Rapid formation of porphyry copper deposits evidenced by diffusion of oxygen and titanium in quartz

Federico Cernuschi¹*, John H. Dilles¹, Stephanie B. Grocke², John W. Valley³, Kouki Kitajima³, and Frank J. Tepley III¹

¹College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331-5506, USA
²Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington DC, 20560, USA
³Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA

ABSTRACT

The lifespan of magmatic-hydrothermal activity that results in large and economically viable porphyry copper deposits remains poorly described. Here, we estimate the duration of the magmatic-hydrothermal fluid flow at 700 °C to <350 °C using diffusion profiles of Ti and δ¹⁸O in quartz from Fe, Cu, and Mo sulfide-bearing hydrothermal veins and porphyry dikes at the Haquira East porphyry copper deposit, Peru. In situ measurements indicate all vein quartz is zoned in Ti (1–120 ppm), whereas high-temperature quartz has been re-equilibrated at 450 °C to δ¹⁸O = 10.7‰. We use diffusion modeling to reproduce the observed Ti and δ¹⁸O profiles, which provides lifespan estimates at Haquira of 75–170 k.y. for the period from initial magma and fluid injection at 700 °C to cooling below 350 °C. The bulk of the Cu-Mo-Au ore formed in ≤35 k.y., indicating that large-scale, economic porphyry copper deposits can form rapidly.

INTRODUCTION

Porphyry copper deposits are major Cu-Mo-Au producers, genetically related to shallowly emplaced arc-type granitoids (see the GSA Data Repository²; Seedorf et al., 2005). Magmatic-hydrothermal fluids separate from magma and ascend by hydrofracturing the overlying wall-rock where they depressurize, cool from ~700 °C to <350 °C, and react with rock to form quartz veins and both vein-hosted and disseminated Fe, Cu, Mo, and Au-bearing sulfides. Significant Cu-ore resources require the emplacement and release of large volumes of fluid from a single magmatic intrusion (e.g., 4 Mt of Cu require >2 Gt of fluid; see the Data Repository). It remains unclear how rapidly this process occurs. U-Pb zircon ages of porphyry intrusions and Re-Os ages of hydrothermal molybdenite suggest fluid flow durations of ≤100 k.y. for the entire ore-formation process at Bingham (Utah, USA) and Bajo de la Alumbrera (Argentina; von Quadt et al., 2011), and for each of the several individual mineralizing fluid pulses at El Teniente (Chile; Spencer et al., 2015). Modeling of the widths and taper of alteration selvages yields shorter durations: ~10 yr for individual veins formed during sericitic alteration at Butte (Montana, USA; Geiger et al., 2002), and ~20 yr and ~900 yr for K-silicate alteration at Bajo de la Alumbrera and Butte, respectively (Cathles and Shannon, 2007). At Butte, diffusion modeling of Ti-in-quartz gradients in growth zones imaged by scanning electron microscope cathodoluminescence (SEM-CL) suggest porphyry magma residence times of 1 k.y., and formation and cooling of various generations of hydrothermal vein quartz in 10 yr to 10 k.y. (Mencer et al., 2015).

We estimate the hydrothermal lifespan of the Haquira East porphyry Cu-Mo deposit (Peru) using SEM-CL images of quartz from porphyry dikes and veins, and in situ Ti and δ¹⁸O compositions. Assuming Ti and δ¹⁸O compositional gradients were initially abrupt step-like changes, we model the time to produce the gradients using experimental diffusivities, estimated temperatures, and cooling rates. The gradients of δ¹⁸O in quartz analyzed by ion microprobe (SIMS) provide a novel approach to quantify time scales at low temperature (<400 °C) because oxygen isotope diffusivity is ~10,000 times faster than Ti diffusivity in quartz.

ORE GEOLOGY

Haquira East is a relatively deeply emplaced porphyry Cu-Mo-Au deposit (>8 km; see the Data Repository). It is hosted in a ca. 34 Ma subvolcanic granodiorite stock cut by a series of granodiorite porphyry dikes that are part of the Andahuaylas-Yauri batholith of southern Peru. Hydrothermal veins were emplaced in a regular sequence based on cross-cutting relationships (Fig. 1A; Cernuschi et al., 2013). We refer to various vein types using common conventions, as defined by Seedorf et al. (2005). Early aplite dikes are cut by sinuous and milky deep quartz veins (DQ) with traces of Cu-sulfidites that are synchronous with porphyry dike emplacement.

Younger EDM (early dark micaceous) alteration selvages contain biotite–muscovite–K-feldspar–borinite–chalcopyrite ± quartz. EDM selvages on fractures that rarely have quartz vein fill produce high-grade Cu ore, and are cut by banded molybdenite–quartz veins (BMQ) that introduce most of the Mo to the deposit. BMQ veins are cut by quartz veins that have a centerline infilled with borinite–chalcopyrite ± molybdenite and contribute Cu and Mo to ore (B veins). Quartz–muscovite–pyrite ± rare chalcopyrite veins with muscovite ± quartz ± pyrite alteration selvages cut all the earlier veins (D veins). Four Re/Os isotopic ages of molybdenite from BMQ veins...
average 33.75 ± 0.15 Ma, and one ⁴⁰Ar/³⁹Ar age of muscovite from a D vein yields 33.18 ± 0.21 Ma; these data provide a maximum lifespan of the Haquira hydrothermal system of ~600 k.y. (Cernuschi et al., 2013).

METHODS

Quartz in five polished sections was imaged using a FEI Quanta 600 field emission gun (FEG) scanning electron microscope (SEM) equipped with a Gatan MiniCL cathodoluminescence grayscale detector at Oregon State University (OSU, Corvallis, Oregon, USA; see the Data Repository for extended methods). The Ti content of quartz was measured using a Cameca SX-100 electron microprobe (EMP; Table DR2 in the Data Repository) or by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS; Table DR3) at OSU with detection limits of 13 and 0.2 ppm, respectively. CL grayscale images were processed with National Institutes of Health ImageJ software (https://imagej.nih.gov/ij/index.html) along line traverses, and calibrated using spot analyses of Ti. The δ¹⁸O of quartz was analyzed in situ from 10-µm-diameter spots using a Cameca IMS-1280 ion microprobe (SIMS) at the University of Wisconsin (Madison, Wisconsin, USA). Values are reported in per mil (‰) relative to Vienna Standard Mean Ocean Water (V-SMOW) with spot-to-spot precision of <0.3‰ (Tables DR4–DR9).

RESULTS

Five quartz samples (Table DR1; Figs. DR1 and DR2) selected based on vein cross-cutting relationships are representative of four progressively cooler thermal stages from early mineralization to post mineralization (Fig. 1A): a quartz phenocryst from a porphyry dike (Fig. 2); an EDM selvage re-opened by a B vein that is, in turn, cross-cut by late quartz in fractures (Fig. 3); a B vein rimmed by late quartz (Fig. 4); and two D veins (Fig. 5, Figs. DR3 and DR4). The quartz phenocryst (Fig. 2) is CL-zoned, from core to rim, from light to dark gray (24–54 ppm Ti), and contains one internal band of bright CL and a second 10-µm-thick rim with ~75 ppm Ti. The bright CL of the phenocryst rim is similar to quartz in the adjacent aplite porphyry groundmass (Fig. 1), and to hydrothermal quartz in DQ and BMQ veins.

The chalcopyrite–bornite–bearing EDM selvage envelopes a vein of mosaic-textured, uniformly gray-CL quartz with 24–47 ppm Ti that is crosscut by a B vein composed of strongly CL-banded quartz growth zones infilled by slightly later bornite-chalcopyrite (Fig. 3). B vein quartz is generally euhedral, with alternating gray-CL and bright-CL growth bands that range from 31 to 53 ppm Ti and from 69 to 84 ppm Ti, respectively. The δ¹⁸O of quartz in gray-CL and bright-CL from all EDM and B vein bands is indistinguishable (mean of 10.67 ± 0.36‰; Fig. 3C).

Euhedral quartz from a different B vein sample (Fig. 4) also displays bright-CL (92–114 ppm Ti) and gray-CL (39–59 ppm Ti) growth bands with indistinguishable δ¹⁸O compositions (mean of 10.40 ± 0.44‰; Fig. 4C). B vein quartz is fractured, partially dissolved, and then overgrown by rims and fracture-fillings of dark-CL quartz (Fig. 4A). Dark-CL quartz has higher δ¹⁸O compositions (mean of 12.49 ± 0.94‰; Fig. 4C) than B vein quartz.

A late D vein (Fig. 5) contains weakly growth-zoned, medium gray-CL quartz with 13–25 ppm Ti that is locally overgrown by dark-CL quartz with 1–6 ppm Ti (LA-ICP-MS). In D veins, the δ¹⁸O of medium-gray CL quartz ranges from 9.7‰ to 12.6‰ (mean of 11.16 ± 1.45‰), and the dark-CL quartz ranges from 10.8‰ to 14.4‰ (mean of 12.57 ± 1.82‰). The medium gray-CL and dark-CL D vein quartz is similar in CL and isotopic composition to late quartz that fills fractures (Fig. 3B) and rims quartz in all early veins (DQ through B; Fig. 4B). Two spot analyses within fracture-filling quartz in an EDM vein yield δ¹⁸O of 12.4‰ and 11.3‰ (Fig. 3C) and four additional spot analyses within a B vein range from 11.05‰ to 13.14‰ (Table DR4).

In summary, all quartz contain Ti diffusion profiles documented by variable CL intensity and correspondingly varied Ti contents of ~54 ppm Ti), and contains one internal band of ~550 °C

Figure 2. Scanning electron microscope cathodoluminescence (SEM-CL) image of a zoned quartz phenocryst in a porphyry dike composed of a light gray-CL inner core and a gray-CL outer core separated by a thin bright-CL band. A narrow bright-CL, high-Ti quartz band rims the gray-CL, lower-Ti outer core (B). A diffusion model calculated at ~650 °C for Ti gradients at the core–rim boundary indicates a maximum time scale of 35 k.y.
spot analyses. Early quartz in the EDM and B veins have relatively low and homogeneous δ18O compositions of ~10.6‰. In contrast, the medium-gray and dark-CL quartz in the later D veins and fractures have relatively high δ18O compositions of ~11.2 and 12.5, respectively.

DISCUSSION

Formation Temperature

Formation temperatures were estimated by using the TitaniQ geothermometer of Huang and Audétat (2012). The observed bright-CL and high-Ti quartz is interpreted to result from enhanced incorporation of Ti in crystal defects during non-equilibrium rapid quartz growth triggered by magmatic degassing during ascent. High growth rates of quartz yield spuriously high formation temperatures, by up to 100 °C (Huang and Audétat, 2012); therefore, we use the lowest Ti contents of quartz to estimate temperature. Assuming crystallization in a magma chamber below the ore zone at ~300 MPa, the gray-CL outer part of the igneous quartz phenocryst (~24–54 ppm Ti; Fig. 2) yields a Ti18Q temperature of 650–703 °C. Fluid inclusions in all veins are liquid + vapor, indicating trapping pressures >140 MPa at near-lithostatic conditions (see the Data Repository). Using 140 MPa pressure and the lowest Ti contents of quartz, EDM veins (27–49 ppm Ti) and B veins (18–59 ppm Ti) yield Ti18Q temperatures of 566–621 °C and 543–640 °C, respectively. D veins likely formed near-hydrostatic pressure (~110 MPa), in which case medium-gray CL quartz (13–25 ppm Ti) and dark-CL quartz (1–6 ppm Ti) have Ti18Q temperatures of 494–546 °C and 343–441 °C, respectively. We consider all estimates maxima because of the Ti-in-quartz growth rate issue, and use conservatively low temperatures for isochemical diffusion models consistent with selvage mineral phase equilibria (i.e., 650 °C for magmatic quartz, 500 °C for EDM veins, 550 °C for B veins, and 450 to 350 °C for D veins; Seedorff et al., 2005; Table DR5).

Diffusion Models

We modeled isochemical diffusion in four quartz samples to calculate the lifespan of four thermal stages (650 °C, 550 °C, 450 °C and 350 °C) that represent the cooling of the magmatic-hydrothermal fluid from K-silicate to sericitic alteration (Fig. 1A). For each quartz type, we used the minimum estimated temperature to model the maximum time scale (Table DR5). The preferred models were selected using the best χ-squared goodness-of-fit statistic, which was also used to estimate the error for each model (see the Data Repository, Table DR6, Figs. DR5–DR7, DR10, and DR11). We used the equation from Crank (1975) for one-dimensional diffusion, and the spherical diffusion equation for closely spaced fractures in quartz (see the Data Repository). We also modeled the same diffusion profiles using the constraint of cooling from 700 to 325 °C (Watson and Cherniak, 2015, Table DR7).

Stage 1: Magmatic and Main Cu-Mo Stage

The Ti-in-quartz gradient between the quartz phenocryst core and its rim (Fig. 2A) is interpreted to have formed during rapid porphyry emplacement, and therefore represents the earliest and highest-temperature stage of the magmatic-hydrothermal system (Fig. 1A). Porphyry dikes were sequentially cut by aplites, and DQ and BMQ veins that all contain similar bright-CL quartz formed at a temperature of ~650 °C. The Cu-rich EDM selvages have ages intermediate between DQ and BMQ veins and formed at a lower temperature of ~500 °C, which suggest at least one cycle of cooling followed by heating (Fig. 1A). A diffusion model calculated at ~650 °C for Ti gradients at the core-rim boundary of a porphyry quartz phenocryst indicates a maximum time scale of 35 k.y. (±15 k.y.) for the porphyry to BMQ stage; linear cooling from 700 to 600 °C yields 14.9 k.y. (Fig. 2A; Figs. DR6 and DR7).

Stage 2: Second Cu-Mo Stage

B veins with Cu-Mo sulfides contain bright-CL and gray-CL growth-banded quartz with resorption surfaces that attest of several temperature/pressure fluctuations (Figs. 3B and 4B). Using a mean temperature of 550 °C, diffusion models for three B vein Ti gradients provide a maximum time scale of ~50 k.y. (+50/~30 k.y.); linear cooling from 600 to 475 °C yields 25.4 to 40.9 k.y. (Fig. 1; Figs. DR6 and DR7).

Stage 3: 450 °C δ18O Homogenization of Early High-Temperature Quartz

We assume that magma-derived hydrothermal fluids had relatively uniform δ18O, and produced all veins types (cf. Reed et al., 2013). We calculate a δ18O composition of parent magmatic-hydrothermal water of 7.5–8.0‰ based on observed quartz compositions (Table DR6), application of quartz-water fractionation factors at hydrothermal conditions (Zhang et al., 1989), and our estimated vein formation temperatures (Table DR8). Our calculations suggest that the earlier medium gray-CL quartz (δ18O of ~11.2‰) and later dark-CL quartz (δ18O of ~12.5‰) from D veins are in equilibrium with magmatic water (δ18O = 7.5‰; Taylor, 1968) at 450 and 380 °C, respectively. These temperatures are in good agreement with independent estimates derived from phase equilibria and the TitaniQ geothermometer. In contrast, the quartz in both EDM and B veins have identical mean δ18O values (~10.6‰) that are in equilibrium with 7.5‰ water at ~475 °C, a slightly lower
temperature compared to estimates from phase equilibria and TitaniQ geothermometry (500–550 °C). We interpret that oxygen within EDM and B vein quartz diffusively homogenized at ~450 °C with magmatic water that penetrated along fractures, that likely result from contraction upon cooling and are infilled locally by later medium gray-CL quartz (Fig. 3A; Figs. DR8 and DR9). Nonetheless, Ti contents of high-temperature EDM and B vein quartz attest to little reequilibration at ~850 °C because of the low Ti diffusivity (Fig. 3). We modeled spherical three-dimensional (3-D) oxygen diffusion, along the 3-D network of fractures and dissolution bands that are commonly spaced every 40–120 μm (20–60 μm radius, respectively; Fig. DR9). Time scales were calculated for δ18O profiles at 450 °C for diffusion between a 7.5‰ magmatic water and B vein quartz that was originally 9.6‰ (Fig. 6). Spherical diffusion models yield time scales of 1 and 10 k.y. (+10/−15 k.y.) at 350 °C across four thermal stages (Fig. 1A). The corresponding linear cooling from 700 to 325 °C provides even shorter estimates of 75–153 k.y. (Fig. 1A). Significant ore resources can form even more rapidly. At Haquira East, the bulk of the 4.2 Mt of Cu, 37,000 t of Mo, and 28 t of Au contained in the ore were formed during stage 1 in ≤35 k.y. (Fig. 1A), implying that >2 Gt of fluid was released in this same period.

During the ore-forming processes of stages 1 and 2, magmatic-hydrothermal fluids ascended, heated the wall rock, and effectively produced an enhanced geothermal gradient and K-silicate to transitional alteration (Figs. 1B and 1C). Stage 1 includes the initial DQ veins and aplices at ~650 °C, later Cu-rich EDM veins at ~500 °C, and then a thermal reversal to form Mo-rich BMQ veins at ~650 °C. Additional Cu-Mo ore, hosted in B veins, was formed during stage 2 in ≤50 k.y. upon cooling to 550 °C.

The post-ore-formation cooling history is included in stages 3 and 4, reflecting the degradation of the geothermal gradient, as a response to crystallization of the deep magma chamber source of porphyry dikes and the decline of the magmatic-hydrothermal fluid flux. In stage 3, the δ18O of preexisting quartz was partially homogenized in ≤10 k.y. at ~450 °C and in stage 4, sericitic alteration occurred at ~350 °C in a period of ≤75 k.y. The latter duration likely includes regional slow cooling attending the deep emplacement of Haquira. We expect significantly shorter time scales for shallowly emplaced porphyry deposits (<5 km depth) that cool faster.

Acknowledgments

We thank First Quantum Minerals Ltd. (Vancouver, Canada) and the U.S. National Science Foundation (NSF; grants EAR-1355590, EAR-1658823, EAR-1524336 and EAR-1447730) for making this research possible. We are indebted to Brendan Murphy, Chris Clark, David Cooke, Celestine Mercier, Daniele Cherniak, and one anonymous reviewer for their insightful reviews.

References Cited