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This study explores the effects of cation composition on mass bias (i.e., the matrix effect), which is a major component of
instrumental mass fractionation (IMF) in the microanalyses of 3'3C and 3'30 by SIMS in carbonates of the magnesite—
siderite solid-solution series (MgCO3—FeCO3). A suite of twelve calibration reference materials (RMs) was developed and
documented (calibrated range: Fe# = 0.002-0.997, where Fe# = molar Fe/[Mg + Fel), along with empirical expressions
for regressing calibration data (affording residuals < 0.5%o relative to certified reference material NIST-19). The
calibration curves of both isotope systems are non-linear and have, over a 2-year period, fallen into one of two distinct but
largely self-consistent shape categories (data from ten measurement sessions), despite adherence to well-established
analytical protocols for carbonate 3'3C and §'80 analyses at WiscSIMS (CAMECA IMS 1280). Mass bias was consistently
most sensitive to changes in composition near the magnesite end-member (Fe# 0-0.2), deviating by up to 4.5%o (5'3C)
and 14%o (5'80) with increasing Fe content. The cause of variability in calibration curve shapes is not well understood at
present and demonstrates the importance of having available a sufficient number of well-characterised RMs so that
potential complexities of curvature can be adequately delineated and accounted for on a session-by-session basis.
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Here, we present the third installment of our ongoing
s‘rudy of instrumental mass fractionation (IMF) and somp|e
matrix effects (collectively referred to throughout as ‘bias)) in
the analysis of carbon and oxygen isotope ratios from Ca-
Mg-Fe carbonates by secondary ion mass spectrometry
(SIMS). Building on early pioneering studies (e.g, Eiler et al.
1997a, Valley et al 1997, Riciputi et al. 1998, Fayek et al.
2001), we recently provided an empirical characterisation of
SIMS §'3C and §'80 bias for the dolomite—ankerite solid-
solution series (Ca-Mg(CO3),~CaFe(COs)s) and  docu-
mented the development of a suite of microanalytical
reference materials (RMs; Sliwirski ef al 2016a, b). The
focus here is on the basic elements of the bias response from
carbonate compositions that fall along the complete solid-
solution that exists between the siderite (FeCOs) and

doi: 10.1111/ggr.12194

magnesite (MgCO3) end-members of the Ca-Mg-Fe car-
bonate temory(e.g., Chai and Navrotsky 1996, Chong et al
1996). Carbonates of the siderite—mqgnesife series are
encountered in many different geological environments; they
occur, for example: (a) as siderite concretions in marine and
freshwater sediments (Curtis et al. 1972, 1986, Gautier
1982, Postma 1982, Mozley 1989q, b, Curtis 1995); (b) as
siderite nodules in wetland soils and sediments of the
globe’s humid climatic belts (Ludvigson et al 1998, 2013,
Ufnar et al. 2004, Sheldon and Tabor 2009, Tabor and
Myers 2015); (c) as cements in sandstones and mudstones
(Macquaker et al. 1997, Morad 1998, Burley and Worden
2003); (d) as ore-grade siderite and magnesite deposits
(e.g, Frost 1982, Ferndndez-Nieto et al. 2003); (e) in the
extensive banded iron formations (BIFs) of the Precambrian
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(e.g, James 1954, Klein 2005, see figures 1 and 2 therein);
(f) in association with evaporitic sediments (e.g., Botz and von
der Borch 1984, Mayayo et al 1996, Lugli et al. 2002,

Luzén et al 2009, Sanz-Montero and Rodn’guez-ArandQ
2012, Mees and Keppens 2013); (g) in carbonatite
comp|exes (e, carbonate mineral-rich intrusive or extrusive
igneous rock bodies; e.g, Buckley and Woolley 1990); (h) as
inclusions in mantle diamonds (e.g., Wang et al. 1996,
Sobolev et al 1997, Dobrzhinefskoyo et al 2001, Kominsky
etal 2013); and () as a product of Weofhering or
hydrothermal alteration of igneous and metamorphic rock
bodies rich in Ca-Mg-Fe silicate minerals (e.g., olivine,
pyroxene, plagioclase, feldspars; eg, Chang et al 1996
and references therein); such environments are being
explored as one of many natural analogues to engineered
CO, storage (e.g, Power and Southam 2005, Wilson et al.
2009, Power et al. 2013).

Carbonate compositions of the magnesite—siderite series
are found in Martian meteorites (e.g, Eiler et al. 2002, Niles
et al 2013), where they co-occur with members of the
dolomite—ankerite series and other, more unusual compo-
sitions (from a terrestrial perspective) that are not constrained
to either of these two solid-solutions. Similar compositions
have been discovered in hydrothermally altered volcanic

Ca

1.0
0.9

deposits in Spitsbergen (e.g, Treiman et al. 2002) and are
being explored as potential terrestrial analogues for under-
standing the formation of Martian carbonates (e.g, Blake
et al 2010, Morris et al. 2011, Stem et al 2013 and

references therein).

The isotopic ratios of carbon and oxygen are widely
used in the geosciences as proxies for inferring the
conditions of carbonate formation; of inferest most commonly
is the temperature of mineral precipitation, the source(s) of
carbon, and the nature/source of the fluids involved (e.g,
marine, meteoric, mixed or hydrothermal waters). Variations
in the 3'3C and 8'%0 signatures of pedogenic (soil)
carbonates, for example, are frequently used as indicators
of past ecologic and climatic change on the continents
(Dworkin et al. 2005, Sheldon and Tabor 2009, Suarez
et al 2010). As a further example, 8'3C and '80 records
continue to be of interest for gaining insights into the
diagenetic and metamorphic history of banded iron forma-
tions (e.g, Perry et al 1973, Beukes et al 1989, Beukes and
Klein 1990, Kaufman et al 1990, Heimann et al. 2010), as
well as to make inferences about the unique palaeoenvi-
ronmental conditions under which they formed, at least in so
far as iron formation carbonates constitute a suitable proxy
for the chemistry of ancient seawater and atmospheric CO5

Ca-Mg-Fe solid solution series:
0.0 uwcs (WiscSIMS RMs)

® Magnesite—Siderite
O Dolomite—Ankerite

o0/ s o/ @/ ® —— o,

¥-0.0

Mg 00 01 02 03 04 05 06 07 08 09 10 Fe

Figure 1. Ternary diagram showing the range of Ca-Mg-Fe carbonate compositions represented by the microan-

alytical reference materials developed at WiscSIMS for calibrating SIMS 5'20 and 5'3C analyses (Table 1):

magnesite—siderite series (this study); dolomite—ankerite series (reported in Sliwinski et al. 20164a, b) and calcite

UWC-3 (Kozdon et al. 2009). Symbols represent average values (associated 2SE values smaller than symbols).
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Figure 2. (a, b) Plot relating SIMS 5'20 bias (%) to the cation composition of carbonates belonging to the siderite—
magnesite solid-solution series [Fe# = Fe/(Mg + Fe), molarl. Shown are representative examples of two types of bias
behaviour observed using consistent analytical protocols for: (a) 10-pm diameter spot-size measurements and (b) 3-
pm measurements. (¢, d) Working calibration curves based on the data plotted in (a, b), where bias values are
normalised to end-member magnesite (expressed as 5'20 bias*(RM-UWMgs1)), which serves as the calibration
anchor. Immediately below are the calibration residuals, which can be considered a measure of accuracy relative to
the CRM NIST-19. Refer to Appendix S4 for additional calibration examples.

levels (see Heimann et al 2010, Johnson et al. 2013). In resolved and interpreted due to the technical limitations of
many cases, however, the full range’ of isotope values within the sampling methods employed in conventional isotope
a sample (or some close approximation thereof) cannot be ratio mass spectrometry. This commonly involves generating
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sample powders by microdrilling domains that are hundreds
of micrometres in diameter (leading to potential signal
averaging effects, especially in instances where multiple

carbonate phases are present and crystal size is small).

The motivation for this research grew out of a need for
RMs in the wake of recent technical advances in carbonate
3'3C and 8'80 microanalysis by SIMS, and the potential
applicability of this technique to intensifying research efforts
concerned with geological carbon sequestration (McGrail
et al 2016, Sliwinski ef al. 2017). Isofope ratios in carbon-
ates can now be routinely measured in situ from micrometre-
scale sample domains with sub per mil (%o) repeatability
(sensu VIM 2008, 2.20 and 2.21; Valley and Kita 2009). The
accuracy of measurement (sensu VIM 2008, 2.13) in relation
to a certified reference material (e.g, NIST-19), however,
depends in large part on the availability and overall quality of
matrix-matched RMs. That is, accuracy is limited by the extent
to which RMs are chemically and isotopically homogenous
on the spatial scale of intended use, and a sufficient number
of these are needed to adequately characterise bias as a
function of chemical composition (e.g, Henig et al 1992,
Vo||ey and Kita 2009). For many mineral families wherein the
compositional end-members form extensive or complete
solid-solutions with one-another — such as the carbonates —
proper standardisation remains a work in-progress for the

community of SIMS laboratories around the world.

Methods

The methodology employed is documented in detail in
the first two parts of this study (Sliwirski et al 20164, b). Thus,
only a skeletal outline is provided here. Clean grain splits
(425-710 um size fraction) of thirty-eight different naturally-
occurring carbonate mineral specimens of the magnesite—
siderite series (Table 1) were prepared dfter extracting
approximately one-half to 1 cm® of the clearest or most
visually uniform domain of each sample. A suite of polished
grain mounts was prepared, and all thirty-eight test materials
were first evaluated for chemical zoning by BSE-SEM
imaging (each grain mount contained twenty randomly
selected grains of five different specimens). The most visually
uniform test materials (seventeen of the thirty-eight in total)
were then assessed by EPMA for variance in chemical
composition (typically three spot analyses randomly placed
on each of twenty grains) and later by SIMS to determine the
extent of 3'80 and §'3C uniformity (typically one spot on
each of twenty grains). SIMS measurements were made
using the CAMECA IMS 1280 large radius multi-collector
ion microprobe at the WiscSIMS Loborofory, Department of
Geoscience, University of Wisconsin-Madison). Thirteen of

these test materials (Tob|e ]) were considered occepfob|e

and lastly analysed by conventional phosphoric acid
digestion (12 h, 100 °C) and gas source mass spectrometry
(McCrea 1950) to calibrate the average §'°C and §'80
values relative to VPDB and VSMOW, respectively. In each
case, a single 25-50 mg subsample of grains was pow-
dered, and three separate digestions were performed on
~ 5-mg splits. Phosphoric acid-fractionation factors for §'80
measurements were calculated based on composition using

the formulation of Rosenbaum and Sheppord (1986).

Chemical homogeneity evaluations by EPMA  were
performed using either a 1-, 5- or 10-um diameter beam
(CAMECA SX-51 or SXFive FE, operated at 15 keV and 10—
20 nA; see Appendix S2 for RM-specific details). Fluorescent
X-ray signals on all spectral peak positions (Mg, Ca, Mn and
Fe-Kat peaks, Sr-Lo) were measured for either 60 or 120 s.
The guiding principle was to acquire at least 10,000
background-corrected Fe-Ka or Mg-Kar counts from the near
end-member compositions that contain low concentrations
of these elements (< 2 mol%); this ensures that the relative
standard deviation associated with X-ray counting statistics
remains below 19%. Spectral background corrections were
implemented using the Mean Atomic Number (MAN)
method described by Donovan and Tingle (1996). During
the course of a point analysis, the intensities of characteristic
X-rays fluorescing from electron beam-sensitive materials can
drift; this effect was monitored and corrected by a feature in
Probe for EPMA software (Donovan et al. 2007) called TDI
(ime-dependent intensity), where data plotted in measured
X-ray intensity vs. time space are de-trended before ZAF

corrections are applied.
A note on terminology and data presentation

Measurements of carbon and oxygen isoftope ratios in
carbonate minerals by SIMS are affected by systematic
inaccuracies arising from mass fractionation effects, a
component of which is instrumental in nature. Fractionation
occurs as follows: (a) during secondary ion formation at the
sample surtace (sputtering); (b) during uptake and transmis-
sion through the mass spectrometer; and then again (c)
during detection (e.g, Hervig et al 1992, Eiler et al 1997b,
Fitzsimons et al. 2000, V0||ey and Kita 2009, HubeHy et al
2010). A further component of mass fractionation is related
to sample composition, which varies systemoﬁca”y in min-
erals that exhibit solid-solution behaviour (e, the somp|e
matrix effect; eg, Eiler et al. 1997q, b, Riciputi et al. 1998,
Page et al 2010, Ickert and Stem 2013, Kitajima et al
2015, Sliwirski et al 201 6a, b).

For a given SIMS configuration, these collective effects
can be highly consistent across analytical sessions spread

52 © 2017 The Authors. Geostandards and Geoanalytical Research © 2017 International Association of Geoanalysts
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over a multiyear period (Sliwiriski ef al. 2016a, b). Through-
out this article, we will refer to the sum total of these effects as
the 3'80 and 8'3C "bias. As defined by the Intemational
Vocabulary of Metrology (VIM 2008), ‘measurement bias’ is
an ‘estimate of a systematic measurement error’ (2.18, VIM
2008), the effects of which can be compensated for by
correction or calibration. A systematic measurement error, the
causes of which can be known or unknown, is the
‘component of measurement error that in replicate mea-
surements remains consfant or varies in a predictable

manner (2.17, VIM 2008).

At present, secondary ion yields and the bias imparted to
isofope ratios during sputtering cannot be accurately
predicted from first principles for naturally occurring minerals
and glasses. Further, the relative contributions of instrumental
vs. sample matrix effects to the total measurement bias are
unknown (see, however, the work of Fabrega et al. 2017).
Nonetheless, carbonate §'80 and §'3C values can be
defermined accurately by SIMS with proper standardisation.
Critically, bias can vary from session to session due to
variations in instrumental parameters. For carbonate solid-
solutions, this requires a sufficient number of well-charac-
terised RMs to empirically characterise bias as a function of
chemical composition on a session-by-session basis.

The bias associated with SIMS measurements of §'0
and §"3C values from RMs is expressed as follows:

1 + (3'8 0w/ 1000)
1 + (5" Oysmow/ 1000)

(M

18
o “Ogpms =

1 + (5'3Crqw/1000)
1 + (8'3Cyppa,/1000)

(2)

13
o “Coms =

(modified after Kita et al 2009). For each RM, the terms
8180, and 8'3Crg represent the measured 180/10
and '3C/'2C ratios that have been corrected for back-
ground, drift and detector dead time (if electron multipliers
were used) and respectively normalised to the '80/'°O
rafio  in  Vienna Standard Mean Ocean Water
("80/"°Oysmow = 0.00200520, Baerschi 1976) and the
135C/'C ratio in the Vienna Pee-Dee Belemnite
("3C/"Cyppg = 00112372; Craig 1957, Allison et al
1995). They are thus expressed in the customary way as
per mil deviations (%o; & notation) from the accepted values
of the VSMOW and VPDB certified reference materials
(CRMs). However, both terms are bias-uncorrected and are
therefore not accurate relative to VSMOW and VPDB. The
terms ‘8'80Ovsmow and 8'°Cuepg, on the other hand,
represent the average 3'80 and §'3C values of the same
RM that have been independently calibrated to the

P
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VSMOW and VPDB scales by conventional phosphoric acid
digestion and gas source mass spectrometric analysis.

Values of a'80gums and o' *Cgyws (Equations 1 and 2)
are generally close to unity and are therefore consistently
expressed throughout this arficle using 8-nofation and
referred to as the ‘3'80 bias’ and ‘8'3C bias, respectively:

bias — 1000- (o — 1) 3)
where a is either o' 8 Ogps or o' *Copms.

All equations presented here are formulated such that all
mathematical operations involving multiplication or division
are performed on o terms, explicifly avoiding the common
approximation where: 55 — 8 22 1000In (os_p). Thus, for
example, if two or more isotope ratios expressed using 8-
notation are to be mu|ﬁ|o|ieo| and/or divided, they are first
converted to o values, multiplied and/or divided, and finally

converted back to isotope & values.

In order to construct working calibration curves that relate
bias to chemical composition, the 3'80 and §'3C bias of
each RM was normalised (or ‘anchored) to that of end-
member magnesite (UWMgs1):

3'3C or 5'%0 bias (RM — UWMgs1)

i 4
1000 +‘(b|osRM/1OOO) L (4)
1+ (b|05UWIv\gsl /] OOO)

The “* symbol indicates a normalised bias value. The
associated propagation of analytical uncertainties is of the
same general form as that reported in Sliwiriski et al
(20160, appendix S5 therein).

In cross-plotting and examining §'>C and §'80 bias as
a funcfion of cation chemistry of the magnesite-siderite
series, the composition is consistently expressed as the Fe/
(I\/\g + Fe) molar ratio (e, the Fe#).

Uncertainties associated with SIMS 8'3C and 8'80

measurements are reported in one of two ways:

(1) As a standard deviation value (at the 95% confi-
dence level) for a sample of o population

(25 = 24/Z(x —x)%/(n— 1), where x is the aver-

age (statistical mean) of a set of n values). This is
relevant in reporting: (a) the level of isotopic
homogeneity of each evaluated RM (where the
intent is to show the extent to which individual
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measurements are spread about the mean), and (b)
the measurement precision for a single sample spot
analysis (based on the 2s value of eight repeat
measurements of a drif-monitoring material that
brackets each set of ~ 10 sample measurements).

(2) As a standard error of the mean (at the 95%
confidence level) for a sample of a population
(2SE = 2s/+/n, where n is the number of obsernva-
tions). This is particularly relevant to calibration
diagrams, where the 2SE value reflects upon how
well the average is known for each set of replicate RM
measurements. As the number of replicate measure-
ments (n) increases, the average value calculated for
each RM becomes a more reliable estimate of each
respective population average. Uncertainties associ-
ated with regression parameters are also expressed
as 2SE values. A useful review of the uncertainties
associated with SIMS measurements can be found, for
example, in Fitzsimons et al. (2000).

Results and discussion

Summary of chemical homogeneity assessments

The calibration suite consists of twelve reference
materials (see Table 1). The comp|ete solid-solution that
exists between the magnesite (I\/\gCO3) and siderite
(FeCO3) end-members is uniformly represented by eleven
different carbonate compositions (Fe# 0.002 to 0.997; see
Table 2). Note that two of the materials sourced from
different localities (UWMgs4 and 5a, b) share a similar
cation chemistry but are isotopically dissimilar (making for
twelve RMs in total). Variability in the molar Fe/(Mg + Fe)
ratio (ie, Fe#) is as small as 0.001 (2s) and does not
exceed 0022 (2s) Fe# units. For most RMs in the suite, the
relative standard measurement uncertainty (100 x 2s/
average; 95% confidence level) falls between 0.1 and
13.7%. The relatively high value (33.6%) associated with
UWMgs2 — which contains 1.25% FeCOsz — reflects
greater chemical heterogeneity compared with all other
RMs in the suite, requiring a larger number of replicate
analyses for routine use (typically at least eight). In the
case of the magnesite end-member (UWMgs1), however,
the high-relative standard measurement uncertainty value
(49%) is associated with only a trace mass fraction of Fe
(0.17% FeCO3), which has no measurable effect on §'80
or 8'3C bias.

Less than 1% MnCOg is present in RM compositions
near the magnesite end-member (Fe# < 0.15), whereas
all others generally contain < 5% (the one exception is
UWSd4, with 8.35%). The entire suite contains up to ~ 1%

CaCOs3 and no detfectable Sr (detection limit of 0.01%
SrtCO3). The complete EPMA data set is provided in
Appendix S2.

Summary of isotopic homogeneity assessments

The level of isotopic homogeneity of each RM on the
microanalytical scale was assessed using a 10-um diameter
spot-size for 8'80 and a 6-pm spot-size for 3'°C measure-
ments. Typically, approximately twenty different grains were
analysed once each.

Of the twelve RMs in total, eight yielded §'80 data sets
with 2s < 0.56%0 (see Table 1). An additional three RMs
yielded 2s values < 0.86%0 and are considered to be
routinely usable for calibration if the 2SE value is driven fo =
0.3%0 with a sufficient number of replicate measurements
(approximately eight measurements are required in this case
from a handful of grains, whereas more uniform RMs require
as litfle as four). For reference consider that a 2s value of
0.3%0 is expected for n=4 replicate measurements
performed on a nominally homogenous material; this is
based on considerations of ion counting statistics, overall
instrument stability and slight mount-specific differences in
§'80 bias values measured from drifi-monitoring materials
(e.g, Kita et al 2009, Valley and Kita 2009). In the case of
RMs with slight heterogeneity, a 2s value of up to
approximately = 0.5%o is considered acceptable. Reference
material UWMgs7 is not preferred for routine use on
account of a 2s value of 1.89%o and the large number of
replicate measurements (> 20) required to drive the 2SE
value to 0.4%o. However, data for this material are being
presented because it nonetheless provides critical insight
into the magnitude of SIMS 8'80 bias in the composi-
tional range between Fe# 0.2 and 04, for which it was
difficult to obtain samples in sufficient quantity for RM
development.

All twelve RMs yielded 3'3C data sets with 2s values
< 1.0%0 (2s; Table 1). Based on the same considerations as
above, a 2s value of 0.6-12%o is expected for n = 4
replicate measurements using the instrumental configuration
and analytical protocol employed at WiscSIMS for small-
spot carbonate 8'13C analyses (6-um diameter spot-size).
Please note that in comparison with oxygen, measurements
of carbon isotope ratios are inherently more variable
because: (a) carbon has a lower ionisation efficiency than
oxygen under comparable primary ion beam conditions,
and (b) carbon comprises only 20% of all atoms in the
carbonate crystal structure (compared with oxygen which
accounts for 60%), requiring the use of an electron multiplier
for defecting the secondary '3C ion sfream.
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Replicate 3'80 and §'3C measurements of mg-sized

E é é § § § % § § § 2 § E § grain sp|ifs of each RM by phosphoric acid digesfion and
gas source mass spectrometry yielded 2s values no larger
& 2RN22YTeRI8NYSR than 0.14%0 and 0.04%o, respectively (Appendix S1). The
O0O0O0O0O0~00~~—~—0 18 . .
range of &' °O values represented by the entire suite extends
E ° P P S from 7.92 to 16.99%0 VSMOW (-22.30 to -13.50%0 VPDB),
L E go:ogo;%ggggg 13 1)
< BRI whereas the §'°C range extends from -11.97 to -0.32%o
VPDB. The complete SIMS data set is provided in
@ 8888888888888 Appendix S3.
O O O0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOo
. csagegnoen Yoz Calibrations (overview)
& 8565535253858 38
O O O0OO0O0OO0OO0OO0OO0OO0OOoOOoOOo
H In the first two pars of this study, we empirically
37 |scegcoogeosgygs ) : s 3
.= €99535552983%8% constrained the behaviour of SIMS §'°0O and §'°C bias
]
= for carbonate mineral compositions of the dolomite~ankerite
3 8588358558888 solid-solution series and introduced the use of a Hill4ype
« S35 S5S0350383 063 oS ) )
equation (Hill 1910, Goutelle et al. 2008) as an adequate
SIyQg-orNgvNg means of mo'rhemoﬁco”y mode||ing the high|y non-linear
& 8838555935588
O O O0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOo

distribution of calibration data in composition vs. bias space

(Equation (4) in Sliwinski et al 20160, b):

EE NANIBYILILI NN
—_ :'S-, 055.—.—.—9%3\02&&
— 18 13 sl
E 3O or ' C bias (RM - RMendfmemberdok)mite)
"; & I [ R R R N B | (BiOS* )Xn (5)
max
0 = I(n
+ X"
< [ o
o |o N oo
7d % (AN a A A A A A A alalNala)
> A vV V V V V V V V V V V VYV
< | where %’ = Fe#, k" and '’ are curve-shape parameters and
2
s | Bias* ey is an analytical session-specific scaling factor. Note
= |2 8838338325238R83
3 |a 3333585353 a253 that the bias of each RM is normalised to that of an end-
2 3 member dolomite (UW6220" at WiscSIMS), which serves as
2 ¢ 88X58R388338338§ the ‘anchor’ for the dolomite—ankerite series (the asterisk
{ = OO0 O0OO0O0OO0OO0ON — u1n T ¥
5 2 denotes that bias values have been normalised to the
o |8 PN YTONT -0 O calibration anchor). Under routine operating conditions for
D 33383=2223d323 8 3
“w —_—— - - N M — . o .
&2 |« carbonate 8'80 and §'3C analysis ot WiscSIMS, this
;g 9': NP2 SNINOT e equation has been reliably applied over a 3-year period
25 | e S-—-SSgngdgPry using the same set of curve-shape parameter values to
2| e
b regress calibration data acquired using: (a) 10-um spot-size
o |3 _ _ _ i ) _
£ |2 583-2822828¢%8 3'80 analysis conditions; (b) 3-um spotsize §'0 condi-
o |« ) . o .
c tions; and (c) 6-um  spot-size 3'3C conditions (additional
o > . . . . _—
g S 2T ITULNTIZINDS Y calibration data sets have been acquired since publication
o 4
o M eeeecceeccoce o of Parts | and Il of this sfudy—e.g., Brodie 2016, Haroldson
= 2017-but no significant changes in the values of the curve-
o NN n N N N X NN 0O N O
2 < 3323832233285 shape parameters have been observed).
L =
= o N OO WM OO OVNONOWW—Mm
o | % IoYLsggenasyIags Unlike the dolomite-ankerite bias calibrations, the
o = OO ®® O T M - . . .
£ R mogne5|te—5|o|erlfe trends have unexpectedly behaved less
o 2 : ‘ ‘
° | g ol om o 0w - o consistently from session to session and have shown more
— =" < o o O
S BEET|°7° Teene complexity of curvature. Throughout the 2- fi f
S c plexity o . Throughout the 2-year time span o
E = RM development, we have acquired calibration data for the
< H OO0 — 0 — 0 1 — N — 0o o 5 . . . . . .
S |3 meas £ = ;
5 o o Sa-e = magnesitesiderite series on multiple occasions; the data set
. o) @ .
S = = 2 presented here includes measurements from: (a) four sepa-
© 0 2 URT228N .9 . .
=5 |e 555555589030 £ rate 10-um spotsize 3'80 sessions; (b) two 3-um §'80
> - %] [%] [%] [} . .
L |2 55535353535355555¢% & sessions; and () four 6-um 8'3C sessions (see data
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summaries in Tables 3 and 4). The behaviour of 380 bias
calibrations fell info one of two categories: the first consists of
trends with two inflection points at constant positions along
the compositional axis (Type-I" calibrations; data from three
10-pum spot-size sessions and one 3-um session) and the
second of trends with only one inflection point (Type-ll; data
from one 10-um spot-size session and one 3-um session).
The behaviour of 8'3C bias calibrations also fell into one of
two categories of trends with no inflection points: those
resembling the general shape of a 3rd-order polynomial
(Type-l), and those that could be adequately regressed using
a 2nd-order polynomial (Type-ll). Two of four sessions
represent each type of 8'3C bias calibration.

Shown in the main body of this work are 8'80- and
3'3C-bias calibrations constructed using measurements from
a single mount containing the full suite of RMs (data from
sessions: 523 (6-um 8'3C), $22 (10-pm §'80) and two 3-
um 8'80 sessions — $24 and $26). Shown also, including in
Appendix 54, are additional examples of calibrations from
earlier (intermediate) stages of development during which
time the suite of RMs was distributed among multiple grain
mounts (each containing up to twenty grains of five different
test materials; see Table SA4-1 for details). These additional
examples are included here to demonstrate that the two
3'80 bias trend types we discuss have been reproducible.
Any mount-specific differences in bias measured from any
one RM are expecfed to be < 0.5%o. Consider, for exomp|e,
the data set from session S19 (Appenolix S4), where four
different mounts were used in building the magnesite—
siderite calibration. For any one mount, the average §'%0
bias value of the co-mounted drif-monitoring  material
(calcite "UWC-3’; Kozdon et al. 2009) differs by < 0.5%o
relative to all other mounts. Thus, any potential mount-to-
mount bias differences do not provide a tenable explana-
fion for the existence (at present) of two different 3'80 and
8'3C trend types. Note in particular that both types of §'80
bias behaviour have been observed on separate occasions
using the same set of grains on a single calibration mount
using the same 3-um spotsize §'®0  configuration
(Appendix S4: Table SA4-1).

The behaviour of SIMS 5'20 bias along the
magnesite-siderite binary

In all instances (Type-l and |l trends), the chonge in the
8] 8O bias (un-norm0|iseo|) between the end-members of the
magnesitesiderite solid-solufion series was not unidirec-
tional. To a first-order, however, the mognifude of the bias
decreased as a function of increasing Fe content (Figure 2a,
b). In other words, the per mil difference between 8'80 0w G
measured by SIMS and the ‘accepted’ 8'80yspow values

became smaller. The bias was always largest for end-
member magnesite (ca. -20 to -25%o with 10-pum spot-size
and -35%o with 3-um spot) and different by 12-16%0 in
relation to end-member siderite (approximately -8 to -12%o
with 1T0-pum spot and -20%o with 3-pm spo’r). From here on
the discussion will focus on working calibration curves
(Figure 2¢, d), for which 5'80 bias values were normalised
to the RM with Fe# = 00 (e, values expressed as 8'80
bias*(Rl\/\—UWI\/\gs])), and thus are seen to increase with
Fe#.

Type-l 6'80 trends: 10-pm spot-size set-up (3
sessions): The more common Type-l §'%0 calibrations
can be described as follows. A representative trend is shown
in Figure 2c (session S22 data). The magnitude of SIMS
3'80  bias*(RM-UWMgs1) increased exponentially by
~ 13.5%0 between Fe# = 0.0 and the first inflection point
at Fe# = 0.25. This was followed by a gradual decrease of
~ 4% out to the second inflection point at Fe# = 0.7, and
lastly an upward rebound of ~ 2.5%0 between Fe# = 0.7
and 1.0. The calibration data were regressed using the
following mathematical expression, which stems from the
probabilistic properties of the same Hill function (e.g, Hill
1910, Goutelle et al. 2008) used in recent work on 580
and 8'3C matrix effects in the dolomite—ankerite series
(Sliwiriski et al. 2016a, b). Hill-type equations are well-suited
for describing empirical relationships between the intensity of
a measured effect (or response) and the concentration of a
certain componen’r(s) in the system under observation,
especially in the case of systems that behave non-linearly

and reach saturation:

n—1

bias* (RM — UWMgs1) = C; (/:XT) +Cxd+Cy (6)

With the addition of the % term along with the three
constants ‘Cy” ‘Cy” and ‘Cg) this is o modified form of
equation 27 of Goutelle et al (2008), where 'n’, k" and ‘d’
are curve-shape parameters and ‘x’in our application is the
Fe# of either a sample or RM. The influence of the shape
parameters on the regression is shown graphically in
Appendix S4: Figure SA4-1, dlong with a step-by-step
graphical description of the trendfiting process. The
constants ‘Cy” and ‘G’ allow for vertical stretching/compres-
sion of the working calibration curve (Figure 2c, session $22
trend) to account for the fact that measured bias values can
differ by up to several %o on a session-to-session basis (a
new session is defined any time significant changes are
made in tuning parameters; typically a session lasts from 2
5 days). Lastly, the constant ‘Cs” accounts for the fact that the
calibration curves would not be anchored to the origin (0,0)
if an RM other than UWMgs1 were used as the normaliser
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(thus in the present case ‘C3" = 0). This becomes relevant
when one attempts fo fit a surface model to bias data for the
entire Ca-Mg-Fe carbonate terary. For this, it is necessary to
normalise the bias of all carbonate RMs (i.e., calcites,
dolomite—ankerites, magnesitesiderites) to a common ‘an-
chor. Consider, for exomp|e, setting dolomite rather than
magnesite as the common normaliser (i.e, the (0,0) point).
Doing so would have the effect of offsetting the regression of
the magnesite—siderite series by the magnitude of the bias
difference between the two RMs (e, 5'%0  bias*
(dolomiteand-member — mognesiteend,member)) but would have
no effect on the overall shape of the calibration curve.
Because ‘Cy”is simply a ratio of two measured values, it does
not need fo be determined by a fiting algorithm, leaving
Equation (6) an empirical expression of five parameters.

Regressing the oxygen isotope bias data from the full
suite of calibration RMs (Figure 2¢, session $22) yields the
following curve-shape parameter (nkd) and constant (Cy,
Gy) values (= 2SE: n=18 (£ 0.1), k=026 (= 004),
d=42 (£29), ¢, =38 +10) and G =59 @ 1.2),
and Cz = 0. This same set of cunve-shape parameter values
was successfully applied in regressing calibration data from
two earlier sessions during which fewer RMs were available
(Appendix S4: Figure SA4-2). In all three instances, the
measured average value of §'80 biqs*(Rl\/\—UWI\/\gs]) for
all RMs differs by less than 0.5%o from the output of the
calibration model (see residual plots in Figures 2¢ and
Appendix S4: Figure SA4-2). This can be considered a
measure of accuracy in relation to CRM NIST-19 (Verk-
outeren and Klinedinst 2004). The calibration residual shows
no significant correlation to the minor Ca confent of some of
these materials (r= 0.04; up to 1.07 mol% CaCO3 end-
member), or to the more substantial Mn concentrations
(r=0.19; up to 835 mol% MnCO3; end-member). No
secondary matrix corrections were thus required for this
particular suite of RMs.

Including Mn in the Fe# calculation, on account of its
appreciable concentration in the RM suite and the overall
similarity of Mn?* to Fe?" in terms of mass and ionic radius,
neither significantly improved nor degraded the quality of
the regression (see Appendix S4: Figure SA4-3). Note,
however, that the most Mn-enriched RMs in the suite do not
fall near the magnesite end-member of the solid-solution
series, where §'80 bias changes most rapidly as a function
of cation chemistry. It is likely for this reason that the
regression remains unaffected. In the hypothetical case of
samples that are enriched in Mn but deficient in Fe, it may
be advisable to p|of bias as a function of (Fe + Mn)# (e,
molar (Fe + I\/\n)/(l\/\g + Fe + Mn)), 0|though future studies

will need to resolve more conclusively how the effects of Mn-

substitution on &'80 bias in both the magnesite—siderite and
dolomite—ankerite series compare with those of iron.

3-pm spot-size set-up (1 session): A different set of
routine analytical conditions is used at WiscSIMS for 3- vs.
10-pm spot carbonate 8'80 analyses (described in Sliwinski
et al 2016aq). Notably, the small 3-um spot-size configuro—
tion makes use of a weaker primary Cs™ ion beam (600 pA
vs. 1.2 nA) and employs an electron multiplier for detecting
the minor isotope (80 in the secondary ion stream (as
opposed to a Faraday cup). One of the two 3-um
calibrations generated to date strongly resembled the three
self-consistent 10-um trends (Figure 2d, session S26 data;
compare with session S22 trend in Figure 2c) and was
successfully modelled using the same empirical expression
(Eqn. 6), yielding residuals < 0.5%0 (Figure 2d) and the
following parameter values (& 2SE): n=19 (*0.1)
k=024 £006), d=16 *19), C; =39 (*1.8) and
C, = 58 (+ 24), and C5 = 0. Note that the values of the
curve-shape parameters n and k and the constants C; and
G, are within 2SE limits of those associated with the 10-um
trends.

This 3-um trend differs from the above mentioned 10-
um calibrations in that the magnitude of SIMS §'80 bias*
(RM-UWMgs1) increased markedly by ~ 155%0 (ie, by
an addifional 2% compared with the 10-um  trends)
between Fe# =00 and the first inflection point at
Fe# = 0.25. At the present time, however, this should not
be viewed as a general conclusion about differences
between 3- and 10-um calibrations. The number of data
sefs is still limited, and this 2%o difference in the
magnitude of the maximum bias between the end-
members of a solid-solution falls within the general range
of expected session-to-session variability (compare with
Sliwiriski et al. 20160, b). A potentially more meaningful
difference may lie in the observation that the bias
maximum (relative to UWMgs1) at Fe# = 0.25 is followed
by a more gradual decrease of ~ 3% out to the second
inflection point at Fe# = 0.7 and the disappearance of a
significant rebound between Fe# = 0.7 and 1.0 (com-
pared with 10-um trends).

Type-ll 3'80 trends: 10-pm and 3-pum spot-size set-
ups: The alternative behaviour of 8]80 bias calibrations,
shown in Figure 2c, d, was observed under both 10- and 3-
pum spot-size conditions. These Type-l trends represent two of
the six sessions to date. The behaviour was as follows.
Starting at Fe# = 0.0, the magnitude of SIMS §'80 bias*
(RM-UWMgs1) in both instances increased exponentially
and reached a maximum of ~ 16.5%0 around Fe# = 0.4
0.5. Values then steadily declined by 1-2%o out to

64 © 2017 The Authors. Geostandards and Geoanalytical Research © 2017 International Association of Geoanalysts



Fe# = 1.0. This behaviour was modelled by combining the
Hill equation (in the form used to model bias in the
dolomite—ankerite ~ series; Equation (5) herein) and the
second term of Equation (6), which allows the Hill function
to descend dfter reaching a maximum value:

o+ on
Bias;, ., X

bias™ (RM — UWMgs1) = ( Tt

) +GCx? (7)

All terms are as defined earlier.

Assessment of potential crystallographic
orientation effects on &'20 bias

To our knowledge, crystallographic orientation effects on
380 bias (analogous to those described by Huberty et al.
2010, Kita et al 2011) have not yet been investigoted for
carbonates of the magnesitesiderite series. We performed
a simple test using two different mounts, each containing
grains of siderite (RM UWSd1) and two of ferroan magnesite
(RMs UWMgs4 and 5a) exposed at the analytical surface in
one of two broadly different sets of orientations with respect
to the primary and secondary ion beams.

The first category of orientations includes those where
the rhombic cleavage of magnesite and siderite grains is
parallel to subparallel with regard to the flattened and
polished analytical surface of the 1-inch diameter epoxy
mount; these orientations tend to be over-represented when
laying out grains on casting plates, although the variable
rotational positioning of cleavage faces does diversify the
number of unique crystallographic orientations that will
eventually be exposed for measurement. It does not,
however, allow for an assessment of whether 3'80 bias
differs significantly along the crystallographic planes that are
normal to subnormal to: (o) rhomb edges or to the (b)

rhomb  body-diagonal long axis. These orientations
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comprise the second category. A grain mount was prepared
with only this second category of orientations exposed by
supporting grains during casting with strips of ridged carbon
tape arranged in a series of parallel trenches ~ 0.5 mm
deep and spaced ~ 0.5 mm apart (Appendix S4: Fig-
ure SA4-4).

Measurements of 3'80 bias from both mounts were
performed on the same day of analysis (session $21) and
were found to be well within the = 0.3%o 2s repeatability of
the UWC-3 bracketing RM used to monitor instrument drift
(Table 5). In other words, there is no significant difference in
bias between the two broad categories of crystallographic
orientations described above.

Current insights and future directions towards
understanding the complexities of 5'20 bias
trends for the magnesite—siderite series

The §'80 bias response of carbonate compositions
between Fe# 0.0 and 0.3 is comparable for Type-l and -l
calibrations under both 3- and 10-um spot-size conditions
(Figure 2c, d; for ease of comparison, all four trends are co-
plotted in Appendix S4: Figure SA4-5). Recall that calibration
trends can stretch or contract by up to several per mil along
the bias axis from session to session while maintaining
constant curve-shape parameter values (and that o session-
specific scaling factor relates them; Sliwiriski et al 2016a, b).
Divergence in frend shape is driven by the session-specific
trajectory taken by compositions beyond Fe# 0.5, and has, to
date, resulted in bias differences of 2-6%o for the subset of
RMs between Fe# 0.5 and 1.0.

We have focused here primarily on presenting the first
detailed descriptions of 880 bias behaviour for carbonates
of the magnesite-siderite series, and on outlining o

functional calibration scheme. The existence at present of

Table 5.

Results of crystallographic orientation effect test on measured 8'20 bias

RM ID Fe# Grain mount | §'80,4. (%) 3180 bias 2s° n

type

uwsd1 0.997 Regula ° -4.56 -12.38 0.26 4
UWSd1 0.997 Oriented® -4.67 -12.49 0.28 8
UWMgs5a 0.105 Regular® -3.86 -1471 058 5
UWMgs5a 0.105 Oriented® -390 -14.75 072 10
UWMgs4 0.104 Regular® 212 1456 025 4
UWMgs4 0.104 Oriented® -2.13 -14.57 0.29 8

@ Among-grain variability.

b When grains are laid out on a flat casting plate, the thombic geometry of carbonate grains results in an under-representation of edges and apices.

¢ Mount with grain edges and apices oriented perpendicular to casting plate surface (grains embedded into deep grooves cut into 1-mm thick and stiff carbon

tape).
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two different §'80 calibration trend types — along with the
possibility that more variability in trend shape may be
encountered with time — does not limit our ability to make
accurate bias corrections (< 0.5%0 relative to NIST-19),
provided that a sufficient number of reference materials —
spanning the range of compositions between magnesite
and siderite — are available and utilised each session.
Understanding the underlying cause(s) of the complexity we
encountered with this solid-solution series, however, requires
further study and should perhaps serve as a reminder that
calibrating  SIMS instruments  for analysis of geological

materials remains entirely empirical in nature.

The findings of this study stand in contrast to our
experience with calibrating the dolomite—ankerite series. The
Hill equation introduced previously (Sliwirski et al 20164, b)
has been applied over a 3-year period using the same
curve-shape parameter values to regress calibration data
acquired using the same analytical protocols for 3- and 10-
um spotsize 8'80 analysis. Why, then, do these two
carbonate solid-solutions behave differently under the same
analytical conditions? One possibility is that the 3'0 bias
response is insensitive to slight session-specific differences in

20 T
(@) o
18 © 9o
- i
R 161 :
= @° :
— 14 ;
% L
= 12- ® i s *
2 . A
3 10 s
2 s 3
% 8 ;
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] 3 naturally-occurring dolomite-ankerite
O 4+ :
2 :
w e :
2 ' ® Magnesite-Siderite series
: O Dolomite-Ankerite series
04 @ :
T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10
(Fe+Mn) / (CationSum)

Magnetic susceptibi

instrument tuning below some threshold Fe (+Mn?) concen-
tration. Consider the dolomite—ankerite calibration data
compared with that of the magnesite—siderite series shown
in Figure 3a (note that composition is expressed here as a
molar ratio of FeMn fo the sum total of Ca, Mg, Fe and Mn
lie, Xfermn)] to account for the fact that Ca ideally occupies
one-half of all cation sites in the dolomite structure). The Fe
content of the dolomite—ankerite reference material suite
does not extend into the compositional field where Type-l
and -l 880 bias trends of the magnesite-siderite series
diverge in shope (note that the maximum Fe content of
naturally occurring  ankerites seems to be limited to

Xfermn = 04; eg, Chang et al 1996).

Something of potential interest to note here in moving
forward is that certain electromagnetic properties of carbon-
ate minerals vary by several orders of magnitude as a
function of Fe + Mn content. One example is electrical
resistivity (2 x 10" vs. 70 mQ for calcite and siderite,
respectively; e.g, Telford et al 1990). Another is magnetic
susceptibility (MS), which increases by a factor of 100
between dolomite and ankerite, compared with a factor of
1000 between magnesite and siderite (Figure 3b; see eg,
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Figure 3. (a) A comparison of SIMS 3'20 bias measured from carbonates of the dolomite—ankerite and magnesite—

siderite solid-solution series using the same conditions during a single analytical session (asterisks indicate a

modelled bias value; refer to Figure SA4-2b). Composition is plotted here as a molar ratio of Fe + Mn to the sum of

all cations (i.e.; X(fe+mn)) to facilitate comparison with data in (b), which shows systematic changes in the magnetic
susceptibility (MS) of carbonates as a function of Fe + Mn concentration (data from: [1,2] Schmidt et al. 2007, [3]
Schmidt et al. 2006, [4] Rochette 1988). Note that the Fe + Mn content of the dolomite—ankerite RM suite (Sliwinski

et al. 2016a) does not extend far into the compositional field where Type-I and -l bias trends of the magnesite-

siderite series begin to diverge in shape (X(re+mn) >~ 0.3; see Appendix S4: Figure SA4-5), suggesting that the 5'20

bias response is insensitive to slight session-specific differences in instrument tuning below this threshold (i.e.,

differences in trend shape are not expected for the dolomite-ankerite series and indeed have not been observed

over the last 3-year period).
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Rochette 1988, Hunt et al 1995, Schmidt et al. 2006,
2007). We can speculate that properties of this nature make
the magnesite-siderite series more sensitive fo session-
specific differences in tuning of the instrument — which can
manifest as differences in pit morphology (Appendix S4:
Figures SA4-6 and SA4-7) — by influencing the behaviour of
the electron cloud which provides charge compensation
during sputtering (and its role in promoting the formation of
secondary oxygen ions).

A potentially promising direction for future studies is an
assessment of how bias trends differ in shape (if at all)
when the spot-size is intentionally made smaller or larger by
~ 25-50% under otherwise routine 3'80 analysis condi-
fions where the target spot-size is 10-um, for example. Using
a primary beam of the same intensity and a fixed analysis
time, this would necessarily force a change in the pit depth
for a given carbonate composition (to maintain o constant
volume of sputtered material). A natural extension of such
experiments would be a rigorous assessment of sputtering
rates for the different common Ca-Mg-Fe carbonate miner-
als. In light of analogous studies in silicate systems (e.g, Eiler
et al 1997b, Isa et al 2017), this could significantly improve
our understanding of what drives the first-order differences of
~ 10-20%o in bias magnitude between the end-members
of the dolomite—ankerite and magnesite—siderite solid-

solution series.

We next continue our discussion of 8'0 matrix effects
by briefly examining how some of the base signals
associated with Type-l and -l calibration trends differ as
function of RM composition. We evaluated how Fe#
affects 'O ion yields and the magnitude of drift in the
raw isotope ratio over the course of a single spot analysis.
This provides further insight into the circumstances under
which inflection points appear in calibration curves, and
may be of use in designing further experimental studies
seeking to suppress this complexity. No comprehensive
model based on first principles exists at present for
accurately predicting secondary ion yields from geological
materials (and hence the bias imparted to isotope ratios
during sputtering). An important component of developing
and fesfing such models, however, is a clear empirical
understanding of how base signals vary as a function of
composition for solid-solution mineral series under different
analytical conditions (consider, e.g, the work of Riciputi
et al 1998).

Dependence of '°O ion yield on Fe#: The shape of
ion yield vs. Fe# trends responds to session-specific differ-
ences in tuning. Under both small- and large-spot conditions,

ion vyields were always smallest from magnesite and

increased as a function of Fe content out to Fe# = 0.645;
from here, yie|o|s either continued increasing out to the
siderite end-member (Type-Il trends) or began a gradual
decline (Type—l trends; 5 to 10% decrease relative to the
maximum value at Fe# 0.645 under large- and small-spot

conditions, respecﬁve|y). In more defail:

Under 10-um spot-size conditions, ion vyield trends
associated with Type-l and -l §'80 bias calibrations
followed different trajectories (parabolic vs. sigmoidal,
respectively; see Figure 4a and additional examples in
Appendix S4: Figure SA4-8). The ion yields of Type-l trends
varied by ~ 1 Geps nA™! between the end-members of the
solid-solution, whereas the difference associated with the
one example of a Type-l trend observed under these
conditions was twice as large. Qualitatively, the rate of
change in ion yield was similar for both trend types between
Fe# 0.105 and 0.645 but differed considerably near the
end-member compositions, where the steeper slopes seen in
the Type-ll frend resulted in a comparatively higher ion yield
from siderite (by ~ 0.5 Geps nA”, a ~ 15% difference) and
a lower yield from magnesite (by ~ 0.3 Geps nA™!, also a
~ 15% difference).

Under 3-um spot-size conditions, the ion yield trends
associated with both bias calibrations followed parabolic
trajectories with maxima at different compositions (at Fe#
0.645 for the Type-l trend and at the siderite end-member
for the Type-ll trend; Figure 4b). In both cases count rates
varied by 1.3 Mcps nA™'. Qualitatively, the rate of change
in ion yield was similar between Fe# 0.105 and 0.645;
however, a steepening of slope associated with the Type-ll
trend below Fe# 0.105 (analogous to that observed under
large-spot conditions) resulted in a comparatively lower ion
yield from magnesite (by ~ 0.3 Geps nA”!, a change of
~ 14.5%). Because the two trends crest at different
compositions, a count rate difference of 0.15 Geps nA™!
(@ ~ 6% difference) was observed from the siderite end-
member.

Note that in the case of Type-ll bias calibrations under
both small- and large-spot analysis conditions, the ion yield
is a function of Fe# and Fe# is a function of ion yield
(Figure 4a and b). Thus, hypothetically, the Fe# of a sample
material under the beam could be estimated from its ion
yie|o| (and this then fed into a Fe# vs. bias calibration to
determine the appropriate matrix correction factor). Whereas
this is not the case for Type-I bias calibrations, the very fact
that the shape of ion yield vs. Fe# trends responds to session-
specific differences in tuning hints at a potential analytical
advantage that could be gained through further refinements
in technique.
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Figure 4. The compositional dependence of certain base signals associated with SIMS 5'20 bias measurements

from the magnesite-siderite series. (a, b) Secondary 160" ion yields vs. Fe# and (¢, d) the cumulative change in

8180, between the initial (i) and final (f) cycles of analysis (“A'8O(cf - ¢;)") vs. Fe# for both 10- and 3-pm spot-size

analysis conditions. Yield = count rate (as mega or giga counts per second) / primary Cs* ion beam intensity (pA or

nA). Each point is an average of at least four measurements from four separate grains (one analysis/grain). (See text

for description of ‘Type-I’ vs. ‘Type-II’ bias trends).

Cumulative change in 3'80,,, during sputtering as a
function of Fe#: The raw 8'80 value reported for each
analysis spot is an average of multiple data collection cycles
(wenty cycles of 4 s each and twenty-five cycles of 8 s under
10- and 3-um spot-size conditions, respectively). It is thus
possible to assess if/how the raw signal changes during
sputtering, and if the magnitude of this change is system-
afically related to composition. Repeat measurements of
each RM were therefore summarised on a cycle-by-cycle
basis, where all cycle 1 measurements were compiled and
averaged, followed by all cycle 2 measurements, efc. Plotting
this data shows linear frends towards lower §'80 values
with each passing cycle under both sets of measurement
conditions (i.e, fractionation in favour of the |ighter isotope
increases with time; see cycle-by-cycle plots in Figures SA4-9
to 4-12). The cumulative change in 880, between the first

68

and last cycle of analysis (“A'®O(cs - ¢)) shows a depen-
dence on composition (the terms ‘c/ and ‘cf, respectively,
refer to the initial and final cycles). In a qualitative sense, the
dependence of A'®0(ci- ¢) on Fe# follows well- to
moderately well-defined parabolic trajectories under both
large- and small-spot conditions, respectively (Figure 4c, d).
Values of A"™O(cs- ¢) tend to be smallest near the mid-
point of the solid-solution (ie, consider the least negative
values in Figure 4c, d, which represent the least amount of
180-)‘

A"80(¢r - ¢) are largest (ie, most negative) at the compo-

down-pit  discrimination  against Values  of
siional end-members and are of equal to subequal
magnitude. If we regard the average A'8O(cs- ¢) value
of the magnesite and siderite end-members as a baseline
(as frame of reference), then we note the following: (a) the

baseline is lower in the case of Type-l (approximately -
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3.5%o) vs. Type-ll (approximately -1.5%o) §'80 bias calibra-
tions under both large- and small-spot conditions (there is
necessarily more scatter in the small-spot data due to
comparatively poorer counting statistics); (b) the range of
A"80(¢s - ¢) values is somewhat larger in the case of Type-|
(approximately 2%o) vs. Type-Il (approximately 1.5%o) §'80
bias calibrations under both large- and small-spot condi-
tions (Figure 4c, d).

In comparing the base signals of Type-l and -l
calibration trends and in reflecting on how they affect
measured bias values, we observe that the lower ion yields
associated with the Type-ll trend near the magnesite end-
member (Fe# < 0.2) correspond to larger bias values (by up
to 6%o; see Figure 2a). This follows general expectations.
Surprisingly, however, larger bias values were also observed
near the siderite end-member (Fe# > 0.8; by up to 4%o;
Figure 2a) despite ion yields being higher (compared with
the Type-I frend). At the same time, the A'80(cs - ¢) vs. Fe#
frends of both 880 calibration types are generally compa-
rable beyond a baseline shift (for each trend, note the similar
magnitude of A8 O(¢; — ¢) for the end-members and the
general symmetry of the data distributions in Figure 4c).
Differences in the topology of Typed vs. Type-ll bias
calibrations do not seem to be readily explainable by
considering only a simple interplay between these two base
variables (ie, trends in ion yield and A'™8O(¢s- ¢) as a
function of Fe#). We suspect that differences in sputtering
rate contribute here as well, as a visual comparison of pit
images (Appendix S4: Figures SA4-6 and SA4-7) suggests
that pit depth (and hence sputtering rate) increases with
increasing Fe content. Given what is known from silicate
systems, bias and sputtering rate can correlate strongly and
non-linearly (e.g., Eiler etal 1997b, lsa et al 2017).
Nonetheless, what is apparent from the data at hand is
that above a certain threshold Fe mass fraction, carbonate
380 bias calibration curve shapes are strongly influenced
by session-specific differences in instrument tuning (reflected
by the resulting pit morphologies/geometries). Where tuning
conditions accentuate differences in base parameters such
as ion yield and the observed down-hole drift of the raw
isofope ratio during sputtering, the end result is a more
complex calibration curve (compare base signals and
corresponding bias curves of Type-l and -Il trend in Figures 2

and 4).

The behaviour of SIMS 5'3C bias along the
magnesite-siderite binary

In all instances (Type-I and Il trends), the change in the
mognifude of 5'3C bias (un-normc1|ised) between the end-
members of the magnesite—siderite solid-solution series is

=Ty
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Figure 5. (a) Plot relating SIMS 5'3C bias (%) to the
cation composition of carbonates belonging to the
siderite-magnesite solid-solution series [Fe# = Fe/
(Mg + Fe), molarl. Shown are two types of bias
behaviour observed using a consistent analytical
protocol for 6-pm diameter spot-size measurements.
(b) Working calibration curves based on the data
plotted in (a), where bias values are normalised to
end-member magnesite (expressed as 3'3C bias*(RM-
UWMgs1)), which serves as the calibration anchor
(crossed-circle denotes an outlier). Inmediately below
are the calibration residuals, which can be consid-
ered a measure of accuracy relative to the CRM
NIST-19.
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consisfenﬂy unidirectional (o|beif non—|ineor). Relative to the
magnesite end-member, the bias increases by ~ 10%o as a
function of increasing Fe content (Figure 5a). In other words,
the per mil difference between 8"3C oo as measured by
SIMS and the ‘accepted’ 8'°Cyppg values becomes larger
(as values became more negative, the bias is said tfo
increase). The bias is always smallest for end-member
magnesite (-51.5%0) and different by 10%o in relation to
end-member siderite (approximately -61.5%0) (session $23
data, see also Table 4 and calibrations from other sessions
in Appendix S4: Figure SA4-15). From here on the discussion
will focus on Working calibration curves (Figure 5b), for which
3'3C bios values have been nommalised to that of the

magnesite end-member anchor (ie, values expressed as

3'3C bias*(RM-UWMgs1)).

Type-l and Il 3'3C trends: The shape of Type-l 8'°C
calibrations resembles a gently flexing 3rd-order polynomial
(Figure 5b; session $23 data). The bias response was most
sensiive to changes in cation chemistry in the Fe# range
between 0.0 and 0.3 (change of ~ 5.5%o relative to end-
member magnesite). Between Fe# 0.3 and 1.0, the change
was more gradual (approximately linear), with §'3C bias*
(RM-UWMgs1) values changing by an additional ~ 5.5%0
over this much broader range of compositions. The data
were regressed using Equation (6), yielding the following
parameter values (= 2 se): n =17 (= 0.1) k= 073 (= 0.1),
d=24*08), C; =C,=-51 (+04) and C3 = 0. This
same set of curve-shape parameter values was successfully
applied in regressing calibration data from one other
session that yielded a Type-l trend (Figure SA4-15). In both
instances, the measured average value of §'3C bias*(RM-
UWMgs1) for all RMs differs by < 0.5%0 from the output of
the calibration model (see residual p|ofs in Figure 5b and
Appendix S4: Figure SA4-15). This can be considered a
measure of trueness in relation to CRM NIST-19 (Verkouteren
and Klinedinst 2004). As with 8'80, the calibration residuals
show no correlation to calcium (r= 0.03) or manganese
(r=0.15) content, and the calibration remains unchanged
with the inclusion of Mn in the Fe# (Appendix S4:
Figure SA4-3). No secondary matrix corrections are thus
required for this particular suite of RMs.

In contrast, the shape of Type-Il §'*C calibrations can be
adequately described by gently flexing 2nd-order polyno-
mials, yielding residuals < 0.5%o (Figure 5b; session S18
data). The change in bias is thus more gradual when
compared with Type-l frends but is of the same general
magnitude (~ 10%o) across the entire solid-solution series
(one additional example is shown in Appendix S4: Fig-
ure SA4-15; please note that both examples of Type-l trends

represenf sessions from eor|ier stoges research When fOI’

fewer RMs were available). The shape of both trend types
differed most in the compositional space between Fe# = 0
and 0.5, where RM bias values changed on a session-by-
session basis by up 1-2%o.

We continue our discussion of 8'3C matrix effects by
briefly examining how base signals varied with RM compo-
sition. The '°C ion yields associated with the two different
§'3C bias calibrafion trend types shown in Figure 5 are
plotted as a function of composition in Figure 6a (see also
Appendix S4: Figure SA4-16). The ion yield of the Type-I
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Figure 6. The compositional dependence of certain
base signals associated with SIMS 5'3C bias mea-
surements from the magnesite—siderite series. (a)
Secondary '2C ion yields vs. Fe# and (b) the cumula-
tive change in 8'3C,,, between the initial (i) and final
(A cycles of analysis (“A'3 C(cf - ¢;)") vs. Fe# under 6-pm
spot-size analysis conditions. Yield = count rate (as
mega counts per second)/primary Cs* ion beam
intensity (nA). Each point is an average of at least four
measurements from four separate grains (one analy-
sis/grain). (See text for description of ‘Type-I’ vs. ‘Type-
I bias trends).
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trend can be described as a parabolic function of Fe# that is
symmetric around the mid-point composition of the solid-
solution, where it achieves a maximum value of
~12.5 Mcps nA™". Count rates were lowest and of the
same general magnitude from the compositional end-
members (~ 8 Mcps nA™"). The ion yield of the Type-ll trend
also followed a parabolic trajectory with a maximum near
the composiﬁona| mid-poinf (~13 Mcps nA']), o|fhough the
count rates measured from the end-members were dissimilar
(~ 9 and 8 I\/\cps nA! for magnesite and siderite, respec-
ﬁve|y).

In evaluating the change in 8'3C,,, across the twenty
data acquisition cycles associated with each individual spot
analysis, we noted moderately well-defined linear trends
towards lower values in both Type-l and Il bias calibration
data sefs (ie, fractionation in favour of the lighter isotope
increased with time; see cycle-by-cycle plots in Appendix S4:
Figures SA4-17 and SA4-20). Considering that the spot-fo-
spot repeatability of a 8'3C analysis is on the order of 0.6—
1.2%o (2s), the cumulative change in 8'°C,q, between the
first and last cycle of analysis (“A"3Clcr - ¢)) shows no
resolvable dependence on Fe# in the case of the Type-ll
bias trend (Gveroge change of -4%). In contrast, a weak
parabolic dependence was noted in association with the
Type-l frend, where the cumulative change in A"3Cler- ) is
smallest near the compositional mid-point of the solid-
solution (approximately -2%o) and largest near the end-
members (approximately -4%o; see Figure 6b and addi-
tional examples from other sessions in Appendix S4:

Figure SA4-1 6b).

Conclusions and recommendations

Recent advances in SIMS instrument design and refine-
ments of analytical techniques have brought about the
technical capability of performing highly precise, micrometre-
scale in situ measurements of carbonate §'0 and §'3C
values. The common spot-sizes employed for §'80 analyses
at WiscSIMS have diameters of 3- or 10-um, affording
repeatability precision at the following levels: = 0.3%o (2s;
10-pum spots) and = 0.7%o (2s; 3-pum spots). A b6-um spot is
used for 3'°C determinations, with repeatability precision
between 0.6 and 1.2%o (29).

The accuracy of such measurements in relation to
certified reference materials, however, o|epeno|s in |0rge
part on the availability of comprehensive suites of matrix-
matched reference materials that allow for characterising
and calibrating sample matrix effects. This is entirely an
empirical undertaking. With regard to Ca-Mg-Fe carbon-
ates, this has been an under-researched topic since the first-

pioneering studies in the late 1990s (e.g., Eiler et al 1997q,
\/(:1||ey et al 1997, Riciputi et al 1998). With this third
instalment of our ongoing study of these effects, most of the
common inorganic Ca-Mg-Fe carbonate compositions can
now be accurately analysed. This includes calcite (Kozdon
et al. 2009) and both the dolomite—ankerite (Parts | and I;
Sliwinski et al 2016q, b) and magnesite—siderite solid-
solution series (Part lll, this article). Biogenic carbonates may
present additional complexity if organic matter, water or fine-

groined, porous textures are present (Orland et al 2015).

Following 2 years of RM development and of acquiring
calibration data sefs, we can at present offer the following
observations, conclusions and recommendations regarding
SIMS analysis of carbonates of the magnesite—siderite series:

1 As with the dolomite—ankerite series, mass bias was
consistently most sensitive to changes in composition
near the iron-free end-member of the solid-solution.
With increasing Fe content up to ~ 20 mol% FeCO3
end-member (Fe# 00-02, where Fe# = Fe/
(I\/\g + Fe), expressed on a molar basis), 5'3C bias
increased by up to 3-4.5%0, whereas 'O bias
decreased by 13-15%0 (session-specific differences).

2 Between the end-members of the series, 8'>C bias
increased by a total of 10-11%0 (magnesite—
siderite), whereas 8'80 bias decreased by 13-
16%o (session-specific differences).

3 As an example, if uncorrected, the presence of 1-
2 mol% FeCO3 in a sample material of unknown
isofopic composition would produce a measurement
error (in relafion to CRM NIST-19) of ~ 1%o for 3'3C
and ~ 2-3%o for §'80 measurements.

4 Despite adherence to well-established analytical
profocols for carbonate 8'3C and 8'80 analyses at
WiscSIMS  (CAMECA IMS  1280), the magnesite—
siderite calibration curves of both isotope systems did
not maintain a constant shape from session-fo-session
over a 2-year period, but rather fell into one of two
distinct and largely self-consistent shape categories
(Type-I' and Type-I).

5 The shape of Type-l and -l 880 bias trends differed
most in the compositional space between Fe# = 0.3
and 0.9, where RM bias values changed on a session-
by-session basis by: (a) up to 6%o when using
conditions for 10-um diameter spot-size measure-
ments; and (b) up to 4%o when using 3-pm conditions.

6 The shape of Type-l and Il §'3C bias trends differ most
in the compositional space between Fe# = 0.0 and
0.5, where RM bias values change on a session-by-
session basis by up 1-2%o.
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7 The cause of variability in calibration curve shapes is
not well understood at present, and stresses the
importance of having available a sufficient number of
well-characterised RMs so that potential complexities
of curvature can be adequately delineated and
accounted for on a session-by-session basis. Doing so
allows for calibration residuals (Cl measure of accu-
racy in relation to CRM NIST-19) smaller than 0.5%o
for both isotope systems.
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