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Supplementary Material on Data and Methods 

GPS 
1 GPS Positioning. 
Series of position as a function of time of 3658 GPS sites in North America are from 
Nevada Geodetic Laboratory (NGL) [Blewitt et al. 2018].  Scientists at Jet Propulsion 
Laboratory (JPL) first estimate satellite orbits and clocks and positions of about 80 
GPS sites each day from 1994 to 2019 in the IGS14 reference frame (in JPL's 'Repro 
3.0', which follows the IGS Repro 2 standards except for the reference frame) using the 
technique of Zumberge et al. [1997].  NGL scientists next estimate the positions of 
GPS sites each day using the GipsyX software program pppZap/gd2e.py [Blewitt et al. 
2018, Bertiger et al. 2020].  In total 44,805,783 positions on distinct days are estimated 
at 18,414 GPS sites.  NGL then transforms GPS positions from a loosely constrained 
reference frame into the IGS14 frame [Rebischung et al. 2016] using JPL's 'X files', 
which on  each day is a similarity transformation consisting of a translation, a rotation, 
and a scale. 
 
NGL estimated positions using improved techniques.  The troposphere model consists 
of dry and wet zenith delays from ECMWF and the VMF1 mapping function [Boehm et 
al. 2006] interpolated to each GPS site every 5 minutes, with the data weighted by 
elevation angle; a wet zenith bias parameter and two gradient parameters are 
furthermore estimated also every 5 minutes as random walk stochastic processes.  The 
ionosphere model is calculated on the basis of dual frequency ionospheric correction, 
JPL's total electron content (TEC) in ionosphere exchange (IONEX) format, and the 
12th generation of the International Geomagnetic Reference Frame (IGRF).  The 
satellite antenna phase center variations are from Rebischung and Schmid [2016, 
igs14.atx]. 
 
We fit a position, a velocity, and a sinusoid with a period of 1 year to GPS data from 
1994 to 2019 following the methods of Argus et al. [2010, 2017].  We estimated offsets 
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when needed, whether they be at the time of logged antenna substitutions, 
earthquakes, or of unknown source (in most instances suspected to be unlogged 
antenna substitutions).  Earthquake offsets and postseismic transients were assumed 
to negligible in the eastern U.S.in the eastern U.S.  In the western U.S., we estimated 
coseismic offsets and deleted all GPS positions biased by postseismic transients of 
the 2012 M 7.8 Haida Gwaii, 2010 M 7.2  Baja, 1999 M 7.1 Hector Mine, 2003 M 6.5  
San Simeon, 2014 M 6.0 South Napa, and M 6.0 Parkfield earthquakes. 
 
The median root mean square dispersion of positions at 1530 GPS sites in eastern 
North America are, in the east, north, and up component, 1.5 mm, 1.6 mm, and 5.6 
mm (with 15 and 85 percentile values of 4.1 mm and 5.9 mm). 
 
The accuracy of NGL's GPS positions improved just prior to this study, as evident in a  
15 per cent reduction in root mean square (rms) dispersion [Blewitt et al. 2019].  This 
advance resulted from JPL's re-estimation of all satellite orbits and clocks from 1994 to 
2019 (in Repro 3.0 relative to IGS14, as opposed to in Repro 2.1 in IGS08) and from 
NGL redetermination of 18,400 site positions using improved techniques (as described 
in the preceding paragraph).  NGL's adoption of wet and dry zenith delays each day 
from ECMWF and the VMF1 mapping function resulted in a second 15 per cent 
reduction in the rms dispersion in the up component after atmospheric loading is 
removed (as described in the next paragraph). 
 
2.  Removing Atmosphere and Non-Tidal Ocean Loading. 
We removed elastic vertical displacements produced by changes in atmosphere and 
non-tidal ocean loading using values calculated by the German Center for Geoscience 
[Dill and Dobslaw 2013].   Dill and Dobslaw [2013] calculate solid Earth's elastic 
response to changes in non-tidal atmosphere mass in model ERA Interim from the 
(ECMWF) European Center for Medium-Range Weather Forecasting [Dee et al. 2011].  
Dill and Dobslaw [2013] calculate elastic displacements relative to the (CF) center of 
figure of Earth using the Green's functions of Wang et al. [2012, for the ak135 Earth 
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structure].  We interpolate GFZ's values at 0.5° intervals of latitude and longitude to the 
location of the GPS site and we each day take the mean of eight GFZ's values 
specified every 3 hours.  Removing the elastic displacements reduced the root mean 
square dispersion in the up component by 15 percent (to a median of 4.8 mm, with 15 
and 85 percentile values of 4.1 mm and 5.9 mm). 
 
We corrected for elastic displacements produced by changes in atmosphere mass 
using Green's loading functions relative to mean position of Earth's surface (CF).  In the 
long term, the mass center (CM) of Earth (consisting of solid Earth, oceans, ice, and 
atmosphere) defines ITRF2014.  In the seasons, the mean position of Earth's surface 
(CF) defines solid Earth because ITRF does not allow there to be seasonal oscillations 
in CM.  The displacement between CF and the mass center of solid Earth (CE) is 
minuscule [cf. Dong et al. 2002].  We maintain that the velocity between CM and CE 
may be significant but must be small, no more than 0.3 mm/yr [Argus 2007, 2012]. 
 
The predicted elastic displacement of GPS sites produced by changes in Great Lakes 
water varies ever so slightly between the CF, CE, and CM reference frames. GPS site 
MICX is predicted  to fall by 16.7 mm relative to CE in elastic response to the the 285 
km3 of Great Lakes water gain from Oct 2012 to Oct 2019.  MICX's predicted elastic 
displacement from 2012 to 2019 relative to CF differs from that relative to CE by just 
0.008 mm.  MICX's elastic displacment relative to CM differs from that relative to CE by 
0.304 mm.  We calculated solid Earth's elastic response relative to CF, CM, and CE 
using the Green's loading functions in Martens et al. [2019].  The 0.304 mm 
displacement between CE and CM can also calculated to be the 285 x 1012 kg Great 
Lakes water gain divided by the 6 x 1024 kg mass of Earth, multiplied by Earth's 6371 x 
103 m radius. 
 
3.  Distinguishing between elastic and porous response. 
We distinguished GPS sites having an elastic response to change in mass load from 
those with a porous response following the method of Argus et al. [2014, 2017].  GPS 
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sites with a seasonal maximum vertical position around March are taken to be 
responding porously.  In North America, groundwater filling the pores in silts, sands, 
and gravels causes an aquifer to expand and Earth's surface to attain a maximum 
around March.  GPS sites subsiding faster than about 2 mm/yr are responding 
porously.   Pumping of groundwater from an aquifer causes the aquifer to contract and 
Earth's surface to subside.  In particular, five GPS sites in the Red Lake Peatland 
Scientific and Natural Area, Minnesota, are responding porously to fluctuations in 
groundwater, as evident in their big seasonal vertical oscillations with maximum 
vertical height around August. 
 
4.  Removing solid Earth's elastic response to changes in Great Lakes surface water. 
We describe our method for removing solid Earth's elastic response to change in Great 
Lakes surface water in the main text. 
 
5.  Removing solid Earth's viscous response to unloading of the Late Pleistocene ice 
sheets. 
We removed solid Earth's viscous response to unloading of the Late Pleistocene/early 
Holocene ice sheets using the ICE 6G/VM5a model [Peltier et al. 2015, 2018, Argus Fu 
Landerer 2014].  The 6G model well fits Holocene geologic relative sea level histories 
[e.g., Vacchi et al. 2018] and geodetic rates (mostly GPS) of site vertical motion 
throughout North America [Peltier et al. 2015]. 
 

GRACE 
1.  GRACE mass change. 
Time series of change in total water storage at Earth's surface are from JPL's GRACE 
mascon determination [Release 6, Version 2, Wiese et al. 2016, Watkins et al. 2015].  
Changes in total water storage each month from April 2002 to September 2019 are 
estimated in 3° x 3° mass elements at Earth's surface using GRACE and GRACE 
Follow On gravity measurements.  Changes in atmosphere mass have been removed 
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using AOD1B [Release 6, Dahle et al. 2019], a model using the same ECMWF 
estimates of atmosphere mass used to correct the GPS positions. 
 
2.  Simulating GRACE measurement of surface change using a Gaussian function. 
We simulated the mass change signature that GRACE sees at an altitude of 400 km 
using the Gaussian function [following Wahr et al. 1998]: 
 
exp ( (–x/σ)2 / 2 ) / ( σ (2π)1/2 ) 
 
where x is the distance from an element of surface water change in the Great Lakes 
and σ is the fullwidth of the Gaussian distribution.  Changes in Great Lakes surface 
water each month measured by water level gauges are specified at 1855 elements 
inside the five Great Lakes at 1/8° intervals of latitude and longitude.  
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Supplementary Figure Captions 
Figure S1.  Change in water levels in the five Great Lakes from Jan 1991 to Dec 2019 
measured by water level gauges (dots with different colors signify the seasons).  
Change in Great Lake water levels estimated using satellite altimetry [USDA 2019] 
(black dots) nearly equals that measured by water level gauges.  Vertical axes at left 
are in meters and are identical; vertical axes at right are in cubic kilometers and 
depend on Great Lake area. 
 
Figure S2.  Solid Earth's horizontal displacement in elastic response to increase in 
Great Lakes surface water volume from October 2012 to October 2019.  Places in the 
Great Lakes drainage basin moved toward the Lakes 1–4 mm.  Horizontal 
displacement is maximum at LCUR (3.9 mm) and PARY (3.9 mm). 
 
Figure S3.  Present-day rate of vertical motion (color gradations) reflecting solid Earth's 
viscous response to unloading of the Laurentide (Canadian) ice sheet 15 to 5 thousand 
years ago in glacial isostatic adjustment model ICE 6G/VM5a [Peltier et al. 2015, 2018, 
Argus et al. 2014].  The model fits nearly all available Holocene relative sea level 
histories and geodetic estimates of current vertical motion.  Parts of Canada east and 
west of Hudson Bay are rising as fast as 14 mm/yr (red colors).  The forebulge around 
the former ice sheet is now collapsing as fast as 2 mm/yr in the northern United States 
(blue colors). 
 
Figure S4.  Solid Earth's subsidence (blue to magenta color gradations) in elastic 
response to the increase in Great Lakes surface water volume from April 2013 to April 
2016.  Contours are at 3, 5, 10, and 15 mm of subsidence.  The 4-letter abbreviations 
of the 24 GPS sites in Figs. S4, S5, and S6 are in yellow text.  The 4-letter 
abbreviations of Canadian Base Network sites are in green text. 
 
Figure S5.   Vertical displacement each month of 10 GPS sites along or near the coast 
of Lake Superior.  Elastic vertical displacement produced by changes in Great Lakes 
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surface water (green) is removed from vertical displacement observed with GPS (blue) 
to estimate vertical displacement reflecting phenomena other than Great Lakes loading 
(red).  Viscous vertical displacement generated by glacial isostatic adjustment orange) 
is steady; the predictions of model ICE 6G/VM5a are plotted.  The locations of the 10 
GPS sites are shown in Fig. S4 (the 4-letter site abbreviations are in yellow text). 
 
Figure S6.  Vertical displacement each month of 10 GPS sites along or near the coast 
of Lake Michigan.  Otherwise identical to Fig. S5. 
 
Figure S7.  Vertical displacement each month of 10 GPS sites along or near the coast 
of Lake Huron. 
 
Figure S8.  (a) Rise in surface water level (in m) in the five Great Lakes from April 2013 
to April 2016 measured by water level gauges. (b) Change in Great Lakes surface water 
smeared by a Gaussian distribution of 334 km.  (c)  Change in total water storage from 
April 2013 to April 2016 observed with GRACE (JPL's mascon solution [Watkins et al. 
2015, Wiese et al. 2016]).  Change in equivalent water thickness in each 3° x 3° 
mascon is given in m.  (d) Average in each 3° x 3° mascon of (diagram b) change in 
Great Lakes surface water smeared by a Gaussian of 334 km.  (e) Change in total water 
minus mascon average of change in Great Lakes surface water smeared by a Gaussian 
distribution of 334 km (diagram b minus diagram d).  Residual change in equivalent 
water thickness is less than 0.125 m in all places in the Great Lakes drainage basin.  At 
bottom right in each of the five diagrams is water change in the Great Lakes basin 
(brown outline) in km3. 
 
Figure S9.  (Left-hand column) Change in Great Lakes surface water smeared by 
Gaussian distributions with full widths of (1st page) 222 km, 334 km, 445 km and of 
(2nd page) 278 km, 334 km, and 389 km.  (Right-hand column) Change in total water 
storage observed with GRACE minus change in Great Lakes surface water smeared by 
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the Gaussian distribution with the full width to the left.  Residual water change in the 
Great Lakes drainage basin is smallest for a Gaussian full width of 334 km. 
 
Figure S10.  Areas that water change estimated from GRACE are averaged over in Fig. 
S11: the Great Lakes drainage basin (maroon), an area extending 167 km beyond the 
coast of the Great Lakes (sandy brown), and ten 3° x 3° mascons from JPL's GRACE 
solution (green). 
 
Figure S11.  Water change in the Great Lakes drainage basin are calculated using three 
different assumptions about the area of the basin (see Fig. S10).  In Fig. 7, duplicated 
in this illustration, we calculate water change in the drainage basin using an area 
extending 167 km beyond the coast of the Great Lakes: (a) Change in total water in the 
Great Lakes basin estimated with GRACE (brown), (b) Change in water in the Great 
Lakes basin after removing Great Lakes surface water smeared by a Gaussian with a 
full width of 334 km (blue), (c) Change in water in the ground in the Great Lakes basin 
(violet) is inferred to be change in total water estimated with GRACE minus Great Lakes 
surface water minus a composite hydrology model (pink).  In each of the three 
diagrams, the curves in yellow show water change calculated on the basis of the true 
Great Lakes drainage basin and the curves in green show water change calculated on 
the basis of ten 3° x 3° mascons. The estimates of water change do not depend 
strongly on the area chosen to represent the drainage basin.  Assuming the Great 
Lakes Basin to be the ten mascons results in slightly greater water change than the 
area extending 167 km from the Great Lakes; taking the drainage basin to be the true 
Great Lakes basin defined by all rivers flowing into the Great Lakes results in slightly 
less water change. 
 
Figure S12.  Mean change in total water from October 1 to April 1 in (a) a composite 
hydrology model and (b) observed with GRACE after removing the Gaussian-smoothed 
realization of Great Lakes surface water change.  Color gradations show the size of the 
oscillation in water (white is zero, blue to magenta depicts increasing water oscillation).  
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The sine component would be the entire seasonal oscillation if water were maximum in 
April.  Contours are at 0.125 m and 0.25 m of peak-to-peak water oscillation.  The 
composite hydrology model consists of snow in SNODAS and soil moisture in NLDAS–
Noah.  The mean oscillation in the Great Lakes drainage basin is given at top right for 
each diagram; the 15 percentile, median, and 85 percentile values of the oscillation in 
the drainage basin is given at bottom right. 
 
Figure S13.  Change in total water from April 2013 to April 2016 observed with GRACE 
after removing change in Great Lakes surface water smeared by a Gaussian with a full 
width of 334 km.  Color gradations show the size of the oscillation in water (white is 
zero, blue to magenta depicts water gain, green to yellow depicts water loss). Contours 
are at –0.125 m, 0.125 m, and 0.25 m of change in equivalent water thickness. 
 
Figure S14.  Change in total water from October 2012 to October 2019 observed with 
GRACE after removing change in Great Lakes surface water smeared by a Gaussian 
with a full width of 334 km.  Color gradations show the size of the oscillation in water 
(white is zero, blue to magenta depicts water gain, green to yellow depicts water loss).  
Contours are at –0.125 m, 0.125 m, and 0.25 m of change in equivalent water 
thickness. 
 
Figure S15.  Phasor diagram depicting seasonal vertical displacements observed with 
GPS (blue arrows), produced by Great Lakes surface water changes (red arrows), and 
predicted by water change estimated using GRACE (brown arrows).  The length of an 
arrow signifies the peak-to-peak amplitude in the seasonal oscillation (values for some 
sites are given in mm).  The direction of the arrow signifies the time of year of maximum 
vertical position as specified by the legend at top right. 
 
Figure S16. 
Phasor diagram of peak-to-peak seasonal vertical displacements estimated with GPS 
after removing Great Lakes elastic loading (blue arrows), in the composite hydrology 
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model (pink arrows), and predicted by water change estimated using GRACE after 
removing Great Lakes surface water change smeared by a Gaussian of 334 km (brown 
arrows).  The length of an arrow signifies the peak-to-peak amplitude in the seasonal 
oscillation (values for some sites are given in mm).  The direction of the arrow signifies 
the time of year of maximum vertical position as specified by the legend at top right. 
 
Figure S17.  Mean change in total water from October 1 to April 1 observed with 
GRACE after removing the Gaussian-smoothed realization of Great Lakes surface 
water change is depicted by the blue color gradations as specified in the legend 
(identical to Fig. S12).  Phasor diagram of peak-to-peak seasonal vertical 
displacements estimated with GPS after removing Great Lakes loading (blue arrows), in 
the composite hydrology model (pink arrows), and predicted by water change 
estimated using GRACE after removing Great Lakes surface water change smeared by 
a Gaussian of 334 km (brown arrows) (identical to Fig. S16). 
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