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ABSTRACT

The Trans-boundary, Land and Atmosphere Long-term
Observational and Collaborative Network (TLALOCNet) is a
network of continuous Global Positioning System (GPS) and
meteorology stations in Mexico for the study of solid-earth and
atmospheric processes. This recently completed network spans
most of Mexico with a strong focus on southern and western
Mexico. TLALOCNet observations will enable a better analysis
of strain accumulation and release processes throughout the
Mexican subduction zone and transform faults in the Gulf of
California, surface deformation processes, and will provide water
vapor estimates that will advance knowledge on atmospheric
processes in Mexico. We provide some examples of results
generated from TLALOCNet products. For solid-carth applica-
tions, we present daily position time-series solutions in contrast-
ing tectonic scenarios and real-time displacement differences for
the 8 September 2017 M, 8.2 Tehuantepec and the 19 Septem-
ber 2017 M, 7.1 Pucbla carthquakes observed from 1-Hz GPS
streams that serve as examples of the network performance. For
atmospheric applications, we present the evolution of precipita-
ble water vapor and latent heat flux during the North American
monsoon season in northwestern Mexico. We finally discuss
some of the applications of TLALOCNet for space weather ap-
plications in Mexico. TLALOCNet provides open and freely
available raw GPS data and high-frequency surface meteorology
measurements. Data are available through the TLALOCNet
data center (see Data and Resources) that serves as a collection
and distribution point. This archive provides a fully queryable
and scriptable GPS and surface meteorological data retrieval site.
In addition, real-time 1 Hz streams and real-time solutions from
selected TLALOCNet stations are available in BINEX and
RTCM v.3.1 via the Networked Transport of RTCM via Inter-
net Protocol (NTRIP) for real-time hazard analyses, including

seismo-geodesic and weather forecasting applications.

INTRODUCTION

Mexico is vulnerable to a variety of natural hazards. On short
time scales, earthquakes, tsunamis, volcanic eruptions, hurri-

doi: 10.1785/0220170190

canes, heavy precipitation, hailstorms, flooding, and landslides
all affect Mexico and are high priorities for operational fore-
casting as well as basic and applied research. Over decadal time
scales, ground subsidence induced by aggressive groundwater
extraction coupled with climate model projections predict that
the currently arid parts of northern Mexico will become even
drier (Seager e al., 2007; Karmalkar ez 4/, 2011), and raise
concerns about the sustainability of urban development,
agricultural production, and manufacturing exports critical
to the North American economic region.

The Mexican subduction zone (MSZ; Fig. 1), which
extends 1700 km along Mexico’s Pacific coast, accommodates
25-80 mm/yr of Rivera and Cocos plate subduction beneath
North America’s western margin (DeMets and Wilson, 1997;
DeMets ez al., 2010). The subduction zone geometry varies
from subhorizontal below Guerrero and Oaxaca to steeply dip-
ping below Chiapas in southern Mexico and Jalisco/Colima in
western Mexico (Pardo and Sudrez, 1995; Pérez-Campos ez al.,
2008; Yang ez al., 2009; Melgar and Pérez-Campos, 2011). The
current MSZ (including the former Farallon plate subduction)
has been the locus of orogeny, terrane accretion, margin trun-
cation, and metamorphic complex exhumation throughout the
Cenozoic on the western and southwestern North American
plate margin. The proximity of the trench to the coast, aver-
aging 40-60 km along much of its margin, coupled with its
shallow subduction angle (10°-12°), the high convergence rate,
and strong interseismic coupling for most of the MSZ (e.g.,
Yoshioka ez al., 2004; Correa-Mora et al., 2008; Radiguet ez 4/,
2012) generates large and frequent earthquakes, averagiyv—
eral M > 7 earthquakes per decade for the past century (Singh
et al., 1984). The associated Mexican volcanic belt is a unique
arc, featuring an oblique orientation with respect to the bathy-
metric expression of the trench and a complex geochemical
record, which includes mantle wedge contamination and sev-
eral active stratovolcanoes. Large population centers in central
Mexico and the Pacific coast are vulnerable to a number of
subduction hazard risks, including earthquakes and volcanic
eruptions. These characteristics make this region a superb area
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A Figure 1. Location map for the Trans-boundary, Land and Atmosphere Long-term Observational and Collaborative Network (TLALOC-
Net), TLALOCNet contributed Servicio Sismoldgico Nacional (SSN)-TLALOCNet, SSN, and Continuously Operating Caribbean Global Po-
sitioning System (GPS) Operational Network (COCONet) currently operational GPS-Met and GPS stations in Mexico.

for geodetic and seismic observations of subduction earthquake
processes. The study of many of these processes can greatly ben-
efit from continuous geodetic observations hence the develop-
ment of a nation-wide Global Positioning System (GPS)
network that we call TLALOCNet. Moreover, this infrastruc-
ture will also be used to augment the existing capability of
tsunamigenic earthquake early warning systems in Mexico.
To date, geodetic (primarily from continuous and campaign
GPS observations) and seismic measurements have detected a
wide range of steady-state and transient deformation phenom-
ena, including slow-slip events every ~4 yrs in Guerrero
(M ~7.5 equivalent) and every 12-14 months in Oaxaca,
tectonic tremor along the majority of the MSZ, postseismic
afterslip, and viscoelastic rebound (e.g., Brudzinski ez al, 2016;
Maury et al., 2016). Future advances in the understanding of the
roles of strain accumulation, subduction interface coupling, the
various mechanisms of strain release, and its interactions with
shallower magmatic systems responsible for volcanic activity

within a subduction zone will be enhanced by TLALOCNet.

RECENT GEODETIC INFRASTRUCTURE
DEVELOPMENT IN MEXICO

Since the mid-1990s, campaign and continuous GPS measure-
ments along the MSZ have recorded 4 large subduction earth-
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quakes and recently 2 large intraslab earthquakes and their
associated postseismic deformation, at least 11 transient slip
events, and secular interseismic strain, representing all phases
of the carthquake cycle. Over the last 7 yrs, collaborative GPS
studies of these events have resulted in the development of pro-
tocols for free and open access to geodetic data. The most re-
cent significant development in these bilateral scientific studies
is the construction of the TLALOCNet and the Servicio
Sismolédgico Nacional (SSN)-TLALOCNet, backbone net-
works in Mexico of collocated continuous GPS and meteoro-
logic stations (cGPS-Met) funded by the United States
National Science Foundation (NSF), Mexico’s Consejo Nacio-
nal de Ciencia y Tecnologia (CONACyT) and Universidad
Nacional Auténoma de México’s Programa de Apoyo a Proyec-
tos de Investigacién e Innovacién Tecnoldgica (UNAM-
PAPIIT) for the analysis of the earthquake cycle, tectonic
processes, land subsidence, and atmospheric processes (Fig. 1).

The combined TLALOCNet and SSN-TLALOCNet
continuous GPS-Met networks span most of Mexico and link
existing continuous GPS infrastructure in North America
(EarthScope Plate Boundary Observatory [PBO]) and similar
GPS-Met network distributed across the Caribbean, central
and northern South America (Continuously Operating Carib-
bean GPS Operational Network [COCONet]). TLALOCNet
(phase 1; 2014-2017) built and upgraded 40 cGPS-Met sites
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A Figure 2. Photograph of a typical TLALOCNet GPS-Met station (TNNX) in No-

chixtlan, Oaxaca.

to the EarthScope PBO standard. The SSN-TLALOCNet
(phase 2; 2016-2017) has added 25 more ¢GPS stations
funded through CONACyT. These newly installed geodetic
stations, in addition to previously existing ¢GPS stations, in-
crease our currently operating geodetic infrastructure in
Mexico to 104 stations (Fig. 1).

Instrumentation at each TLALOCNet station (Fig. 2)
includes a Trimble NetR9 Global Navigation Satellite Sys-
tems (GNSS) receiver with L1, L2, and L5 code and phase
observations enabled, shallow drilled braced monument built
onto a competent rock exposure (or in some cases a rooftop
monument design similar to those from COCONet; Braun
et al., 2012) with a Southern California Integrated GPS
Network (SCIGN) Design 3 style antenna leveling mount,
Trimble Choke Ring GNSS antenna, and SCIGN tall
radome. Forty percent of the TLALOCNet stations also in-
clude a Vaisala WXT520 or WXT536 multiweather sensor
that uses the GPS receiver for logging and BINEX real-time
data streaming,

The SSN-TLALOCNet stations instrumentation is
mostly Trimble NetR9 receivers, and a smaller number of sta-
tions have Trimble NetRS GPS receivers. These installations
deploy either Trimble Choke Ring Ti or Zephyr Geodetic II
antennas. A subset of the SSN-TLALOCNet station receivers
(in Guerrero, Oaxaca, and Chiapas) has been upgraded to
multiconstellation GNSS capability and receiver-based Trim-
ble RTX, real-time solution capabilities. Data transmission
for most of the TLALOCNet stations depends on cellular
networks using Sierra Wireless LS300 cellular gateways;
SSN-TLALOCNe et and some remotely located TLALOCNet
sites use very-small-aperture terminal (VSAT) satellite
stations.

SOLID-EARTH AND SURFACE
PROCESSES APPLICATIONS

For solid-earth science, TLALOCNet sustains
and enhances continued detailed studies of the
earthquake behavior, subduction zone tectonics,
and ground subsidence. The MSZ is an ideal
o natural laboratory for detailed geodetic studies
E of the subduction earthquake cycle, including
coscismic rupture, postscismic fault afterslip
and viscoelastic rebound, episodic tremor and
slip, and interseismic elastic strain. TLALOC-
Net provides additional constraints on North
America—Pacific plate motion (e.g., DeMets
et al., 2014) at a critical transition from oceanic
to continental transform faulting and also pro-
vides a wealth of observations on the subduc-
tion earthquake cycle. In particular, episodic
tremor and slip, first discovered a decade ago
in Cascadia (Rogers and Dragert, 2003; Dragert
et al., 2004; Melbourne ez 4l., 2005) and Japan
(Obara, 2002; Obara et al, 2004), are now
being studied with the recently enhanced geo-
detic infrastructure in Mexico to better ascertain the temporal
and physical relationship, if any, with the genesis of shallow-
thrust earthquakes, which endanger populations living near
major subduction zones worldwide.

Recent studies by Graham ez a/. (2015) that use GPS data
from stations that arc part of TLALOCNet have shown that
slow slip below the Guerrero region migrates up-dip into the
potentially seismogenic region, presumably accounting for
some of the missing slip within the well-described Guerrero
seismic gap (Singh ez al., 1981). In contrast, slow slip below
Oaxaca between 2005 and 2011 occurred mostly down-dip
from the seismogenic regions defined by the rupture zones of
large thrust earthquakes in 1968 and 1978 and released the
entire slip deficit that accumulated in the down-dip region dur-
ing this period.

Inversions of GPS-derived displacements suggest that large
subduction thrust earthquakes in Guerrero, such as the 2014
M,, 7.3 Papanoa carthquake, may be triggered by slow-slip
events, either by static stress increases in the hypocentral region
or through enhanced weakening of the earthquake hypocentral
area. The plate interface in the Guerrero area is highly coupled
between slow-slip events, and most of the accumulated strain is
released aseismically during the slow-slip episodes (Radiguet
et al., 2016); this observation imposes constraints on the
mechanical behavior of the Guerrero portion of the MSZ and
has important implications for long-term earthquake recur-
rence in this region. Figure 3 shows two examples from differ-
ent tectonic environments of estimated position time series for
TNBA (Baja California) and TNNX (Oaxaca) relative to
North America plate motion; these examples show typical per-
formance of TLALOCNet stations, in which daily and long-
term scatter on the horizontal components ranges from 1.0 to
1.5 mm and 0.7 to 5.3 mm, respectively, and from 4.0 to
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A Figure 3. Examples of TLALOCNet position time series relative to North America plate motion for stations (left) TNBA in Baja California
and (right) TNNX in Oaxaca located at contrasting tectonic environments that show typical performance of TLALOCNet stations. Dark gray
dots show daily IGS08 site positions relative to North America and the red circles show 30-day-average site positions. Small light gray dots

show daily common-mode naqi

which is estimated from the position time series of stable sites far from tectonically active regions and is

subtracted from the measur @ ily site coordinates. Red lines are the best-fitting site velocity, whereas blue lines are predicted plate
velocity from MORVEL (DeMets, 2010). TNBA located in Bahia de Los Angeles, Baja California, depicts the steady velocity of the Baja
California peninsula. On the other hand, the TNNX time series show common behavior of the Oaxaca region with superimposed signals
from the strain accumulation due to the Cocos plate subduction and the interseismic strain release due to slow-slip events, which occur
at periodic intervals (~12 month) in this region (e.g., Graham et al., 2015).

4.7 mm and 4.0 to 5.6 mm for the daily and long-term vertical-
component scatter, respectively.

During the recent 7 September 2017 M|, 8.2 Tehuan-
tepec and 19 September 2017 M, 7.1 Morelos-Pucbla earth-
quakes, TLALOCNet and SSN-TLALOCNet stations
provided unique observations including 15 s, 1 Hz, and
5 Hz high-rate data from stations in the Tehuantepec isthmus
and southern-central Mexico regions. These observations are
being used for waveform analysis, inversions of coseismic offset,
faule slip distribution, and other analyses of related rupture
processes. Two examples of the real-time capabilities of the net-
work during large carthquakes are displayed in Figure 4. This

(Dpre shows real-time 1—sample/s precise point positioning
Ramsplacement in the east, north, and vertical directions for
the 8 September 2017 M, 8.2 Tchuantepec and the 19 Sep-
tember 2017 M, 7.1 Morelos-Puebla earthquake events
derived from 1-Hz GPS streams from TLALOCNet, COCO-
Net, and other GPS stations in the region.

The M,, 8.2 Techuantepec and M,, 7.1 Morelos-Puebla
events on 8 and 19 September 2017, respectively, provided
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a good test for overall network performance and data transmis-
sion during a disruptive event. Typical real-time data latencies
for data streams during normal operational conditions range
from 1500-3500 ms for VSAT-equipped stations to 1200-
1500 ms for cellular equipped stations and 50-500 ms for
stations with broadband Internet access.

Because of budget constraints, a large number of
TLALOCNet stations rely on cellular modems for daily and
real-time data transmission. A smaller number of stations have
access to broadband Internet service, with some using a point-
to-point radio link. All SSN-TLALOCNet and those stations
in remote locations such as Guadalupe (GUAX) and Arrecife
Alacrin (CN26) islands rely on VSAT satellite ground stations
for data transmission. During the A, 8.1 Tehuantepec and
M,, 7.1 Morelos-Puebla carthquakes, more than 95% of the
network stations were logging data, and in these instances all
of the VSAT stations operated properly, as did those with
broadband access (see Fig. 4). Although cellular links were
mostly operational, high cellular traffic right after the event
prevented a few from maintaining real-time data streams. In
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A Figure 4. Real-time 1—samples/s precise point positioning displacement in the east, north, and vertical directions for (top) the 8
September 2017 M,, 8.2 Tehuantepec and (bottom) the 19 September 2017 M,, 7.1 Puebla earthquakes observed from 1-Hz GPS streams
from TLALOCNet, COCONet, and other GPS stations in the region. Vertical red lines show event origin times. Blue dots indicate predicted
P-wave arrivals and red dots the S wave as calculated using the International Association of Seismology and Physics of the Earth’s
Interior (IASPEI) 1D earth velocity model. Distances beside the site name indicate distance from the epicenter. Time series have been
offset vertically for comparison. For the M,, 8.2 event, the vertical traces for UTON and CN20 are in blue for clarity. All solutions were

generated using the Trimble RTX processing software.

all cases, automated file transfer protocol (FTP) of 15 s daily
files and 1 hr, 1 Hz files resumed a few hours after the event.
Direct FTP downloads for 5-Hz high-rate data, which is
usually retrieved on an as-needed case-by-case basis was also
possible within 2448 hrs after the event. In the case of TNAL
(Fig. 4, bottom panel), the radio link was lost seconds after the
19 September 2017 carthquake as a result of the point-to-point
radio antenna motion and resulting misalignment. Overall, the
availability of cellular transmission proved better than expected
during a disruptive event, and while cellular is not as reliable as
VSATs for data transmission, it remains a viable option to
support remote station telemetry, if lower cost and simpler in-
stallation logistics are desired.

INTERDISCIPLINARY CAPABILITIES OF THE
TLALOCNET INFRASTRUCTURE

One strategy for mitigating the high cost of developing and
maintaining high-precision observational networks is to have
a multipurpose and interdisciplinary approach for the use of

the available sensor data. TLALOCNet generates a suite of
measurements to address multiple scientific and operational
objectives by providing surface observations of wind speed and
direction, barometric pressure, air temperature, humidity, and
precipitation collocated with GPS/GNSS observations, which
can be used to derive high-frequency (5-30 min) total column
precipitable water vapor (PWV) estimates (Rocken ez al,
1993) for operational numerical weather forecasting and
targeted atmospheric science studies (Adams ez 4/, 2013).
TLALOCNet observations provide critical monitoring
across large areas of Mexico, with broad societal implications.
Over multidecadal time scales, climate models predict that the
currently arid parts of northern Mexico and the southwestern
United States will become even drier (Seager ez al., 2007; Kar-
malkar ez 4/, 2011), though individual monsoonal convective
storms may actually become more intense (Luong ¢z al., 2017).
These regions are at the northernmost edge of a climate hot
spot extending into Central America, where some of the largest
global increases in surface air temperature and decreases in
rainfall are projected to occur by the end of the twenty-first
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IH A Figure 5. Time series of precipitable water vapor (PWV) from

station TNHM in Hermosillo, Sonora, and surface latent heat flux
at Rayon, Sonora, measured during the North American monsoon
GPS Hydrometeorological Network 2017.

century (Maloney ef al., 2014). The northwestern sector of
TLALOCNet is designed specifically to provide constraints
on atmospheric water vapor over decadal periods within the
core North American monsoon region when coupled with
constraints from moisture source regions enabled through CO-
CONet, spanning the Caribbean and Central America (Braun
et al., 2012). Data from both networks together permit study
of the covariance of moisture in the monsoon and source
regions on subdaily to century time scales.

Debates over moisture sources for the North American
monsoon area in northwestern Mexico and the southwestern
United States have resurfaced in recent years. The role of
terrestrial surface water vapor flux is a global problem and
recent studies have argued for a greater role of Gulf of Mexico,
Caribbean, and terrestrial sources in monsoon convective pre-
cipitation and regional terrestrial moisture recycling (Domin-
guez ¢t al., 2008; Hu and Dominguez, 2015; Dominguez et 4l.,
2016). With TLALOCNet and COCONet providing critical
observational infrastructure and high temporal resolution,
PWYV estimates during any weather conditions, new insights
may be gained. This GPS-Met backbone infrastructure along
with intensive campaigns provide a unique opportunity to
advance on quantifying the North American monsoon water
vapor source regions, better understanding short-term mois-
ture transport mechanisms, the topographic influence on the
diurnal cycle of convection, the formation of mesoscale con-
vective systems, as well as the impact of iz situ total column
water vapor observations on short-term forecasts of monsoon
rainfall events (Adams et al, 2014; Serra et al., 2016).

Recently, TLALOCNet and SSN-TLALOCN et served as
a GPS-Met backbone and catalyst of more focused observatio-
nal experiments; for example, the North American monsoon
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GPS Hydrometeorological Network 2017 consisted of a
3-month campaign in northwestern Mexico during the mon-
soon season. The northwestern Mexico and Baja California
TLALOCNet sites, in addition to 10 campaign GPS meteoro-
logical stations, were used to infer large-scale water vapor in the
region. Initial results show the evolution of PWV versus latent
heat flux in the Hermosillo, Sonora, area (Fig. 5). This figure
indicates that seasonally latent heat fluxes (ie., surface
evaporation) and PWV evolve together, although at higher
frequencies the relationship becomes less well correlated. Dem-
onstration that PWV and surface latent heat flux are correlated
across northwestern Mexico was made possible by TLALOC-
Net campaign GPS during the 2017 monsoon season. Based on
our new campaign observations, we suggest that local terrestrial
surface evaporation plays a secondary role in providing water
vapor to the atmospheric column.

In addition to tropospheric studies, space weather has
become an important hazard assessment element for modern
society. TLALOCNet and SSN-TLALOCNet data are a key
source of information for space weather studies in Mexico.
Earth’s ionosphere is very sensitive to space weather phenom-
ena. Vertical total electron content (TEC) is one of the main
ionospheric parameters used to estimate the ionosphere state.
TEC is the quantity of electrons in a column of unit cross
section (from a GPS satellite to the ground; Davies and Hart-
mann, 1997). TEC is calculated using phase and code delays
GPS signals received by dual-frequency ground receivers. T@
Mexican Space Weather Service performs continuous TEC B
monitoring over Mexico using TLALOCNet and SSN-
TLALOCNet data in necar-real time. Results have already
shown a number of distinctive features over Mexico. For exam-
ple, Gonzalez-Esparza ez al. (2017) and Sergeeva ez al. (2017)
have identified systematic TEC variations as well as irregular
TEC changes during space weather disturbances. Even though
TEC values can be obtained from global ionospheric maps pro-
duced by the International GNSS Service, global and local phe-
nomena of different origin and scale impact the state of the
ionosphere of a particular region on Earth. Consequently, GPS
data from local networks arec of paramount importance,
especially for near-real-time monitoring. These advantages pro-
vided by a regional GPS network in Mexico have been shown
in Sergeeva et al. (2017).

TLALOCNET DATA ARCHIVE

In 2010, investigators responsible for building and maintaining
much of Mexico’s GPS research infrastructure over the past
20 yrs convened a workshop jointly sponsored by NSF and
CONACGYT to discuss the scientific rationale for upgrading
and integrating GPS stations in Mexico into a state-of-the-
art continuous GPS-Met network for basic and hazards science
rescarch in atmospheric, climate, and solid-earth research
(Cabral-Cano e# 4l, 2010). One of its outcomes was the
memorandum of understanding (MOU) for open GPS data
sharing and collaboration, which has now been transformed
into a binding legal agreement. The spirit of the MOU for
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GPS data exchange in Mexico is realized and implemented
through the TLALOCNet data archive that serves as a collec-
tion and distribution point (see Data and Resources) for
TLALOCNet data, metadata, and derived data products.
The TLALOCNet archive provides open and freely avail-
able raw GPS data (as well as GNSS data for a subset of these
stations), GPS-derived PWV estimations, surface meteorology
measurements including surface rainfall, real-time data streams,
time series of daily positions, and a station velacity field to
support a broad range of geoscience investigat This data
center is based on UNAVCOQ’s Dataworks-GSAC software
(Boler et al., 2015) and can work as part of UNAVCO’s seam-
less archive for discovery, sharing, and access to data. There are
currently 104 stations archived using the same protocols and
structure as the UNAVCO and other COCONet regional data
centers. Through this data archive, the geodetic and seismic
communities have the capability of accessing data from
academically operated Mexican GPS-Met sites. This archive
interface provides a fully queryable and scriptable GPS and
meteorological data retrieval point. Additionally, real-time
Hz streams from selected TLALOCNet stations are available
@1 BINEX and RTCM v.3.1 formats via the Networked Trans-
port of RTCM via Internet Protocol.

PLANNED EXPANSION FOR THE GEODETIC

@ETWORK

Although the rate of growth for the geodetic infrastructure in
Mexico has increased substantially in the last years, the GPS
station density is still less than adequate to serve the broad
science and  operational objectives envisioned  during
TLALOCNet’s inception. The next development phase for
TLALOCNet includes collocation of GPS instrumentation
at existing SSN sites (at this time, there are ~20 SSN stations
that are without GPS) and the addition of GPS infrastructure
to existing Red Sismica Mexicana stations currently in initial
development by SSN. This already funded expansion of the
geodetic infrastructure in Mexico will add another 45 stations,
expanding the installed capability to ~180 GPS stations by
2020, and will achieve more complete coverage across Mexico,
with GPS stations located less than 200 km from each other
(Pérez-Campos ez al., 2018).

DATA AND RESOURCES

Observational, navigational, and meteorological RINEX files
collected by the Trans-boundary, Land and Atmosphere Long-
term Observation d Collaborative Network (TLALOC-
8 Net) are open an y available at the TLALOCNet archive
(http://tlalocnet.udg.mx). Real-time data stream broadcasts
from some of the TLALOCNet stations are available in both
BINEX and RTCM (v.3.1) formats via the Networked Trans-
port of RTCM via Internet Protocol (NTRIP). Access to real-
time streaming data must be requested by emailing rtgps@
unavco.org. UNAVCO Streaming Global Positioning System
(GPS) Data Policy is available at https://www.unavco.org/

community/policies_forms/data-palicy/DataStreamingPolicy.pdf.
Maps for this publication Weree using Generic Mapping
Tools v.5.4.2 (http://gmt.soest.hawaii.edu; Wessel and Smith,

1998). K{
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