Metamorphic origin of diamonds in the world’s largest diamondiferous eclogite

Yang Liu a,⁎, Lawrence A. Taylor a, Amit Basu Sarbadhikari a, John W. Valley b, Takayuki Ushikubo b, Michael J. Spicuzza b, Noriko Kita b, Richard A. Ketcham c, William Carlson c, Vladislav Shatsky d, Nikolai V. Sobolev d

a Planetary Geosciences Institute, Dept. of Earth and Planetary Sciences, The University of Tennessee, Knoxville, TN 37996, USA
b WiscSIMS, Dept. of Geoscience, University of Wisconsin, 1215 W Dayton St. Madison WI 53706, USA
c Dept. of Geological Sci., Univ. of Texas, Austin, TX 78712, USA
d V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Science-Siberian Branch, Novosibirsk 630090, Russia

⁎ Corresponding author. Tel.: +1 865 974 6024; fax: +1 865 974 2368. E-mail address: yangl@utk.edu (Y. Liu).

Abstract

The world’s largest diamondiferous eclogite (8.8 kg, UD-111/02) from the Udachnaya kimberlite, Siberia, is the subject of this investigation. High-resolution X-ray computed tomography (HRXCT), chemistry of host minerals and diamond inclusions, stratigraphy of the diamonds (cathodoluminescence zoning), and carbon isotopes have been obtained. HRXCT images, 3-d models, and subsequent detailed dissection of this Group B eclogite revealed linear distributions of diamonds along alteration zones. Both unusual multiple-diamond clusters with dodecahedral morphologies, and distinctive internal zoning recorded by cathodoluminescence analyses are indicative of multiple stages of diamond growth and resorption in UD-111-02. Carbon-isotope ratios (δ13C) of 16 diamonds have a total range of ~7 ‰ (−2.0 to −9.2 ‰), with the majority at −5.4 ‰. Diamond core values are variable and include the lightest (−9.2 ‰) and heaviest δ13C (+12.0 ‰) values, suggesting that cores formed from distinct carbon sources, or grew under different conditions. In contrast, mineral inclusions in diamonds display compositional variations. These lines of evidence, considered together, indicate that diamonds in this eclogite were formed by several events, most likely from multiple metamorphic fluids. Furthermore, it is becoming increasingly evident that in most diamondiferous eclogites, diamonds are not synchronously formed with their host eclogites.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Diamondiferous eclogite xenoliths are rare mantle samples delivered to the Earth’s surface by kimberlites. Most of diamondiferous eclogites are of Archean age, and thus, contain important information on early crustal and mantle processes (Pearson et al., 2003). It is generally agreed that diamondiferous eclogites are of crustal origin; they are basically metamorphosed restites after partial melting of subducted oceanic crust (Jacob, 2004; Taylor and Anand, 2004; Jacob et al., this issue). Also known is the fact that many diamonds have crustal signatures based upon: 1) oxygen isotopes in the eclogites and their diamond mineral inclusions (Snyder et al., 1995; Lowry et al., 1999; Schulze et al., 2003; Anand et al., 2004; Spetsius et al., 2008); 2) carbon of probable crustal source, with large negative δ13C values (−20 to −41 ‰) of the diamonds (Kirkley et al., 1991; Cartigny, 2005; De Stefano et al., 2008; Spetsius et al., this issue); 3) a wide range of sulfur isotopes (δ34S) in sulfide inclusions (Chaussidon et al., 1987; Eldridge et al., 1991; Deines and Harris, 1995; Ruzicka et al., 1999); and 4) the presence of positive and negative Eu anomalies in some diamond inclusions (Jerde et al., 1993; Taylor et al., 2000; Stachel and Harris, 2008).

Diamonds in eclogites are generally considered to grow from metamorphic carbonate-rich fluids in the mantle, based upon extensive high-pressure experimentation, and supported by the presence of carbonate and CO2-rich fluid inclusions, particularly in the outer portions of many diamonds (references in Taylor and Anand, 2004). Indeed, the natural setting of diamonds in their eclogite host rocks, as well as the mineral inclusions in the diamonds recovered from such xenoliths provides additional support for the metamorphic origin (Taylor and Anand, 2004; Stachel and Harris, 2008). In addition, there is a wide range of compositions of inclusions among diamonds within the same xenolith, suggesting multi-stage growth of diamonds (e.g., Taylor and Anand, 2004). Recently, the recovery of a large diamondiferous eclogite (8.8 kg, UD-111/02) from the Udachnaya kimberlite, Russia (Taylor et al., 2005; Stepanov et al., 2007, 2008), exceeded a previous find of an 8.6 kg eclogite from the Roberts Victor kimberlite in South Africa (Jacob and Jagoutz, 1994). Our results on this new eclogite, along with those from Stepanov et al. (2007, 2008), also suggest multiple-stage formation of diamonds in this eclogite. In addition, we report the first discovery of clusters of several intergrown diamonds exhibiting dodecahedral morphologies in an eclogite.
Combined with findings on other smaller diamondiferous eclogites (Keller et al., 1999; Taylor et al., 2000; Anand et al., 2004; Ishikawa et al., 2008; Taylor, unpublished data), we argue that diamonds in many diamondiferous eclogites have experienced multiple metasomatic events during their growth and are formed non-synchronously from their host eclogites.

2. Methods

2.1. Tomography

High-resolution X-ray computed tomography (HRXCT) provides a non-destructive, *in-situ* method to study the internal textures of rocks (Carlson and Denison 1992, Rowe et al., 1997). The method used for this study was similar to those described in Taylor et al. (2000) and Anand et al. (2004). Due to size limitations for the HRXCT scanning, a relatively small mass of the entire 8.8 kg xenolith was broken off. The mass of this specimen (0.5 kg, ~10×7×4.5 cm), coupled with the respective densities of the minerals, posed challenges (artifacts and low resolution) for HRXCT using the routine settings (100 kV). Instead, two X-ray energies (100 kV and 180 kV) were used to enhance mineral recognition differentially. A series of 450, 2-D X-ray slices was obtained on this eclogite at each voltage, using a micro-focal X-ray source and an image-intensifier detector system to measure the absorption of X-rays along numerous coplanar paths through the sample. The slice thickness was 159 µm, and the distance between each slice is ~100 µm. The two complete sets of slices at the two voltages were superimposed to get the best color contrast between the minerals (Fig. 1). The in-plane resolution is ~50 µm. These 2-D images were stacked together using volume-visualization software to produce a 3-D model of the xenolith. Minerals were differentiated based on their different X-ray attenuation values, increasing from sulfides (white Fig. 1), to garnets, to clinopyroxene, to secondary minerals, and to diamonds (black, Fig. 1). In one 3-D model, the silicates were made transparent in order to display only the diamonds and sulfides. Relationships between mineral phases were determined by rotating and viewing the 3-D model at different perspectives to look for any mineral associations, alignments, or fabrics.

2.2. Dissection and sample preparation

Based upon the HRXCT mapping, a detailed dissection (pull-apart) of the xenolith was conducted in order to recover the diamonds, as well as to examine their relationships to the host minerals. The nature and physical properties of minerals in direct contact with the diamonds were carefully examined. Diamonds extracted from different locations inside the rock were selected for further study. Twenty four diamonds were cut near {110} to obtain a large cross-sectional area with near-vertical zonation contacts, as seen with cathodoluminescence. Some of these diamonds were cut to simultaneously expose 2–3 inclusions. Cut diamonds were then cleaned with distilled water and mounted in epoxy, using a routine developed at the University of Wisconsin, so as to insure all diamond polished surfaces were at the same z-position in the mount.

Cathodoluminescent (CL) imaging was used to reveal the internal growth zones (‘stratigraphy’; oscillatory zones) of the diamonds and the

Fig. 1. Tomography of diamondiferous eclogite UD-111/02 from Udachnaya. Center: a 3-d model of UD-111/02 based on HRXCT. Light blue grains are diamonds, and yellow specs are sulfide minerals. Garnet and clinopyroxene crystals were rendered invisible to improve the clarity. Red circles outline the diamond clusters found with dodecahedral morphology (Fig. 2c-d). Numbers 1–4 mark locations of pristine host minerals analyzed by electron microprobe. Figures on left and right of the central image are 2-D X-ray slices obtained originally by the HRXCT technique from the level outlined by the dashed girdle around the eclogite. In these slices, diamond appears black, garnet as light gray, clinopyroxene as dark gray, and sulfide as white. Lineations of multiple diamonds appear in two slices on the lower left and two on the right. White arrows mark the alteration veins.
abnormal variations (rounded corners, healed fractures, jagged cores). These CL images were collected using a cold-cathode CL microscope at the University of Tennessee. For the CL microscope, an electron beam voltage of ~5 kV and 0.25 mA was used to generate the luminescence on the diamond polished surfaces without any carbon coating. Color CL images of eight diamonds were collected. However, to minimize beam damage to the epoxy, grayscale CL images, which require shorter exposure times, were collected for the rest of diamonds.

2.3. Carbon-isotope ratios

In-situ carbon-isotope analyses of different CL zones in the cut diamonds were obtained using the CAMECA IMS-1280 at the University of Wisconsin (Kita et al., 2009). The diamond mounts were coated with a thin Au film. A 133Cs$^+$ primary ion beam (20 kV total acceleration voltage) was set at 0.7 nA (~7 µm in diameter). Secondary ions were extracted with a 10 kV voltage and selected using a 40 eV energy window. Mass-resolving power was set to ~3000, which is enough to eliminate the 12CH$^−$ interference to 13C$^−$. The sample was pre-sputtered for 70 s to remove the Au coating and automatic centering of secondary ions. Two carbon isotopes (12C$^−$ and 13C$^−$) were measured for 80 s simultaneously with two Faraday cups. Analyses on UD-111/02 diamonds were bracketed with 8 to 12 analyses on an in-house standard (a Kelsey Lake diamond, KLD-9.41) to correct for instrumental bias. The δ13C of KLD-9.41 ($−5.9$‰ PDB with a 2 standard deviation, 2SD, of ±0.2 for n = 4) was measured by combustion to CO$_2$ and gas-source mass spectrometer also at the University of Wisconsin-Madison. Values of δ13C are reported in standard per mil notation and normalized to the PDB standard. The spot-to-spot reproducibility of δ13C was typically 0.5‰ (2SD).

2.4. Mineral chemistry

Compositions of the host garnet, clinopyroxene, and sulfide minerals, as well as the mineral inclusions in diamond, were analyzed using a Cameca SX50 electron microprobe at the University of Tennessee. Analytical conditions for host silicates included an accelerating voltage of 15 kV, a beam current of 20 nA and a beam size of 1–5 µm. The large beam size (5 µm) was used for clinopyroxene, to minimize loss of Na during the analysis. Analytical conditions for sulfides were an accelerating voltage of 15 kV, a beam current of 10 nA, and a beam size of 10 µm. Counting time for all elements was 20 s, except for K in clinopyroxene (40 s), and Co, Ni, and Cu in sulfides (40, 40, and 30 s, respectively). The Au coats on epoxy discs were removed by gentle polishing and the epoxy discs were re-coated with carbon. Analytical conditions for mineral inclusions in the diamonds included an accelerating voltage of 20 kV, a beam current of 10 nA, and a beam size of 2 µm. Na, Cr, and Mn in mineral inclusions were counted longer (30 s). The standard Cameca PAP corrections were applied to the resulting dataset.

3. Results

3.1. Internal texture of diamondiferous eclogites

In spite of the difficulties caused by the large sample size (Section 2.1), HRXCT imaging successfully revealed ~100 macro-diamonds (1–5 mm) and two clusters of diamonds (Fig. 1). Sulfide minerals appear to be randomly distributed throughout the sample, with no apparent association with the diamonds (Fig. 1). Micro-diamonds (~1 mm), undetected in the HRXCT, are often present in close proximity to larger diamonds. No diamonds either visible in HRXCT imaging or revealed during the subsequent xenolith dissection were located within primary minerals (Fig. 2). These diamonds are always interstitial to the primary host garnet and omphacite (inside alteration veins). Indeed, several diamonds form lineations (some resembling chains) along structurally weak zones, which appear to have had increased permeability for fluid migration (e.g., alteration veins) throughout the sample (Figs. 1 and 2).

Two small diamond clusters (5–10 mm long) were recovered from near the center of this large eclogite in association with entirely fresh...
garnet, albeit not in direct contact. One cluster is shown in Fig. 2c–d. The diamonds in these clusters have been extensively resorbed, displaying round edges and dodecahedral morphology. Diamonds of dodecahedral shape are rare in eclogites, but individual dodecahedral stones were identified in diamondiferous eclogites from South Africa (Robinson, 1979).

3.2. Petrography and host mineralogy of UD-111/02

Based on the tomography, UD-111/02 consists mainly of ~65 vol.% clinopyroxene and 35 vol.% garnet (Fig. 3a), which is within the reported modal range for Udachnaya eclogites (e.g., Sobolev et al., 1994; Taylor et al., 2000). Individual pristine grains of host minerals from various locations in the xenolith have different compositions (e.g., 4.7 to 6.6 wt.% Na₂O for clinopyroxene, Table 1, Fig. 4), possibly reflecting a heterogeneous protolith. Clinopyroxenes in the host eclogite are typically omphacitic. According to the classification by Taylor and Neal (1989), UD-111/02 clinopyroxenes plot in the field of Group B eclogites in a MgO–Na₂O plot (Fig. 4e). The clinopyroxenes have moderate Na₂O and MgO contents compared to other eclogitic xenoliths from the Udachnaya pipe. The omphacite commonly contains the previously reported ‘spongy texture’ (Fig. 3b) of secondary pyroxenes in optical continuity with the primary pyroxene (Taylor and Neal, 1989; Sobolev et al., 1998a, 1999; Spetsius and Taylor, 2002; Misra et al., 2004). These secondary pyroxenes, compared to the original omphacites, have lower Na₂O and Al₂O₃, higher CaO and MgO contents. Clinopyroxenes associated with the spongy texture often possess a large range of compositions, consistent with metasomatically-induced, partial-melting event(s) (Spetsius and Taylor, 2002; Misra et al., 2004).

Red-orange garnets occur as agglomerations of grains up to 1 cm in diameter with thin kelyphitic rims ~0.3 mm thick (Fig. 3a). Garnet compositions from different locations in the xenolith vary (Mg# ~ 60–70). The compositions of UD-111/02 garnet, in our 0.5 kg portion of this huge xenolith, range from 64% pyrope and 28% almandine to 54% pyrope and 34% almandine (Fig. 4b). The highest Mg# of host garnet (75) in UD-111/02 was reported by Stepanov et al. (2007). In comparison to other eclogitic xenoliths from the same pipe (e.g., Snyder et al., 1997; Sobolev et al., 1998a), UD-111/02 garnets contain higher MgO and Na₂O, but lie in the low-Ca end of the Mg=0.62) and pyroxene (En₄₉Fs₁₄Wo₃₇, Fe/Mg=0.26). These estimates are virtually identical to the values of 1260–1275 °C for garnet (Py₆₄Al₂₈Gr₈, molar Fe/Mg=0.44) and pyroxene (En₄₉Fs₁₄Wo₃₇, Fe/Mg=0.22), b) ~1275 °C for garnet (Py₆₉Al₂₈Gr₈, Fe/Mg=0.44) and pyroxene (En₄₉Fs₁₄Wo₃₇, Fe/Mg=0.22). These estimates are virtually identical to the values of 1260–1275 °C at 6.5 GPa for other diamondiferous eclogites from Udachnaya (U-51, U33/1, UX1; Taylor et al., 2000; Misra et al., 2004).

Sulfide minerals display major intergrowths of pyrrhotite (Fe₉₃S₉₀S₃₀S) and pentlandite, with lesser amounts of chalcopyrite (Table 1), a typical assemblage formed by subsolidus exsolution of a monosulfide solid solution (Mss) (see review by Taylor and Liu, 2009). Pentlandite mainly occurs as “widmanstätten-like” exsolution lamellae in pyrrhotite and also as films on the rims of sulfide grains. Chalcopyrite typically occurs as a thin rim surrounding the pyrrhotite and pentlandite, but sometime occurs as films or coarsened cells. These different textures as reviewed in Taylor and Liu (2009) reflect different cooling rates and degrees of saturation of the Mss as it cooled and exsolved the pyrrhotite + pentlandite + chalcopyrite, on the basis of kinetic experiments by Durazzo and Taylor (1982), Kelly and Vaughan (1983), and Etschmann et al. (2004).

3.3. UD-111/02 diamonds and their internal morphology

Most of the extracted diamonds are colorless, but a few are brown or pink. Most diamonds are octahedral or intergrown octahedra (combined form of Stepanov et al., 2007). Cubo-octahedral diamonds are found only as ≤1 mm crystals and in general, are distinctly closer to the small amount of kimberlite attached to one part of the xenolith.
Diamond faces are often stepped (striated), and many diamonds contain cracks, some radiating to the surface.

Cathodoluminescence (CL) of diamond is mainly caused by N defects in the crystal structure. Most diamonds in UD-111/02 have a typical blue cathodoluminescent color. A yellow-green cathodoluminescence was present in two diamonds (e.g., D-64). A similar CL color in diamonds from other kimberlites was suggested to be associated with lower nitrogen contents than blue-green CL colors (e.g., Kaapvaal, South Africa: Harte et al., 1999; Mir pipe: Bulanova et al., 2002; George Creek, Colorado: Fitzsimons et al., 1999).

The CL zonings of 24 diamonds, coupled with those of 12 diamonds from Stepanov et al. (2007), can be divided into two main types showing weak correlation with size and shape. The first type of diamond contains a bright CL interior with a dark non-luminescent (or dark-blue) rim (D-5b1, D-15, D-38, D-60b, D-64, D-73, Fig. 5). The bright interiors contain coarse, bright, octahedral-growth zones, interspersed with dark zones. The dark rims contain curved, weakly luminescent-growth zones, usually ascribed to fibrous diamond resulting from rapid growth, typically due to interaction with kimberlite melt (e.g., Anand et al., 2004). All >1 mm octahedral diamonds belong to this type. The interiors of four larger diamonds (3–5 mm) display cores with jagged boundaries (D-5b1, D-31, D-38, and D-73 in Fig. 5), truncated by later growth zones, demonstrating resorption features and multiple-growth episodes. Two diamonds (D-29 and D-31) have thinner dark rims. However, diamonds extracted in the vicinity of these two diamonds have thicker rims (compare D-29 and D-60b in Fig. 5). The second type of diamond is generally ≤1 mm cubo-octahedral diamonds with only weak CL intensities, comparable to the rims of larger octahedral diamonds. The weak CL zoning in these diamonds is only visible after image manipulation (e.g., D-35 and D-81 in Fig. 5).

3.4. In-situ measurement of carbon isotopes of diamond

The total range of δ13C of sixteen diamonds from our portion of UD-111/02 is −9.2 to −2.0‰. (Figs. 5 and 6, Table 2), which is slightly larger than that observed by Stepanov et al. (2007) on two diamonds (−3.7 to −6.2‰). There is no clear correlation between CL intensity and δ13C, consistent with the results of Harte et al. (1999) and Stepanov et al. (2007). Dark CL rims of all diamonds (26 analyses) have an average δ13C value of −5.2‰ with a 2SD of 1.2‰, similar to the average mantle value of −5.5‰ by Kirkley et al. (1991). Intermediate zones of fifteen diamonds (51 analyses) are also similar to rims with an average value of −5.3‰ and a 2SD of 1.4‰. Most diamond cores/centers (−4.4 to −7.1‰) are similar within 2SD to the intermediate zones and rims. These values coincide the range of the octahedral and cubic microdiamonds from the Udachnaya pipe (Reutsky and Zedgenizov, 2007) and diamonds in other eclogites of the Udachnaya pipe (Snyder et al., 1995). However, three diamonds contain regions of significantly different δ13C values from the average value (−5.2‰). A dark, irregular CL “core” in diamond D-31 contains δ13C values of −9.2‰, whereas diamond D-73 shows a jagged core with δ13C values of −3.3‰ (Fig. 5). Reproducibility of these ‘abnormal’ values is shown by multiple analyses in the vicinity (Fig. 5). The intermediate and rim zones of these two diamonds have similar δ13C values (−4.2 to −5.3‰). A small non-luminescent, cubo-octahedral diamond (D-35) (Fig. 5) contains a core enriched in 13C (δ13C = −2.0‰), which is the highest value observed in UD-111/02 diamonds.

3.5. Compositions of inclusions

Many of the extracted diamonds from our portion of UD-111/02 contain sulfide and clinopyroxene inclusions. Stepanov et al. (2008) reported garnet inclusions in the other portion of UD-111/2. Inclusions, especially sulfides, are generally associated with cracks. Clinopyroxene inclusions are 10 to 100 μm in size. Some clinopyroxenes, examined after exposure on a polished diamond surface, have the same spongy texture as with most of the clinopyroxenes in the host eclogite (Fig. 7). Similar textures were observed by Taylor et al. (2000). The cubo-octahedral morphology of these spongy clinopyroxenes has been proposed to indicate their syngenetic growth.
nature (Meyer, 1987), an interpretation questioned by Taylor et al. (2003).

The non-spongy-textured, ‘pristine’ clinopyroxene inclusions are all single-crystals of omphacite and belong to the Group B pyroxenes (Fig. 4e; Taylor and Neal, 1989). Individual pristine inclusions are totally homogeneous. Compared to the host clinopyroxene (Fig. 4c–f), pristine inclusions contain distinctly higher contents of K_2O and Al_2O_3, but slightly lower Na_2O and Mg# (72–75), similar to that reported by Taylor et al. (1996, 1998, 2000), and both corresponding to higher pressures of equilibration. All clinopyroxene inclusions from the UD-111/02 diamonds differ from each other measurably in chemistry (4.5–6.6 wt.% Na_2O; 7.5–9.6 wt.% MgO). Three inclusions from a single diamond (D-15) also have slightly different compositions, although they are all in the same growth zone (Table 3, Fig. 5), a finding never reported before. Garnet inclusions show a compositional range in major elements, slightly higher in CaO and FeO than the host garnet.

Stepanov et al. (2008) reported the typical convex upward patterns for chondrite-normalized REEs in garnets from diamond inclusions. They also showed variations in trace elements in other silicate inclusions: LREE for clinopyroxene inclusions differed by a factor of ~20 for La and MREE for garnet inclusions (by a factor of ~5). Compared to host minerals, clinopyroxene inclusions are depleted in LREEs (La, Ce), and most garnet inclusions contain similar REEs.

4. Discussion
4.1. Diamond genesis in UD-111/02

Compositional variations of mineral inclusions in UD-111/02 are inconsistent with a single homogeneous growth event for diamonds. Inclusions from different diamonds (Fig. 4) show considerable variation in both major- and trace-element contents, suggesting...
they may have been encapsulated at different times in the ever-changing nature of the host (if protogenetic), or they are the result of many different metasomatic fluid compositions. The higher K2O in clinopyroxene included within diamond, compared to host minerals, suggests that they were encapsulated at higher pressures and/or the host rock has re-equilibrated to lower P–T (Harlow, 1997).

The 'stratigraphy', that is, the relationship of the nitrogen aggregation (CL) zones, does not appear to correlate between different diamonds from this single xenolith, let alone in several diamondiferous eclogites studied. This strongly supports our contention that diamonds in UD-111/02 were formed in multiple metasomatic stages. Diamond cores with jagged CL boundaries (e.g., D-31, D-73 in Fig. 5) represent resorption of early-formed diamonds by interaction with different metasomatic fluids. The dark CL rims and small diamonds with weak CL zones probably formed from kimberlite fluids at some stage during their transport by the kimberlite. The bright CL interiors of diamonds (Fig. 5) represent different fluids from those of the later kimberlite; CL intensity is a function of minor dislocations caused by the N aggregation state in diamond, which is a function of temperature, N abundances, and growth rate of diamond (Mendelsohn and Milledge, 1995). This proposed

Fig. 5. Cathodoluminescence (CL) zonings of polished diamond plates. All CL images are on grayscale. The yellow-green color of a luminescent zone in D-64 was marked by arrows. Irregular cores inside the bright CL region can be discerned in D-5b1, D-31, D-38, and D-73. Dashed curve in D-31 marks the edge of polished plate. Note the finely curved CL zones at the edge of D-29. The carbon-isotope ratios (δ13C) and the ion-microprobe analytical spots are marked filled circles, size of which is larger than the true spot size for illustration purposes. Clinopyroxene inclusions are also labeled (Table 3). Locations of diamonds inside the UD-111/02 are shown in the 3-d HRXCT of the sample in the lower left.

Fig. 6. Histogram of the δ13C values of sixteen UD-111/02 diamonds (black bars) measured in-situ by ion microprobe, as compared with literature data (open bars; Sobolev et al., 1979; Galimov, 1984; Snyder et al., 1995) on Yakutian eclogitic diamonds.
petrogenetic evolution of these diamonds is consistent with nitrogen contents and degrees of N aggregation; Stepanov et al. (2007) have also reported the CL zonations to indicate two stages of formation of these diamonds.

The carbon-isotope systematics in these diamonds are also consistent with multiple-growth events and with possible multiple sources for the carbon chemistry of the diamond. The different δ\(^{13}\)C values of CL-distinctive diamond cores are not comparable to formation from the same fluids as intermediate zones (bright CL) and rims. Experimental studies of carbon isotopes in synthetic diamonds (Reutsky et al., 2008a,b) reported that early-crystallized diamonds from Fe-Ni-C melts are enriched in δ\(^{13}\)C (by 3.3‰) due to non-steady-state fractionation in a closed system between diamonds and melts; later-formed diamonds will have the same δ\(^{13}\)C as initial source melts as a result of steady-state fractionation. These empirical experimental results would imply that the diamonds formed from non-steady-state fractionation from a mantle fluid (δ\(^{13}\)C = −5.5‰) would have δ\(^{13}\)C of −2.0‰, similar to the center of the weak CL diamond (D-35, Fig. 5). However, this cannot explain diamond cores with δ\(^{13}\)C of −9.2‰ (D-31) nor the appearance of −9.2 and −3.3‰ cores in diamonds of similar size. Therefore, we suggest that these diamonds (D-31 and D-73 cores) crystallized from different fluids from each other and from later-formed intermediate zones and rims. Alternatively, the total range of δ\(^{13}\)C in UD-111/02 diamonds is consistent with those produced by Rayleigh fractionation between the diamond-forming fluids and CO\(_2\) gas (Deines, 1980), possibly as a result of changing oxygen fugacity at constant T and P. Different core δ\(^{13}\)C values for diamond D-31 and D-73 would suggest a large change in oxygen fugacity on the decameter scale, or they formed from different fluids.

Combining evidences from the data observations and explanations above, we suggest that: 1) the isotopically and texturally distinct diamond cores may have formed from different fluids and followed by subsequent resorption due to a change of environment; 2) diamonds with bright CL formed in fluids at different temperatures or grew at different rates from those of the rims; and 3) the dark CL rims of large diamonds and small weakly-zoned diamonds formed by late-stage interaction of diamond with kimberlite fluids. The lineation of diamonds in alteration veins and presence of diamond clusters with resorption features in UD-111/02 suggest that alteration zones provide pathways for this process. Such complex
growth and resorption features are regarded as et al., 2000; Bulanova et al., 2002; Anand et al., 2004; Spetsius et al., 2000, 2003; Shatsky et al., 2008). Multi-stage formation of multiple diamonds from a single xenolith (e.g., Bulanova, 1995; Taylor et al., 1996, 1998, 2000; Jerde et al., 1993; Taylor et al., 2000, 1998; Yakutian kimberlites (e.g., Jerde et al., 1993; Taylor et al., 1996, 1998, 2000, 1999; Harte et al., 1999; Taylor et al., 2000; Bulanova et al., 2002; Hauri et al., 2002; Zedgenizov et al., 2006) commonly show a range too small for isotope fractionation or growth-controlled fractionation. In other studies, carbon-isotope variations in individual diamonds from multiple inclusions from several diamonds from single xenoliths from a Udachnaya diamondiferous eclogite (Beard et al., 1996), and with those layered eclogites from Roberts Victor kimberlites (Jacob and Jagoutz, 1994; Ishikawa et al., 2008). Globally, eclogitic diamonds display a wide range in carbon isotopes from +5 to −41‰ (Kirkley et al., 1991; Cartigny, 2005; De Stefano et al., 2008), whereas diamonds from single kimberlite pipes show significant, but smaller, ranges of variation in δ13C (e.g., Deines, 1980). Carbon-isotope data for multiple diamonds from a single xenolith are rare (Taylor and Milledge, 1995; Stepanov et al., 2007; Ishikawa et al., 2008; Palot et al., 2008). Taylor and Milledge (1995), Ishikawa et al. (2008) and Palot et al. (2008) reported a limited range of variation in δ13C (−4 to −7‰) in diamonds from individual xenoliths from different South Africa kimberlite pipes. However, all these studies analyzed chips of diamonds representing an averaging of relatively large volumes and without spatial context. In other studies, carbon-isotope variations in individual diamonds from multiple xenoliths from a single kimberlite pipe were determined in order to constrain the processes affecting the growth of diamonds (Swart et al., 1983; Javoy et al., 1984; Boyd et al., 1987; Harte and Otter, 1992; Fitzsimons et al., 1999; Harte et al., 1999; Taylor et al., 2000; Bulanova et al., 2002; Hauri et al., 2002; Zedgenizov and Harte, 2004; Zedgenizov et al., 2006; Thomasset et al., 2007). The complex patterns of carbon and nitrogen isotopes from core to rim of individual diamonds (e.g., Bulanova et al., 2002; Hauri et al., 2002; Zedgenizov and Harte, 2004; Zedgenizov et al., 2006) commonly show a range too large for isotope fractionation or growth-controlled fractionation.

4.2. Evidence for multiple metasomatic events in other diamondiferous eclogites

Our conclusions drawn from the world’s largest diamondiferous eclogite are in no way unique. Lineations of diamonds in alteration veins have been observed in other Udachnaya eclogites (Keller et al., 1999; Taylor et al., 2000; Spetsius and Taylor, 2002; Anand et al., 2004; Stepanov et al., 2007, 2008; L.A. Taylor, unpublished data) and diamondiferous eclogite from Roberts Victor kimberlite, South Africa (Schulze et al., 1996; Ishikawa et al., 2008). Multi-stage formation of diamonds was proposed based on a wide range multiple-inclusion compositions (both major- and trace-element) from single diamonds and inclusions from several diamonds from single xenoliths from Yakutian kimberlites (e.g., Jerde et al., 1993; Taylor et al., 1996, 1998, 2000, 2003; Shatsky et al., 2008).

Complex CL zones have been reported for individual diamonds and multiple diamonds from a single xenolith (e.g., Bulanova, 1995; Taylor et al., 2000; Bulanova et al., 2002; Anand et al., 2004; Spetsius et al., 2008). The complex CL zones of individual diamonds with multiple-growth and resorption features are regarded as incomparable with single-stage growth of diamonds simultaneously with the host eclogite. Taylor et al. (2000) reported a diamond with intense plastic deformation features from a Udachnaya diamondiferous eclogite (US1), indicating an extremely complicated and torturous growth history for that particular diamond. Coexistence of diamonds with and without plastic deformation in the same rock poses additional challenges for the synchronous formation of all diamonds within the host host (Taylor et al., 2000) proposed that the diversity in both mineral inclusions and CL features could be a result of diamonds moving inside the relatively softer host eclogite in the asthenosphere, seeing different growth environments, and at the same time being affected by various metasomatic fluids. This is in general agreement with large compositional variation of host minerals on a small scale (i.e., cm) in Yakutian eclogites (Beard et al., 1996), and with those layered eclogites from Roberts Victor kimberlites (Jacob and Jagoutz, 1994; Ishikawa et al., 2008).

Diamond evolution did not occur synchronously with eclogite formation; rather, diamonds crystallized over a period of time, under variable conditions, from different metasomatic fluids, perhaps long after the subducted oceanic crust metamorphosed to eclogite (Taylor and Anand, 2004).
cores (both high and low δ^{13}C) from rims; e) different chemistries between diamond inclusions and host minerals; and f) heterogeneity of mineral compositions in the host. Collectively, they support and reinforce the conclusion that formation of diamonds in this eclogite was a multi-stage process involving several metasomatic-fluid events. The supporting observations above are by no means unique to this eclogite, as they have been previously documented and published on other diamondiferous eclogites (e.g., Taylor et al., 1996; Sobolev et al., 1998b; Taylor et al., 2000; Spetsius and Taylor, 2002; Anand et al., 2004; Shatsky et al., 2008). Thus, we conclude that the formation of diamonds in most mantle eclogites involves repeated resorption and growth accompanied by plastic deformation, indicating a torturous life of complicated growth to mantle diamonds, perhaps more normal a diamond life style than previously understood.

Acknowledgements

The research reported in this paper would not have been possible without the cooperation and collaboration of our several colleagues in the V.S. Sobolev Institute of Geology and Geomaterials of the Siberian Branch of the Russian Academy of Sciences in Novosibirsk. Allan Patchen is recognized for his assistance with the EMP analyses. We thank two anonymous reviewers for their constructive comments. A portion of the research was supported by the Planetary Geociences Institute of the Department of Earth and Planetary Sciences at the University of Tennessee. Wisc-SIMS is partly supported by NSF (EAR03-19230, EAR07-44079) and the NASA Astrobiology Institute.

References

Mineralogical Magazine 63, 829–856.

Mineralogical Magazine 63, 829–856.

Mineralogical Magazine 63, 829–856.

