake of 1978. Bulletin of Geopgraphical Survey Institute, 23, 14-24.

- Ito, Y., R. Hino, M. Kido, H. Fujimoto, Y. Osada, D. Inazu, Y. Ohta, T. Iinuma, M. Ohzono, S. Miura, M. Mishina, K. Suzuki, T. Tsuji, and J. Ashi (2013). Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics.
- Kato, A., K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, and N. Hirata (2012). Propagation of slow slip leading up to the 2011 M(w) 9.0 Tohoku-Oki earthquake. Science (New York, N.Y.) 335, 705–8.
- Kato, A., and S. Nakagawa (2014). Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake, Geophysical Research Letters 41, 5420–5427, doi:10.1002/2014GL061138.
- Larson, K. M., V. Kostoglodov, S. Miyazaki, and J. A. S. Santiago (2007), The 2006 aseismic slow slip event in Guerrero, Mexico: New results from GPS, Geophys. Res. Lett., 34, L13309, doi:10.1029/2007GL029912.
- Linde, A., M. Gladwin, and M. Johnston (1996). A slow earthquake sequence on the San Andreas fault. Nature 383, 65–68.
- Linde, A. T., and I. S. Sacks (2002). Slow earthquakes and great earthquakes along the Nankai trough. Earth and Planetary Science Letters,
- Lohman, R. B., and J. J. McGuire, 2007. Earthquake swarms driven by aseismic creep in the Salton Trough, California. Journal of Geophysical Research 112, 1–10.
- Lowry, A., K. Larson, V. Kostoglodov, and R. Bilham, 2001. Transient slip on the subduction interface in Guerrero, southern Mexico, *Geophysical Research Letters*, **28**(19), 3753–3756.
- Lui, Y., J. R. Rice, and K. M. Larson (2007). Seismicity variations associated with aseismic transients in Guerrero, Mexico, 1995-2006. Earth and Planetary Science Letters, 262, 3-4, 493-504. doi:10.1016/j.espl.2007.08.018.
- Melbourne, T. E., and F. H. Webb (2002), Precursory transient slip during the 2001 M_w=8.4 Peru earthquake sequence from continuous GPS, Geophysical Research Letters, 29, doi:10.1029/2002GL015533.
- Miyazaki, S., J. J. McGuire, and P. Segall (2011), Seismic and aseismic fault slip before and during the 2011 off the Pacific coast of Tohoku earthquake. Earth, Planets, and Space, 63:23. doi:10.5047/eps.2011.07.001.
- Mogi, K. (1985), Precursors of the 1983 Japan Sea earthquake. Earthquake Prediction Research, 2, 493-517.
- Montgomery-Brown, E. K., P. Segall, and A. Miklius (2009). Kilauea slow slip events: Identification, source inversions, and relation to seismicity. Journal of Geophysical Research-Solid Earth, 114. doi: 10.1029/2008JB006074.
- Murai, Y. (2003). Delamination structure imaged in the source area of the 1982 Urakawa-oki earthquake. Geophysical Research Letters, 30:1490, doi:10.1029/2002GL016459.

- Ozawa, S., S. Miyazaki, Y. Hatanaka, T. Imakiire, M. Kaidzu, and M. Murakami (2003). Characteristic silent earthquakes in the eastern part of the Boso peninsula, Central Japan. Geophysical Research Letters, 30. doi:10.1029/2002GL016665.
- Roeloffs, E., and E. Quilty (1997). Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, earthquake. Pure and Applied Geophysics, 149, 21-60.
- Ruiz, S., M. Metois, A. Fuenzalida, J. Ruiz, F. Leyton, R. Grandin, C. Vigny, R. Madariaga, and J. Campos (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345, 165-1169.
- Sagiya, T. (1998). Crustal movements as earthquake precursors—Leveling anomaly before the 1944 Tonankai Earthquake revisited. Bulletin of the Geopgraphical Survey Institute, 44, 23-36.
- Sagiya, T. (2004). Interplate coupling in the Kanto district, central Japan, and the Boso Peninsula silent earthquake in May 1996. Computational Earthquake Science Part II, pp. 2327-2342. Birkhäuser Basel.
- Sato, H. (1982). On the changes in the sea level at Tosashimizu before the Nankaido earthquake of 1946. Journal of Seismological Society of Japan, 35, 623-626.
- Segall, P., E. K. Desmarais, D. Shelly, A. Miklius, and P. Cervelli (2006). Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii. Nature 442, 71-74. doi:10.1038/nature04938.
- Shelly, D. R. (2009). Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor. Geophysical Research Letters 36, L17318–L17318.
- Shennan, I., A. J. Long, M. M. Rutherford, J. B. Innes, F. M. Green, K. J. Walker (1998). Tidal marsh straitigraphy, sea-level changes and large earthquakes-II: submergence events during the last 3500 years at Netarts Bay, Oregon, Quantitative Science Review, 17, 365-394.
- Sugan, M., A. Kato, H. Miyaki, S. Nakagawa, and A. Vuan (2014). The preparatory phase of the 2009 M_w6.3 L'Aquila earthquake by improving the detection capability of low-magnitude foreshocks. Geophysical Research Letters, 41, 6137-6144. doi:10.1002/2014GL061199.
- Taylor, D. W. A., J. A. Snoke, I. S. Sacks, and T. Takanami (1991). Seismic quiescence before the Urakawa-oki earthquake. Bulletin of Seismological Society of America, 81, 1255-1271.
- Uchida, N., A. Hasegawa, T. Matsuzawa, and T. Igarashi (2004). Pre- and post-seismic slow slip on the plate boundary off Sanriku, NE Japan associated with three interplate earthquakes as estimated from small repeating earthquake data. Tectonophysics 385, 1–15.

- Uchida, N., T. Iinuma, R. M. Nadeau, and R. Burgmann (2016). Periodic slow slip triggers megathrust zone earthquakes in northeastern Japan. Science, 351, 488-492. doi:10.1126/science.aad3108.
- Universidad Nacional Autónoma de México (UNAM) Seismology Group (2013). Ometepec-Pinotepa Nacional, Mexico Earthquake of 20 March 2012 (Mw 7.5): A preliminary report. Geofísica Internacional, 52, 173-196.
- Vallée, M., J.-M. Nocquet, J. Battaglia, Y. Font, M. Segovia, M. Régnier, P. Mothes, and P. Jarrin, Cisneros, D., Vaca, S., Yepes, H., Martin, X., Béthoux, N., Chlieh, M. (2013). Intense interface seismicity triggered by a shallow slow slip event in the Central Ecuador subduction zone. Journal of Geophysical Research: Solid Earth 118.
- Vidale, J. E., A. J. Hotovec, A. Ghosh, K. C. Creager, J. Gomberg (2011). Tiny intraplate earthquakes triggered by nearby episodic tremor and slip in Cascadia. Geochemistry, Geophysics, Geosystems 12.
- Walter, J. I., X. Meng, Z. Peng, S. Y. Schwartz, A. V. Newman, and M. Protti (2015). Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (M W 7.6) Nicoya Peninsula, Costa Rica earthquake. Earth and Planetary Science Letters, 431, 75-86.
- Wakita H. (1998). Precursory changes in groundwater prior to the 1978 Izu-Oshima-Kinkai earthquake. In Earthquake Prediction: An International Review, eds. D. W. Simpson, P. G. Richards. American Geophysical Union Maurice Ewing Series, 4, 527-532. Washington, DC: American Geophysical Union.