SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis

MADELEINE C.S. HUMPHREYS,* STUART L. KEARNS, AND JON D. BLUNDY

Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ, U.K.

ABSTRACT

Electron-beam irradiation causes permanent damage to hydrous, silica-rich glasses. The extent of electron-beam damage is quantified using data generated by SIMS analysis of points subjected to previous electron microprobe analysis (EPMA). Even optimum EPMA conditions cause damage to the glass, manifest as a marked depletion in alkali ions at the surface of an irradiated sample. Deeper in the sample, an enrichment in alkali ions to above-baseline levels is followed by a decay back to baseline. The depth of the final decay correlates with species diffusivity and increases in the order K-Li-Na. H-bearing species are also affected by electron beam irradiation, but in the opposite sense to the alkalis, i.e., they are enriched at the surface. Migration of alkaline earth cations is not observed because of their low diffusivities. Ion depletion or enrichment results from simple migration of ions toward or away from electrons implanted by the beam. Migration depth depends on species diffusivity and heating caused by the electron beam, and therefore increases with increasing electron beam current. Because of the reverse behavior of H, the mobile hydrous species in the presence of an electric field is probably OH−. The extent of electron beam damage to glasses may increase with total water content. Critically, SIMS measurements of H, Li, Na, D/H, and \(^{6}\)Li/\(^{7}\)Li after electron-probe analysis are compromised by the damage. Despite the damage caused by the electron beam, use of appropriate electron-beam conditions (e.g., 2 nA, 15 kV) gives volatiles by difference accurate to ~0.6 wt%.

Keywords: Electron-probe microanalysis, rhyolite glass, melt inclusions, secondary ion mass spectrometry, diffusion

INTRODUCTION

The analysis of hydrous, silica-rich glasses (e.g., tephra or melt inclusions in phenocrysts) can provide a wealth of petrological information. For example, melt inclusions can provide a direct measure of the pre-eruptive volatile contents of the liquid in which crystallization occurred. Increasingly, analysis of light isotopes and trace elements (e.g., D/H, \(^{6}\)Li/\(^{7}\)Li, B, Be) in melt inclusions are used to investigate magmatic processes. The small size of typical melt inclusions (20–40 μm) means that micro-analytical methods must be used. These include secondary ion mass spectrometry (SIMS), Fourier-transform infrared spectroscopy (FTIR), and electron probe micro-analysis (EPMA). While both SIMS and FTIR can be used to determine different volatile species (H\(_{2}\)O, CO\(_{2}\)) directly, EPMA can only be used to estimate total volatiles using the by-difference method. Despite this, EPMA is often the analytical method of choice, because they are mobile under the beam. This loss of Na X-ray intensity during irradiation has long been recognized (e.g., Lineweaver 1963; Goodhew and Gulley 1974; Autefage and Couderc 1980; Nielsen and Sigurdsson 1981; Spray and Rae 1995) and is thought to be a result of electric field-assisted diffusion (e.g., Usher 1981; Miotello and Mazzoldi 1982; Jbara et al. 1995). Moreover, the migration is known to be permanent and irreversible after irradiation ceases (Autefage and Couderc 1980). Neither the amount of damage, nor the error potentially resulting from electron-beam irradiation, has yet been quantified. Two questions remain to be answered:

1. What is the reliability of the VBD obtained by EPMA?
2. If damage is irreversible, what is the extent of the damage and how are future analyses, e.g., by SIMS, of the same point compromised?

To assess the reliability of VBD, we must first understand the processes involved in the second question. In this study we use SIMS to quantify the extent of damage caused to hydrous glasses by EPMA, paying specific attention to the alkali metals (Li, Na, K) and H. The main focus of the study is to investigate the influence of the electron-beam conditions and glass H\(_{2}\)O content on the extent of damage. We then use this information to address the reliability of VBD of hydrous, silica-rich glasses.
EXPERIMENTAL METHODS

Electron microprobe methods

In the first part of the experiment, samples of homogeneous glass were irradiated with an electron beam using a CAMECA SX50-5 spectrometer instrument. Each sample was carbon coated to a standard thickness of 15 nm and exposed to the beam for 4 min to simulate a typical quantitative electron microprobe analysis. A beam diameter of 15 μm was maintained, but beam conditions and glass composition were varied systematically. To assess the effect of changing beam conditions, Lipari glass was irradiated with electron beam currents of 2 to 40 nA and accelerating voltages of 15 to 25 kV. To assess the effects of glass composition, we compared standard glasses with different major element contents (Lipari, Run121, and Run9) or H2O contents (Lipari and MI514), irradiated at 15 kV and 2 nA or 10 nA. Table 1 gives the compositions of the glass standards used.

Secondary ion mass spectrometry

In the second part of the experiment, SIMS analyses were obtained of the electron-irradiated areas. The carbon coat was removed by brief polishing and the samples were sputter-coated with Au for a period of 200 s, equating to a coat thickness of approximately 20 nm. First, a non-irradiated area of each glass was analyzed, to provide baseline values for each sample. Then, for each of the experimental conditions, the SIMS beam was manually aimed on the EPMA spot, which was usually easily visible using an inclined, reflected light microscope, with a 1.7 mm field of view attached to the instrument. The ion beam therefore sputtered down through the irradiated volume, thus collecting depth information about the altered glass chemistry. Any charging effects resulting from the SIMS beam would be the same for analyses in irradiated areas.

RESULTS

SIMS analyses were performed using a CAMECA ims-4f, controlled by Charles Evans and Associates PXT interface and software. A 3 nA O− primary beam was accelerated onto the sample surface with a net impact energy of 14.5 kV. The focused beam was finely rastered to 5 μm to minimize potential charging effects. The secondary ions were extracted at +4.5 keV energy, with a 75 eV energy window. Mass 4.5 was analyzed to monitor the background count rate of the electron multiplier detector. In each cycle, H+, Li+, Be+, 26Mg+, 30Si+, 39K+, and 42Ca+ counts were collected for 1, 5, 5, 3, 5, 2, 5, and 3 s respectively. Higher masses could not be analyzed concurrently with H because of magnet hysteresis. 26Na+ counts were calculated from the measured Na counts using the relative abundance of the 26Na isotope and Mo/M ratios from Hinton (1990). This interference with K was found to account for 0.1% of the total 26K counts. The number of cycles counted ranged from 30 to 80, corresponding to a counting time of ~30 to 80 min. Counting continued until a smooth, flat profile was obtained in all elements. To remove the effects of small variations in beam current, data are presented Si-normalized.

Secondary ions were sputtered continuously during analysis, thus generating depth profiles for each element. The mass spectrometer was calibrated for the analyte secondary ions prior to each analysis. This equated to an effective pre-sputtering period of less than 30 s. Assuming that the sputter rate did not vary during the analysis, cycle number corresponds directly to depth. Crater edge effects were not accounted for. SIMS pit depths were measured using a Tencor Instruments stylus profilometer. The profilometer was calibrated on a standard of etched quartz from VLSI standards. From multiple measurements, precision was ±0.0045 μm (2σ) and the instrument was found to be accurate to 0.008 μm. Smaller SIMS pits were measured and used to calibrate the depths of larger pits, assuming constant sputter rate. Pit depths varied from 2.050 to 5.467 μm. Pits were approximately the same width at the surface as the electron-probe spot (15 μm).

TABLE 1. Major element and water speciation data for hydrous glass standards used in EPMA experiments

| Name | Run9† | Run121† | MI514§ | Lipari||#
------------	-------	---------	--------	#####
Composition				
Analyses	EPMA	EPMA	EPMA	XRF
No. analyses	34	10	11	
wt% oxide				
SiO2	57.41 [39]	67.38 [73]	71.01 [14]	74.03
TiO2	0.97 [04]	0.62 [04]	0.08	
MnO	0.14 [03]	0.00	0.08	
MgO	3.12 [20]	1.28 [03]	0.00	
CaO	6.83 [18]	2.2 [07]	0.20 [03]	0.72
Na2O	3.90 [18]	1.28 [07]	0.30 [03]	0.00
LOI	0.14	0.14	1.04	
F	0.14	0.23	0.23	
Total	95.50	94.95	94.62	99.98
Water Speciation (FTIR)				
H2O4 − 5200 cm−1	2.51 [45]	1.26 [03]	0.126 [003]	
OH − 4500 cm−1	1.72 [19]	0.59 [01]		
H2O − 1630 cm−1	2.52 [23]	0.59 [01]		
H2O (a)	4.29 [27]	5.27 [06]	0.72 [01]	
H2O (b)	4.24 [35]			
ASI	0.83	1.44	0.69	0.94
Ca/(Na+K)	1.33	0.51	0.02	0.08

Notes: H2O4 is average concentration of dissolved molecular water, based on 5200 cm−1 absorbance. (a) Total H2O based on summation of OH and H2O4 (5200 cm−1). (b) Total H2O based on summation of OH and H2O4 (1630 cm−1). Values in brackets represent 1 s.d., in terms of the least significant digit. ASI (Alumina saturation index).

* Mandeville et al. (2002).
† Manometry gave 4.32 wt% H2O.
‡ Unpublished data, C. Mandeville.
§ Mayor Island rhyolite, New Zealand: Barclay (1995).
|| Cannetto Lami lava, Lipari: XRF data from Sparks, R.S.J. (written communication).
H2O data from Brooker, R.A., written communication.
remove any matrix or charging effects. Figure 1 shows baseline chemical profiles in Lipari, i.e., profiles of an area of the glass that had not been irradiated with the electron beam. In this baseline analysis, chemical profiles for each element are flat and uniform with depth, indicating that the glass is chemically homogeneous.

Effect of changing electron beam conditions

The main features of electron beam damage are visible in Figure 2, which shows chemical profiles for Lipari after irradiation by a 15 kV, 40 nA electron beam. Alkaline earth element (e.g., Ca) profiles (not shown) are flat and uniform with depth, as in Figure 1. Alkalalis (Li, Na, and K) all show a depletion in the first few cycles (at shallow depths in the sample), with very low initial count rates. Count rates then increase steeply and reach a slight peak before flattening off to baseline levels. The depth of the point at which the count rate profile crosses the baseline varies between species, and is K << Li < Na. In contrast to the alkali metals, H has above–baseline count rates in the first few cycles of the analysis, thus showing the opposite behavior of the alkali metals.

The effects of increasing the electron beam current are seen in Figure 3, which shows Lipari irradiated by a 15 kV beam with 40, 10, or 2 nA beam current. As the beam current is increased, the extent of the initial alkali depletion increases, as does the depth at which count rates cross baseline levels. In the highest beam current experiment, the uppermost part of the damaged section is almost completely depleted in Li and Na, at around 5 to 10% of the baseline concentration. The extent of enrichment of H also increases with beam current. At the surface of Lipari in the lower beam current experiments, H counts show an exponential decrease to baseline levels. This is typical of surface contamination at low H₂O contents, but the feature is not seen in the 40 nA condition.

Figure 2. Chemical profiles for H, Li, Na, and K in Lipari irradiated by a 15 kV, 40 nA electron beam. Data are presented as baseline-normalized CPS/Si, to remove irregularities due to fluctuations in beam current. Baseline values are those shown in Figure 1. Counting errors are given as vertical bar, or are less than the size of the marker.
This is because damage from the higher current electron beam is sufficient to disguise any contamination effects from sample preparation. This implies that contamination occurred during polishing and sample preparation prior to EPMA. K also shows an exponential decrease in count rates at the surface, in the lowest current experiment. Given the similarity with the pattern of H counts, this is most likely also explained by surface contamination.

Overall, the effect of increasing the electron beam accelerating voltage is small (Fig. 4). Initially, increasing the accelerating voltage slightly increases the extent of alkali depletion and H enrichment at shallow depths in the sample. There is little difference between the 20 and 25 kV experiments, and in some elements count rates are less depleted (or enriched) under 25 kV than 20 kV (e.g., Li, H). Small perturbations in count rates at cycles 22–26 are probably due to fluctuations in SIMS primary beam current.

Effect of water content of the glass

Figure 5 shows chemical profiles for Lipari (0.7 wt% H₂O) and MI514 (5.27 wt% H₂O) (see Table 1 for major element composition), irradiated by a 15 kV, 2 nA electron beam. The relative extent and depth of depletion of alkali metals and enrichment of H are clearly much greater in MI514. An upper layer, highly depleted in alkalis, forms in MI514, though not in Lipari at these beam conditions (compare Fig. 3).

Effect of glass bulk composition

We have not studied glasses with a sufficient diversity of bulk composition to shed much light on the effects of composition on alkali migration. However, we can make the following general observations based on our results. Figure 6 shows Lipari, Run121 and Run9 (see Table 1), irradiated under a 15 kV, 10 nA electron beam. The extent of surface depletion in alkalis, and the depth at
which count rates cross baseline levels, are again Na > Li >> K, and both increase as the ratio Ca/(Na + K) of the glass decreases. There is no consistent correlation of the extent of depletion or the depth of recovery with ASI, total alkalis or H₂O contents. Damage is most extensive in Lipari, despite its much lower H₂O, high ASI and moderate total alkalis.

Summary
Surface depletion of all alkali metals is seen in glasses irradiated by an electron beam. The extent and depth of the depletion increases with increasing beam current and accelerating voltage. Damage is strongly affected by glass bulk composition. The depth also varies between species, but is always Na > Li >> K. In contrast to alkali metals, H counts show a surface enrichment.

FIGURE 4. Chemical profiles for H, Li, Na, and K in Lipari irradiated by an electron beam with a 2 nA current and accelerating voltage of 25 kV (open squares), 20 kV (crosses), or 15 kV (filled triangles). Data are presented as in Figure 2. Exponential decrease in H/Si and K/Si is characteristic of surface contamination.

DISCUSSION

Simple migration of ions
Figure 7 shows chemical profiles for the alkali ions in Lipari irradiated under beam currents of 40 to 2 nA, and accelerating voltages of 25 to 15 kV. The profiles clearly show movement of alkali ions from the upper parts of the sample during electron-beam irradiation. The depletions can be explained as the result of simple migration of ions by field-assisted diffusion (Miotello and Mazzoldi 1982). In this process, positively charged ions are attracted to electrons implanted at depth in the sample. Attraction occurs from all directions toward the electron implantation volume. Note that in experiments with the 20 kV accelerating voltage and 10 and 2 nA beams, the rate of recovery of alkali
count rates is much shallower than in other experiments. This may be because the SIMS beam did not coincide directly with the center of the EPMA spot. Migration occurs in 3-D but will be most intense vertically, along the axis of the electron beam, and much weaker laterally, near the edge of the implantation volume. A slightly off-axis SIMS analysis would therefore produce anomalous data.

Figure 8 shows a sketch of a typical chemical profile. Under a lower power electron beam (Fig. 8a), a depleted layer, Region Ia, forms at the surface, with a corresponding enriched layer (Region II) at depth. In experiments using a more powerful electron beam, a highly depleted layer (Region Ib) develops at the top of the sample (Fig. 8b). Most Na and Li ions have been removed from this layer. This observation supports work by Jurek et al. (1996), who noticed the creation of a compact, alkali-free surface layer, underlain by structurally deteriorated, “channelized” glass. At very powerful beam conditions, therefore, the surface layer of the sample becomes so damaged that almost its entire alkali content is displaced deeper into the sample.

Assuming simple migration of ions, a mass-balance of the depleted volume (Region Ia) and the enriched volume (Region II) should show that the total number of ions displaced from Region Ia is equal to the number deposited in Region II. The problem is rather complex because the SIMS analysis samples a roughly cylindrical profile down through the electron-irradiated volume. In effect, chemical information from the SIMS analysis is radially averaged over this cylindrical profile. A full mass-balance would require information about the 3-D, un–averaged concentration profile for each species. Although there is a correspondence between the size of the depletion in Region Ia, and the size of the enrichment in Region II, a full mass-balance is not possible from the techniques used in this study.

We note that the shape of the measured chemical profiles cannot be explained by a purely electrostatic attraction. Under
purely electrostatic attraction, the force felt by the alkali ions would decrease away from the charge center (i.e., the depth of maximum implanted electron density). Ions close to the surface would feel a small force and would migrate weakly, compared with ions close to the implanted electrons, which would move much further. In contrast, the data show that surface ions are more strongly affected than those at depth. We therefore need to consider how migration will be affected by the extent and depth of electron implantation, and by any temperature effects caused by the EPMA beam. Note that, because the alkali ions are attracted toward the implanted electrons, we would expect that migration depth is always less than both electron penetration depth and the depth of the charge center.

Electron implantation

Electron penetration depth or range can be calculated according to Kanaya and Okayama (1972):

$$R_{ko} (\mu m) = \frac{0.0276 \cdot A \cdot E_{o}^{1.67}}{Z^{3.6} \rho}$$ \hspace{1cm} (1)

where R_{ko} is the range, A = atomic mass (g/mol), Z = atomic number, ρ = density (g/cm3), and E_{o} = beam energy (keV). Table 2 gives calculated penetration depths for Lipari, Run121, and Run9, for beam energies of 15, 20, and 25 keV. In each case, migration depth is less than penetration depth.

The program *Casino* (Hovington et al. 1997) can be used to produce Monte Carlo simulations of electron trajectories and electron depth distribution. Figure 9 shows simulations based on the composition and density of Lipari glass, for a variety of beam conditions. The simulations show that both electron penetration depth and the depth of the charge center (maximum electron density) increase with electron-beam accelerating voltage. In addition, the maximum dimension of the irradiation volume increases as accelerating voltage increases. The strength of the
electrostatic attraction felt at the surface will therefore decrease with increasing accelerating voltage. This implies that the amount of diffusion would decrease at higher accelerating voltages. However, the decrease in diffusion caused by decreasing electrostatic field strength is balanced by enhanced diffusion caused by enhanced sample heating (see below). This trade-off between electrostatic field strength and temperature was recognized by Goodhew and Gulley (1974), over a wider range of accelerating voltages, and explains the subtle effect of changing the beam accelerating voltage (Fig. 4).
matched by loss of ions below. Under crosses the baseline (Fig. 8), where gain of ions from above is and Region Ib develops.

ion migration depth will vary according to the diffusivity of the we can estimate the extent of heating caused by the beam by Since the ion diffusivity is strongly dependent on the temperature, the number of ions displaced \((C_1) \) is equal to those deposited \((C_2) \), producing a depleted layer (Region Ia) and an enriched lower layer (Region II). \(Z_0 \) marks the point at which the profile crosses the baseline, i.e., where gain of ions from above is matched by loss of ions to greater depth. (baseline, i.e., where gain of ions from above is matched by loss of electrostatic attraction with depth. The strength of electrostatic attraction will also vary with accelerating voltage as previously discussed. However, any change in migration distance with beam current, at constant accelerating voltage, will give a measure of heating effects. Second, diffusivity data are for dry obsidian, while addition of \(\text{H}_2\text{O} \) may greatly increase diffusivities. Finally, the temperature estimated must be the average temperature over the total distance diffused by the ion, and therefore less than \(T_{surf} \).

We can compare \(T_{diff} \) with temperatures calculated from empirical relationships. An empirical method for estimating the amount of heating caused by the beam is put forward by Vas-samillet and Caldwell (1969):

\[
T_{vc} - T_c \approx \frac{W_\text{i}}{2\pi K r_o}
\]

where \(W_\text{i} \) is the power input of the beam (watts); \(K \) is the thermal conductivity of the matrix (W·cm⁻¹·°C); \(r_o \) (m) is the radius of the hemisphere (which has equivalent volume to that of the irradiated disk, in the case where beam diameter is greater than the electron range); \(T_0 \) is the initial temperature and \(T_{vc} \) is the temperature at the surface of the equivalent hemisphere.

Table 2 gives migration depths measured from Figure 7, along with associated temperature estimates, and temperatures calculated using the empirical relationship in Equation 4. Where the chemical profile does not cross the baseline at all (e.g., \(K \) in experiments with the 2 nA beam), \(T_{diff} \) cannot be determined because surface contamination effects overprint any possible depletion curve. \(T_{diff} \) is probably not zero, so a maximum temperature is therefore calculated, assuming that the distance diffused is on the order of the depth errors (0.02 μm). Where chemical profiles are very flat and do not pass through the upper bound of the error box (e.g., Na, 25 kV/2 nA, 20 kV/10 nA, and 2 nA, see Fig. 7) the error box is extended only up to \(Z_c \).

Table 2 shows that temperatures estimated using Li and Na diffusion are similar, but temperatures estimated using K diffusion are much higher. The depth of diffusion increases with beam current because, at constant accelerating voltage \(T_{diff} \) also increases with beam current (Fig. 10). Diffusion temperatures do not agree well with empirically calculated temperatures (200–380 °C, compared with 20–40 °C, respectively). However, this is because \(T_{vc} \) is the temperature at the edge of the irradiated volume, while \(T_{diff} \) is an average over the distance diffused by an ion. Electrons penetrating the sample have greatest energy near the surface, so the temperature increase will be greatest near the sample surface. The estimated temperatures and diffusion distances of the alkali ions therefore record the temperature–depth profile within the sample. Because diffusivity varies non–linearly with temperature, the region of high ion diffusion is

Temperature effects of the beam

The migration depth can be measured from each chemical profile, and is defined here as \(Z_0 \), or the point at which the profile crosses the baseline (Fig. 8), where gain of ions from above is matched by loss of ions below. Under field-assisted diffusion, the ion migration depth will vary according to the diffusivity of the ion species and the strength of the force due to the electric field. Since the ion diffusivity is strongly dependent on the temperature, we can estimate the extent of heating caused by the beam by evaluating the amount of diffusion undergone by each ion.

Ion diffusivity can be calculated using the expression:

\[
D_i = D_{i,0} \exp\left(\frac{E_a}{RT_{\text{diff}}}\right)
\]

where \(D_{i,0} \) is a pre-exponential constant for the ion \((i) \) of interest, \(E_a \) is the activation energy, \(T_{\text{diff}} \) is the temperature at which diffusion is occurring and \(R \) is the universal gas constant. Diffusivities are taken from Jambon’s (1983) data for Iceland obsidian.

The migration depth, \(Z_0 \), is equivalent to the diffusion distance:

\[
Z_0 = \sqrt{D_i t}
\]

where \(t \) is the analysis time. We can therefore use \(Z_0 \) to calculate \(D_i \), and hence \(T_{diff} \). There are various assumptions and caveats with this approach. First, and most importantly, the method does not take into account the variation of the strength of electrostatic attraction with depth. The strength of electrostatic attraction will also vary with accelerating voltage as previously discussed. However, any change in migration distance with beam current, at constant accelerating voltage, will give a measure of heating effects. Second, diffusivity data are for dry obsidian, while addition of \(\text{H}_2\text{O} \) may greatly increase diffusivities. Finally, the temperature estimated must be the average temperature over the total distance diffused by the ion, and therefore less than \(T_{surf} \).

Figure 8. (a) Theoretical chemical profile after simple migration of alkali ions. \(C_0 \) represents the baseline concentration. Under simple migration, the number of ions displaced \((C_1) \) is equal to those deposited \((C_2) \), producing a depleted layer (Region Ia) and an enriched lower layer (Region II). \(Z_0 \) marks the point at which the profile crosses the baseline, i.e., where gain of ions from above is matched by loss of ions to greater depth. (b) Under high power electron-beam irradiation, Region Ia becomes stable at ~0.5 to 5% of its original alkali contents, and Region Ib develops.
confined to the upper parts of the sample where heating is most significant. The high near-surface temperatures are consistent with Hulinsky et al. (1996) and Borom and Hanneman (1967), who report maximum surface temperatures of over 1000 °C for some glasses.

Variations in species diffusivity can also explain the flat chemical profiles of the alkaline earth cations. Using Ca as an example, diffusion is orders of magnitude slower even than K. Diffusion data from Jambon (1983), shows that even at temperatures of 377 °C (the maximum temperature estimated from K diffusion), Ca ions would diffuse only 5.6×10^{-11} μm. The distances diffused are therefore much too small to be observed on the profiles.

The role of bulk composition

The stability of glass to electron bombardment depends on bulk composition because this determines its structural properties. Diffusivities of the mobile ions are determined by the degree of polymerization and are therefore affected by aluminosity (Mysen 1983) and alkali ion abundance (Shelby 1997), as well as by ionic radius (Jones 1971). Both the extent of alkali ion depletion (or H enrichment) and the depth at which count rates recover, are greater in MI514 than in Lipari. These two glasses have similar Na$_2$O and total alkali contents, but differ in H$_2$O, Ca/(Na + K) and ASI (Table 1). The difference in magnitude of electron beam damage may explained by the increase in ion diffusivities achieved by adding water to a melt or glass. For a given
with ion diffusivities, increasing in the order K-Li-Na. The heating effect enhances diffusion. Alkali migration distances correlate with ion diffusivities, increasing in the order K-Li-Na.

set of beam conditions and bulk composition, ions would be able to move further in the H₂O-rich glass during the analysis time. An additional explanation lies in the bulk polymerization of the glass. The polymerization state of the glass is in part determined by the ASI, with higher values leading to more polymerized glass structures. ASI is lower for MI514 than for Lipari. However, ASI does not always correlate with increased sample damage: Run 9 is less damaged than Lipari (Fig. 6), although it has lower ASI and higher H₂O. One possible reason is that Run 9 has higher Ca/(Na + K). Divalent cations (e.g., Ca²⁺) occupy interstices in the glass structure and thus reduce the diffusivity of mobile network modifiers such as Li⁺ and Na⁺ (Shelby 1997). Addition of H₂O and F may enhance this effect in MI514, as suggested by Morgan and London (2005). However, further investigation of more closely related glass compositions is required, to decouple reliably the effect of H₂O content from the effects of glass polymerization and structure.

The behavior of H₂O

H ions behave differently from the alkalis in that they are enriched at the surface of the sample in Region Ia, and depleted in Region II. This cannot be the result of any diffusive gradient of H₂O between the sample and the ion probe vacuum because each profile is normalized to the baseline analysis for that glass, so any such matrix effects would have been cancelled out. Instead, the enrichment implies that ions are diffusing away from the charge center rather than toward it. It is therefore very likely that a negatively charged species is diffusing, and so we suggest that OH⁻ is the mobile species. The extent of migration is therefore likely to be affected by water speciation in the glass, and also by total water content, since speciation changes with water content (Stolper 1982). However, the problem is further complicated, since it is known that diffusivities for H₂O increase at higher total H₂O contents (Delaney and Karsten 1981). Zhang (1999) studied diffusivities of the different water species and found that only H₂O was mobile. However, his measurements were carried out in the absence of an electric field, and may not be relevant in this case. Species diffusivities in an electric field and at different H₂O contents are not known and we are therefore unable to test further the hypothesis that OH⁻ is the mobile species during EPMA.

IMPLICATIONS FOR MELT INCLUSION ANALYSIS

An electron-probe beam clearly has a strong, damaging effect on hydrous, Si-rich glasses. We must therefore ask how the extent of beam damage can be minimized. With the damage minimized, how reliable is the volatiles-by-difference obtained by EPMA? And what implications does the damage have for subsequent SIMS analyses?

Minimizing electron-beam damage

Previously, several authors have suggested empirical methods of reducing or correcting for alkali migration or diffusion during EPMA. There are three options:

1. Reduce the temperature to the point where diffusion is minimal, (e.g., –190 °C, Kearns et al. 2002), by operating on a cryostage. This option works well because the diffusivities of the mobile species at cryogenic temperatures are so small that migration is insignificant, even in the presence of an electric field. However, cryostages are not routinely fitted to most modern electron microprobes.

2. Obtain NaKα X-ray decay curves, and extrapolate back to the zero-time intercept to correct to initial Na concentrations (Nielsen and Sigurdsson 1981). A problem with this technique is that alkali metal decay undergoes an incubation period inversely proportional to the incident beam current. The extrapolation technique may therefore underestimate Na contents by up to 10% relative (Morgan and London 1996). Note that this technique does not mitigate alkali migration, it simply corrects for it. Thus, the effects on other mobile species not analyzed by EPMA (e.g., Li) cannot be corrected.

3. Adjust the electron beam and analysis conditions to minimize alkali migration (e.g., Devine et al. 1995; Morgan and London 1996; King et al. 2002). Most authors recommend making various changes to the electron beam conditions to reduce alkali migration, such as reducing the beam current, increasing beam diameter, decreasing the accelerating voltage and reducing counting times. The trade-off is that counting statistics are worsened by these changes, particularly for minor to trace level components. However, for those users without access to a cryostage, adjusting beam conditions is the best method of reducing ion migration.

Reliability of VBD

We can use the SIMS experiments to assess the best electron-beam conditions for analysis of hydrous, silica-rich glasses. The SIMS data from the electron-irradiation experiments show a clear decrease in the extent of damage caused to the glass, as beam current was reduced. The least damage was caused during 15 kV, 2 nA experiments. We therefore analyzed a suite of hydrous, rhyolitic melt inclusions in plagioclase phenocrysts.
from Mount St. Helens (Blundy and Cashman 2005), using the same CAMECA SX-100 instrument, with a 2 nA, 15 kV primary beam, and 15 μm defocused beam. Na and Si were analyzed first and concurrently, with short counting times. The primary Si standard (KN18 glass, Nielsen and Sigurdsson 1981) was used because of its similarity with the unknown. Matrix correction was done online using a PAP correction (Pouchou and Pichoir 1984), because of its similarity with the unknown. Matrix correction was standard (KN18 glass, Nielsen and Sigurdsson 1981) was used and concurrently, with short counting times. The primary Si for giving total H2O content for hydrous, Si-rich glasses to within 1996; Morgan and London 2005) that VBD is a reliable technique previous studies (e.g., Devine et al. 1995; Morgan and London 2005). Figure 11 shows the results of VBD calculated from the electron-microprobe analyses, vs. H2O measured using SIMS, on un-irradiated parts of the melt inclusions (n = 38). VBD and SIMS measurements agree well; a regression curve has gradient 0.99 (i.e., it lies on the 1:1 line) and R² = 0.81. A full propagation of the counting errors gives a precision for VBD of ±0.75 wt%, because of the decreased count rates at low beam currents. However, the absolute deviation from the expected (SIMS) values reflects the accuracy of the technique: the average absolute deviation (AAD) is 0.56 wt%. This study show therefore shows, in common with previous studies (e.g., Devine et al. 1995; Morgan and London 1996; Morgan and London 2005) that VBD is a reliable technique for giving total H2O content for hydrous, Si-rich glasses to within ~0.6 wt%, provided that appropriate beam conditions are used. For hydrous, rhyolitic melt inclusions, we recommend 2 nA, 15 kV, and a 15 μm spot. It is anticipated that for glasses of different composition, different beam conditions may be preferred. At higher current densities, apparently “accurate” VBD may be an artifact of losses in Na and K being offset by Si and Al grow-in (Morgan and London 2005).

Implications for SIMS analysis of glasses

The inevitable electron-beam damage caused to hydrous glasses during EPMA will be reflected in subsequent SIMS analyses, regardless of the beam conditions used. This work shows that electron-beam damage from previous electron microprobe analysis may seriously compromise measurements for alkalis and H, and we speculate that similar effects might also be seen in light elements such as F and Cl. In the study of melt inclusions or tephra particles, SIMS is routinely used to measure the concentrations of light trace elements and volatile components not directly available from EPMA, e.g., Li and H2O. Importantly, different isotopes may have different diffusivities, and would therefore be affected by electric field–assisted diffusion to varying extents.
case, because of the approximate conservation of mass during migration, averaging count rates over all cycles should equal the baseline concentration. Alternatively, SIMS data reduction should be performed using only the later cycles, after baseline levels have been reached.

ACKNOWLEDGMENTS

We thank John Craven, Simone Kasemann, and Richard Hinton for assistance at the NERC ion microprobe facility at the University of Edinburgh, U.K. We thank Charlie Mandeville for providing samples Run 9 and Run 121, and Richard Brooker for providing FTIR data for Lipari. We are grateful to Tom Sisson and Penelope King for some useful discussions, and to George Morgan and Graham Layne for their helpful reviews. M.C.S.H. is supported by a NERC Ph.D. studentship. J.D.B. acknowledges a NERC Senior Research Fellowship.

REFERENCES CITED

