Fe3+/\Sigma Fe vs. FeL\alpha peak energy for minerals and glasses: Recent advances with the electron microprobe

MICHEL FIALIN,1,* CHRISTIANE WAGNER,2 NICOLE MÉTRICH,3 ERIC HUMLER,4 LAURENCE GALOISY,5 AND ANTOINE BEZOS4

1Centre de Microanalyse Camparis-CNRS, Université Paris 6, 4 place Jussieu, 75252 Paris cedex 5, France
2Laboratoire de Pétrologie, Modélisation des Matériaux et Processus, Université Paris 6, 4 place Jussieu, 75252 Paris cedex 5, France
3Laboratoire Pierre Süe, UMR 9956-CNRS, CE-Saclay, 91191 Gif sur Yvette, France
4Laboratoire de Géosciences Marines-CNRS, Université Paris 6 et 7, Institut de Physique du Globe, 4 place Jussieu, 75252 Paris cedex 5, France
5Laboratoire de Minéralogie-Cristallographie, UMR 7590-CNRS, Universités Paris 6 et 7, Institut de Physique du Globe, 4 place Jussieu, 75252 Paris cedex 5, France

Abstract

This paper describes a preliminary study that attempts to determine the oxidation state of Fe (Fe3+/\Sigma Fe) with the electron microprobe (EMP) by measuring the self-absorption induced shift of the FeL\alpha peak emitted from minerals and glasses. In transition metals of the first row, the L\alpha spectra exhibit common distortions, namely peak position shifts, peak shape alterations, and changes in the L\beta/L\alpha ratios, caused by the large difference in the self-absorption coefficients (\(\mu/\rho\)) on either sides of the L\alpha absorption edges that are in close proximity to the L\alpha peak maxima. Measurements performed on \(\alpha\)-Fe\textsubscript{2}O\textsubscript{3} and FeO oxides have shown that self-absorption effects are stronger for the later oxide, leading to enhanced Fe2+L\alpha peak shift toward longer wavelengths as the beam energy increases. First measurements performed on silicates have confirmed that enhanced self-absorption of Fe2+L\alpha occurs on Fe2+ sites. The measurements consisted of plotting the Fe2+L\alpha peak position at a fixed beam energy (15 keV) against the total Fe concentration for two series of Fe2+- and Fe3+-bearing silicates. In a first step, these data have shown that both Fe2+L\alpha and Fe3+L\alpha peaks shift continuously toward longer wavelengths as the Fe concentration increases, with enhanced shifts for Fe2+L\alpha. For silicates containing only Fe2+ or Fe3+, no effects of the site geometry were detected on the variations of the Fe2+L\alpha peak position. A second set of plots has shown the variations of the peak position relative to the previous Fe2+-Fe3+ curves of step 1, as a function of the nominal Fe3+/\Sigma Fe, for a series of reference minerals (hydrated and non-hydrated) and basaltic glasses. Data from chain and sheet silicates (e.g., pyroxenes, amphiboles, micas) exhibited strong deviations compared to other phases (e.g., garnets, Al-rich spinels, glasses), due to reduced self-absorption of FeL\alpha. Intervalance-charge transfer (IVCT) mechanisms between Fe2+ and Fe3+ sites may be the origin of these deviations. These crystal-structure effects limit the accuracy of the method for mixed Fe2+-Fe3+ valence silicates. Precisions achieved for further Fe3+/\Sigma Fe measurements strongly depend on the total Fe concentration. For basaltic glasses containing an average of 8 wt% Fe and 10% Fe3+/\Sigma Fe, the precision is about \(\pm 2\%\) (absolute). For low Fe concentrations (below 3.5 wt%), the uncertainty in the peak position measured by the EMP spectrometers leads to error bars that are similar to with the separation of the curves fitted to the Fe2+ and Fe3+ plots, which is propagated as prohibitive lack of precision for Fe3+/\Sigma Fe (>70% relative). A major limitation of microbeam methods in general deals with beam damage. This aspect has been carefully studied for basaltic glasses, and optimal beam conditions have been established (in general, electron doses higher than those corresponding to 130 nA and 30 \(\mu\)m beam diameter should be avoided to prevent large beam induced oxidation phenomena). Additional work, in progress, concerns: (1) other beam-sensitive phases (e.g., Cr- and Ti-rich oxides where FeL\alpha is strongly absorbed), for which the self-absorption-induced shift of Fe2+L\alpha is different from that of common silicates and glasses.

Introduction

The redox state of Earth’s mantle is a critical parameter to constrain models on the origin and the evolution of the Earth. Oxygen fugacity plays an important role in volatile speciation, physical properties of mantle rocks, core-mantle interactions, and the atmospheric chemistry through time (Kadik and Lukarin 1985; Kasting et al. 1993). The redox state of the upper mantle is commonly estimated through values of oxygen fugacity calculated on the basis of Fe2+/Fe3+ equilibrium among mineral assemblages such as olivine-orthopyroxene-spinel (Ballhaus et al. 1990; O’Neill et al. 1993) or determined by
wet chemical analyses on minerals or glasses (Christie et al. 1986). For example, systematic relationships have been pointed out between upper mantle oxidation states and tectonic regimes (e.g., Wood et al. 1990; Canil et al. 1994). However, the effects of different processes on mantle redox conditions are still debated: are the large variations in the redox state linked to C-O-H fluids (Mattioli et al. 1989) or do they result only from magmatic processes, partial melting, and melt infiltration (Amundsen and Neumann 1992; McGuire et al. 1991)? Many of the controversies about this subject ultimately relate to the paucity and irrelevance of the available data. This lack of data may be the major justification for continuing to search for techniques of determining Fe³⁺/ΣFe.

Iron commonly occurs in two different oxidation states. The redox state of Fe is strongly dependent on the interaction with C-O-H fluids in natural magmas. These fluids play quite different structural roles (Waychunas et al. 1988; Cooney and Sharman 1990; Jackson et al. 1990) and have considerable influence on properties of silicate melts such as density or viscosity. The effect of the oxidation state of Fe and oxygen, the changes in Fe³⁺/ΣFe, and interactions of Fe and O in silicate melts have been widely debated (e.g., Dyar 1985; Mysen 1988). The determination of Fe³⁺/ΣFe along with the sites occupied by Fe³⁺ and Fe²⁺ cations and their relationships with the silicate framework provide a basis from which the thermal history, and uncertainties below ±10% relative. (5) Crystal field absorption spectroscopy with millimetric near-IR-visible-UV sources gives information on the oxidation state, coordination number, and geometry of the cation sites by processing the d → d transitions in the UV-visible region (200 nm) (Burns 1993). In theory, the intensity of the absorption bands allows the researcher to determine the concentration of the cation in its various oxidation states using the Beer-Lambert relationship (e.g., Bingham et al. 1999). For Fe, however, measurement of the Fe³⁺ band, of low intensity compared to Fe²⁺, is rendered difficult by the presence of an intense absorption background due to intervalence charge transfer (IVCT) between Fe²⁺ and Fe³⁺ cations (Fe²⁺ 3d → Fe³⁺ 3d transitions, below for more comments on IVCT mechanisms).

The major criticism against bulk methods concerns the purity of the samples. Even carefully hand-picked glasses or minerals may contain traces of some other material that significantly changes the Fe³⁺/ΣFe value.

Microbeam methods

To avoid contributions from undesirable phases, micro-beam techniques are particularly useful. Selection of surfaces from natural glasses or minerals that are free of any alteration, cracking, or secondary veins can be made by optical examination even at a scale of about 5 µm. Furthermore, these techniques are also useful for experimental materials, with dimensions ranging from few hundred micrometers to few millimeters, which cannot be processed by the common bulk methods cited above. Finally, it is important to emphasize that, unlike bulk methods, a quantity of about 1 µg can in theory be processed using microbeams. The Mössbauer method has been adapted to the study of samples with an area as small as 100 µm² with the development of the milliprobe (McCannon et al. 1991). The main disadvantage of the later method is the long time exposures required to balance the weak intensity of the beam. The local determination of the oxidation states of Fe using both electron and X-ray spectroscopies has become more and more popular as a consequence of the development of modern micro-beam sources (electrons or X-rays).
Experimental methods

Instrumentation

Measurements were carried out with a Cameca CAMEBAX EMP operating at 15 keV, using TAP monochromator crystals (2d = 2.575 nm). The FeKα peak maximum was located by using the regular automatic routine of the Cameca EMP software. The time required for a single peak search was 60 s, leading to an uncertainty of about ±8 Bragg sin angle (sinθ) increments (1 increment = 1.10−4 sinθ) in the FeKα peak position for Fe concentrations ranging 5 to 30 wt% with a beam current of 40 nA. The pulse height analyzer was set to avoid the interference of FeKα with the high-energy ninth-order FeKα peak.

Sample description

The method for determining Fe3+/ΣFe is based on two calibration stages, for which two specific groups of both hydrous and anhydrous minerals have been selected, together with natural and synthetic glasses. For the first calibration stage, the following anhydrous minerals containing either Fe2+ or Fe3+ were selected: (1) clinopyroxenes (diopside and hedenbergite, with 3 and 16 wt% Fe2+ respectively, and acmite with 19 wt% Fe3+); (2) orthopyroxene with 9 wt% Fe2+; (3) olivines (composition 3–17 wt% Fe2+; (4) gabbros (andradite with 22 wt% Fe3+ and almandine with 17 wt% Fe3+); (5) K-feldspar with 4 wt% Fe3+; (6) epidote with 7 wt% Fe3+; and (7) staurolite with 9.9 wt% Fe3+.

For the second calibration stage, samples with varying Fe3+/ΣFe have been selected. Mineral species were (1) clinopyroxenes (six minerals) with 5–23 wt% Fe and 15–96% Fe3+/ΣFe; (2) gabbros (four minerals) with 5–20 wt% Fe and 47–90% Fe3+/ΣFe; (3) Al-rich spinels (seven minerals) with 9–17 wt% Fe and 14–75% Fe3+/ΣFe; (4) amphiboles (two minerals) with 7–10 wt% Fe and 95–98% Fe3+/ΣFe; (5) micas (four minerals) with 8–18 wt% Fe and 15–33% Fe3+/ΣFe. The following 25 glass samples also were studied: (1) tholeiite (16 natural samples) with 7–10 wt% Fe and 10–17% Fe3+/ΣFe; (2) basaltic lava (six samples obtained by fusion of powdered natural glasses at 1270–1300 °C under controlled air fluxes to obtain the required Fe2+/ΣFe) with 6–8 wt% Fe and 30–85% Fe3+/ΣFe; and (3) andesitic (three synthetic samples, same treatment as for the basaltic glasses) with 5–16 wt% Fe and 50–64% Fe3+/ΣFe. The essential data on mineral and glass compositions used in this study are presented in Table 1. Values of Fe3+/ΣFe were either calculated by common stoichiometry and charge-balance relationships deduced from EMP analyses of anhydrous minerals, or measured by wet chemistry and/or Mössbauer spectroscopy for glasses (Humler et al. 1998; Neuvile et al., unpublished data, 1999) and hydrous silicates (wet chemistry on separated minerals).

Self-absorption of low energy Lα peaks

The L-series peaks emitted from the first row transition metals are the result of radiative electronic transitions between the partially filled 3d orbitals to the 2p (or Lα) core levels. The energies of these peaks are below 1 keV. Several papers have described the L-series of light transition metals, as well as those of Cu and Zn (Parratt 1959; Holliday 1968; Bonnelle 1987), and point out the large contribution of self-absorption (i.e., absorption by its own atoms or ions of X-ray photons emitted from a chemical species) in misinterpretation of experimental spectra. Indeed, self-absorption is responsible for asymmetries on the high-energy side of the Lα peaks, leading to peak position shifts and changes in the Lβ/Lα ratio (O’Nions and Smith 1971; Rémond et al. 1996). These spectral distortions are caused by the large contrasts in absorption coefficients on either side of the metal Lα edges that are in close proximity to the Lα peak maxima. The full widths at half maximum (FWHM) of low-energy Lα peaks is the convolution of the natural widths of both 3d and 2p levels. The energy distributions of the 2p levels are described by Lorentzian curves with widths inversely proportional to the lifetime of the 2p-core holes. The 2p level width is ~1.5 eV in Fe (Bonnelle 1966). In addition, the final state hole causes the 3d band to broaden. Similar peak broadenings related to the lifetime of the ionized state affect the 2p absorption spectra (de Groot et al. 1990). Self-absorption occurs when lifetime broadenings are large enough to initiate overlap between both emission and absorption bands. Due to the later intrinsic loss of resolving power of the method, photons are generated with the minimal energy required for transitions from the 2p core level to continuum states (empty states just above the Fermi level, E0, for low energy peaks). Empty states at E0 for transition metals are composed of admixtures of 3d and 4sp states. In applying dipole selection rules, transitions of core electrons (as 2p electrons) to localized empty states (e.g., 3d) dominate over delocalized conduction states (e.g., 4sp). Both types of transitions may dramatically change the shape of the Lα-edge with strong effects on the self-absorption. A classical example is given by the comparison of the CuLα absorption spectra of CuO and Cu2O (e.g., Bonnelle 1966). The L1 discontinuity of the former is arc tangent shaped, which is characteristic of 2p → 4s transitions (low self-absorption of CuLα), whereas that of the later consists of a white-line (i.e., is peak shaped) as a consequence of highly probable transitions to the 3d-hole localized on the e orbital (high self-absorption of CuLα). Therefore, the self-absorption intensity of soft Lα peaks
TABLE 1. Complete table of the mineral and glass compositions used in this study; electron microprobe chemical analyses in wt%

<table>
<thead>
<tr>
<th></th>
<th>Px</th>
<th>Px</th>
<th>Px</th>
<th>Px</th>
<th>Px</th>
<th>Gt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>52.53</td>
<td>52.06</td>
<td>51.86</td>
<td>48</td>
<td>49.05</td>
<td>28.4</td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.31</td>
<td>1.15</td>
<td>6.03</td>
<td>1.14</td>
<td>0.14</td>
<td>12.23</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1</td>
<td>0.04</td>
<td>0.65</td>
<td>4.83</td>
<td>0.64</td>
<td>3.16</td>
</tr>
<tr>
<td>FeO(total)</td>
<td>23.58</td>
<td>29.52</td>
<td>19.05</td>
<td>13.31</td>
<td>29.98</td>
<td>18.05</td>
</tr>
<tr>
<td>MnO</td>
<td>2.73</td>
<td>0.12</td>
<td>0.11</td>
<td>0.46</td>
<td>3.14</td>
<td>0.33</td>
</tr>
<tr>
<td>MgO</td>
<td>0.34</td>
<td>0.02</td>
<td>4.07</td>
<td>0.87</td>
<td>0.73</td>
<td>0.06</td>
</tr>
<tr>
<td>CaO</td>
<td>0.37</td>
<td>0</td>
<td>4.42</td>
<td>20.7</td>
<td>22.14</td>
<td>32.36</td>
</tr>
<tr>
<td>Na₂O</td>
<td>13.37</td>
<td>13.99</td>
<td>11.05</td>
<td>1.69</td>
<td>0</td>
<td>0.03</td>
</tr>
<tr>
<td>K₂O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>98.23</td>
<td>96.9</td>
<td>97.23</td>
<td>98.6</td>
<td>99.68</td>
<td>95.82</td>
</tr>
<tr>
<td>Fe⁺⁺ΞΣFe(%)</td>
<td>97</td>
<td>94</td>
<td>83</td>
<td>36</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>Gt</td>
<td>Gt</td>
<td>Gt</td>
<td>Gt</td>
<td>Gt</td>
<td>Gt</td>
<td>Gt</td>
</tr>
<tr>
<td>SiO₂</td>
<td>33.22</td>
<td>38.02</td>
<td>37.89</td>
<td>39.28</td>
<td>42.04</td>
<td>41</td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.98</td>
<td>0.05</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.93</td>
<td>18.66</td>
<td>18.37</td>
<td>22.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>FeO(total)</td>
<td>23.6</td>
<td>6.65</td>
<td>8.45</td>
<td>22.05</td>
<td>3.08</td>
<td>7.08</td>
</tr>
<tr>
<td>MnO</td>
<td>0.74</td>
<td>13.62</td>
<td>13.78</td>
<td>0.48</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.26</td>
<td>0.05</td>
<td>0.06</td>
<td>11.38</td>
<td>54.53</td>
<td>51.9</td>
</tr>
<tr>
<td>CaO</td>
<td>31.14</td>
<td>24.48</td>
<td>20.63</td>
<td>4.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K₂O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>98.36</td>
<td>99.5</td>
<td>99.43</td>
<td>99.61</td>
<td>99.65</td>
<td>100.1</td>
</tr>
<tr>
<td>Fe⁺⁺ΞΣFe(%)</td>
<td>90</td>
<td>63</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: Px = pyroxene; Gt = garnet; K-fp = K-feldspar; St = staurolite; B-lava = Basaltic lava glasses.

* Al-rich spinel.

is tightly related to both density and spatial extension of empty 3d at E₃ and to the rate of 3d–4sp hybridization, or mixing, as well. In oxides, metal 3d and oxygen 2p states are more or less mixed, which imparts some p-character to the 3d wave functions, thus reducing the 2p → 3d transition probability. In summary, the lower the density of unmixed 3d states at E₃, and the lower their localized character, the lower the self-absorption intensity. The self-absorption of low energy L photons is thus very sensitive to the nature and the arrangement of the lattice surrounding the absorbing atoms.

The attenuation by self-absorption of the Lₐ photons along their path to the surface of a bulk material is described by:

\[
\frac{I}{I_0} = \exp(-C \cdot \frac{\mu_p}{\rho_z} \cdot \text{cosec} \theta)
\]

where \(I_0\) is the intensity generated at mass depth \(\rho_z\), \(I\) is the
emerging intensity, C is the weight fraction (wt%) of the metal, μ/ρ is the mass self-absorption coefficient (sensitive to structural and chemical effects, as discussed above), and θ is the take-off angle. Larger self-absorption-induced distortions of L_α peaks are produced at high beam energy and high metal abundance, related to parameters ρz and C in Equation 1, respectively.

The FeL_α peak positions for Fe$_3$O$_4$ (hematite) and Fe$_{0.94}$O (wüsite, referred to as FeO in the text) are plotted against beam energy in Figure 1 indicating larger self-absorption effects in the later. First, the Fe$^{2+}$ peak position measured at any fixed beam energy is systematically shifted toward larger $\sin\theta$ compared with Fe$^{3+}$. Second, the Fe$^{2+}$-Fe$^{3+}$ peak separation increases as the beam energy increases to reach the large value of approximately 100 $\sin\theta$ increments at 15 keV. Extrapolation of the peak positions to the FeL_3 edge energy, where self-absorption is eliminated, shows reduced L_α peak shift. Figure 2 shows the self-absorption spectra recorded with the EMP at the FeL_3 edge of Fe$_3$O$_4$ and FeO. These spectra were constructed by taking point by point ratios of two L_α peaks, one of which was measured at 2 keV and thus was weakly distorted by self-absorption, whereas the other was measured at 10 keV and was strongly altered by it. This method was described by Liefeld (1968) as an easy way to extract self-absorption data of low transition metals from bulk specimens analyzed with an electron beam. The reduced height together with the shift in energy (ca. 1.3 eV) of the absorption maximum of Fe$_3$O$_4$ compared with FeO is in good agreement with the calculated L_3 absorption spectra closest to E_F for Fe$^{2+}$ and Fe$^{3+}$ in octahedral symmetry, the actual coordination of both ions in Fe$_3$O$_4$ and FeO, respectively (Cressey et al. 1993). Also indicated in Figure 2 are the extrapolated positions of the FeL_α peak maxima, as deduced from Figure 1, which shows the enhanced overlap of both absorption and emission bands for FeO.

SPECIATION OF IRON IN MINERALS AND GLASSES

Methodology

To evaluate the contribution of Fe concentration to self-absorption effects, the FeL_α peak shift measured at 15 keV (the common beam energy used in geological applications) was plotted in Figure 3 vs. wt% Fe for a series of almost pure Fe$^{2+}$- and Fe$^{3+}$-bearing silicates. The continuous peak shift observed toward larger wavelengths for Fe$^{2+}$ is consistent with increasing self absorption as wt% Fe increases. The few data collected for Fe$^{3+}$ compounds show a trend similar to Figure 1: given the level of self absorption—fixed by the wt% Fe in Figure 3—the Fe$^{3+}$ peak is shifted toward shorter wavelengths compared with Fe$^{2+}$. The Fe$^{3+}$-Fe$^{2+}$ peak separation is as large as 160 $\sin\theta$ increments at 20 wt% Fe and is reduced to 30 $\sin\theta$ increments at 3.5 wt% Fe. It should be noted that, despite the change in the coordination number of Fe$^{3+}$ ions, which ranges from sixfold (octahedral) in pyroxenes and olivines to eightfold (cubic) in garnets to fourfold (tetrahedral) in staurolite, no obvious anomaly is noted on the plots in Figure 3. The same remark holds for the Fe$^{3+}$ curve that has been constructed with minerals where Fe$^{3+}$ is sixfold coordinated, except in feldspar where it is fourfold coordinated. These results show that no effects of...
concentration for a series of Fe2+ - and Fe3+ -bearing silicates. Numbers keV with a TAP monochromator as a function of the total Fe was performed relative to the peak position of Fe\textsubscript{2}O\textsubscript{3}. Ln curves have peak searches to fit within the latter uncertainty. All data were collected peak position. Below 5 wt% Fe, plots represent the average of three bars are given for an uncertainty of no physical justification.

The site geometry can be detected from the variations of the Fe\textsubscript{L\alpha} peak position, at least for silicates containing either Fe2+ or Fe3+.

The calculated \(L_\alpha \) absorption spectra for Fe3+ and Fe2+ exhibit a major peak with one low-energy satellite (often called pre-peak) and one or more high-energy satellites (Cressey et al. 1993). The relative peak energies and heights depend on the crystal-field splitting termed 10Dq. In silicates, 10Dq is taken as 1.0 or 1.5 eV for fitting experimental spectra where Fe3+ and Fe2+ are in octahedral and tetrahedral sites. For either of these values of 10Dq, the overall \(L_\alpha \) absorption bands of Fe3+ and Fe2+ are little changed (either in maximum position or in shape) for both sites. We can reasonably expect that, given the limited resolution of the EMP, details of the \(L \)-absorption edge structure reflecting cation coordination vanish into the total emission signal.

Once the Fe concentration of a silicate phase has been measured by classical EMP analyses using the Fe\textsubscript{K\alpha} peak [and not Fe\textsubscript{L\alpha}, which is not recommended for analyses of the first row transition metals (Pouchou and Pichoir 1985; Fialin et al. 1993)], Fe3+/ΣFe can be roughly estimated in Figure 3 by comparing the measured Fe\textsubscript{L\alpha} peak position to both Fe3+ and Fe2+ curves at a given Fe concentration assuming a linear increase of Fe3+/ΣFe between both curves. Values of Fe3+/ΣFe will be then reduced from plots giving the peak positions relative to the Fe3+-Fe2+ curves of Figure 3 as a function of the nominal Fe3+/ΣFe for a series of reference minerals and glasses (Fig. 4a). The total Fe concentration of reference samples used in Figure 4a is given in Figure 4b (using the same x-axis and same symbols as in Fig. 4a). In Figures 4a and 4b, full symbols represent data for glasses, garnets, and Al-rich spinels. Significant deviation from a linear relationship exists for full symbols, which shows that the position of the Fe\textsubscript{L\alpha} peak in a given phase is not a linear function of Fe3+/ΣFe. Open symbols in Figure 4a represent pyroxenes, amphiboles, and micas. For a given Fe3+/ΣFe, and particularly for values far from the end-members, we observe an overall shift of open symbols relative to full symbols toward the right-end of the x-axis. Comparison of Figures 4a and 4b shows that the shifted positions of the open symbols is not related to the total Fe concentration of the corresponding samples. This deviation for open symbols corresponds to a shift of the peak maximum toward shorter wavelength, which can be interpreted as a reduction of the self-absorption for the Fe\textsubscript{L\alpha} peak. In chain and sheet silicates (e.g., pyroxenes, amphiboles, and micas), mixing of the Fe-3d orbitals occurs between Fe cations of edge- and face-sharing FeO\textsubscript{6} polyhedra (to form metal-metal bonding by IVCT) with thermally activated transfer of an electron (electron hopping) over two or more adjacent Fe2+ and Fe3+ sites (Sherman 1987a). The IVCT mechanisms lead to the partial delocalization of the d-orbitals and thus to the reduction of the self-absorption for the \(L_\alpha \) peak. Broadening of the experimental Fe3+ \(L_\alpha \)-absorption band in amphiboles has been reported by Cressey et al. (1993), which may reveal such a delocalization for the Fe3+ d-orbitals. On the other hand, IVCT is not described for minerals in which either Fe2+ or Fe3+ occupy non-sixfold coordinated sites such as garnets (eightfold coordination of Fe3+) and Al-rich spinels (fourfold coordination of Fe3+). For these minerals, no IVCT induced peak shift is expected. Similar conclusions hold for glasses for which recent XANES spectra obtained from basaltic glasses are consistent with mainly fourfold coordination of Fe, with the possible presence of fivefold coordination (Wu et al. 1998, 1999; Jackson et al. 1993; Brown et al. 1995).

Accuracy and precision

First, the accuracy of the method strongly depends on the nominal values of Fe3+/ΣFe of the standards used. The scattering of data in Figure 4 may be caused in part by some problems of accumulating errors due to stoichiometry based calculation of Fe3+/ΣFe in minerals (Sobolev et al. 1999). As a result, calibration curves should be constructed with data collected either from international references or from carefully selected samples in which Fe3+/ΣFe was measured by wet chemical or Mößbauer methods. Second, accuracy also may be altered as a result of the sensitivity of the self-absorption of Fe\textsubscript{L\alpha} to the extent of d-orbital delocalization for the-absorbing ions. Two major contributions influence self-absorption in this way: (1) IVCT for mixed valence sheet and chain silicates; and (2) differences in bonding environment, for glasses in particular, due to extremely distorted cation sites and presence of other anions (OH−, F− etc.).

The level of precision is directly related to the uncertainty in the absolute peak position (parameter sin\(\theta \)) in Fig. 4a). To improve the uncertainty in the peak position after a single au-
FIGURE 4. (a) Variation in rel% of the FeLα peak position for an unknown X, relative to the separation of the Fe\(^{3+}\)/Fe\(^{2+}\) curves for the corresponding Fe content in Figure 3 (see text), as a function of the nominal Fe\(^{3+}\)/Fe for a series of reference phases. Nominal Fe\(^{3+}\)/ΣFe values were measured by wet chemistry for glasses, micas, and amphiboles, and deduced from the EMP analyses for other minerals (plots for the latter correspond to large filled or open symbols). Open symbols represent mixed valence chain and sheet silicates that are sensitive to IVCT mechanisms (see text). Error bars (1 standard deviation) correspond to the precision achieved for the relative peak position \((\sin \theta - \sin \theta_{(22)} - \sin \theta_{(32)} - \sin \theta_{(42)})\), provided a precision of ±0.5 sin increments for the absolute peak position sin X. The size of the error bars are dependent on the total Fe concentrations of reference samples, which are given in (b). Following values for the error bar lengths can be remembered: ±5, ±3, and ±2 for 5, 8, and 15 wt% Fe, respectively.

tomated peak search (i.e., ±8 sinθ increments), the current protocol for measuring the position of the FeLα peak consisted of averaging 36 peak searches. Three different sites were selected on the sample surface for these measurements (to limit both beam damage and carbon contamination), and six peak searches were carried out on each site simultaneously by two spectrometers equipped with TAP monochromators. The beam was set to 130 nA and 30 μm (see next section for justifications of these beam parameters). For these conditions, the precision achieved for sinθ was ±3 sinθ increments (1 standard deviation). Another source of error for data in Figure 4a is the uncertainty in the values of sinθ\(_{(22)}\) and sinθ\(_{(32)}\), that are deduced from the Ln fit curves of Figure 3. The subsequent systematic error on the relative peak position \((\sin \theta - \sin \theta_{(22)} - \sin \theta_{(32)} - \sin \theta_{(42)})\) is not easy to evaluate but it is assumed to be low compared to errors due to the lack of statistical accuracy on sinθ. Finally, the error on \((\sin \theta - \sin \theta_{(22)} - \sin \theta_{(32)} - \sin \theta_{(42)})\) is also dependent on the total Fe content of the sample through the parameter \((\sin \theta_{(32)} - \sin \theta_{(42)})\). The higher the Fe content, the higher the value of \((\sin \theta_{(32)} - \sin \theta_{(42)})\) and, thus, the lower the error propagated to \((\sin \theta - \sin \theta_{(22)} - \sin \theta_{(32)} - \sin \theta_{(42)})\) by the uncertainty on sinθ. For basaltic glasses containing, on average, 8 wt% Fe and 10% Fe\(^{3+}\)/ΣFe, a precision of ±3 sin increments for sinθ\(_{x}\) corresponds to 6% of the separation of the Fe\(^{3+}\)/Fe\(^{2+}\) curves for 8 wt% Fe (90 sinθ increments) in Figure 3. In terms of uncertainty in Fe\(^{3+}\)/ΣFe, ±3% (absolute) is an upper limit corresponding to a 1:1 relationship between Fe\(^{3+}\)/ΣFe and \((\sin \theta_{(32)} - \sin \theta_{(42)})\) \((\sin \theta_{(32)} - \sin \theta_{(42)})\) relationship gives an uncertainty of about ±2% (absolute) for Fe\(^{3+}\)/ΣFe.

LIMITATIONS

Some limitations associated with the method should be examined. The first one concerns species with low concentrations of iron (<3.5 wt% Fe) for which the method is not applicable. An uncertainty of ±3 sinθ increments represents 20% of the separation of the Fe\(^{3+}\)/Fe\(^{2+}\) curves for 3.5 wt% Fe in Figure 3, which is propagated as prohibitively large error bars for the relative peak position \((\sin \theta - \sin \theta_{(22)} - \sin \theta_{(32)} - \sin \theta_{(42)})\) (±10% absolute). The second limitation involves self-absorption-induced deformations of FeLα that also depend on the absorption by other components of the matrix and mean atomic number of the sample as well. Indeed the higher both of the latter parameters are, the lower the escape depth of the measured FeLα photons and thus the lower the self-absorption they experience. This situation is illustrated in Figure 5, where data collected from two Cr-rich spinels (SP1, SP2) and one pseudobrookite (PSB) are plotted and compared with plots of Figure 4a representing Al-rich spinels with Fe\(^{3+}\)/ΣFe ranging from 15 to 25%. Chromium and Ti are very absorbing elements for FeLα, and plots corresponding to the Cr- and Ti-rich phases lead to overestimated Fe\(^{3+}\)/ΣFe values as a consequence of the reduced FeLα peak shift toward longer wavelength for these minerals.

The total absorption (\(\mu/\rho\)) experienced by FeLα at 15 keV in most silicates and glasses—for which the mean atomic number Z is between 10 and 15—ranges from 10000 to 15 000 cm²/g (corresponding to escape depths ranging from 1 to 3 μm for FeLα). Any phase with \(\mu/\rho\) and/or Z outside these ranges require specific treatments. This is the case of SP1, SP2, and PSB for which Z is between 16.5 and 18 and \(\mu/\rho\), is between 20 000 and 22 000 cm²/g (escape depths below 0.5 μm for FeLα). Simple iron oxides (e.g., FeO, FeO\(_2\), Fe\(_2\)O\(_3\)) with high-
Z (typically around 20) and a low absorbing matrix for Fe\(L\alpha\)\((\mu/\rho)\ < \ 10 \ 000 \ \text{cm}^2/\text{g}\) represent specific materials that exhibit reduced escape depths for Fe\(L\alpha\) (around 0.7 \ \mu m). Beam damage is the last but essential point to be discussed. Glasses are generally more beam sensitive than minerals, and they are known to be affected by oxygen as well as alkali ion migration under electron bombardment (see review by Morgan and London 1996). This phenomenon is illustrated for a tholeiitic glass in Figure 6 where plots for O and Na were acquired simultaneously on two spectrometers with 60 s counting time. The enrichment in oxygen of the surface layers causes the Fe\(L\alpha\) peak to shift toward shorter wavelength. This shift was revealed by completing six consecutive peak searches on a single surface site of the basaltic glass at 15 keV, 130 nA, and with varying beam diameter. Results are presented in Figure 7 where linear fits to experimental plots are shown. The increase in slope as the beam diameter is reduced from 20 to 10 \ \mu m reflects enhanced surface oxidation kinetics. For 30 and 5 \ \mu m, the peak position varies slowly, which would indicate weak beam damage for both operating conditions. Actually for 5 \ \mu m, the time constant of the surface oxidation kinetics is so short that the peak is shifted rapidly (probably far before the first peak search run was completed), which provides unexpected high values for Fe\(^{3+}/\Sigma Fe\). For 30 \ \mu m, the primary electron dose is not large enough to produce noticeable effects. Surface oxidation kinetics are accompanied by common glass alterations such as electron browning and surface displacement in the direction of bombarding electrons (Lineweaver 1963). To prevent beam damage, measurements on most glasses studied here were performed at 15 keV, 130 nA, and 30 \ \mu m for which no significant peak shifts were measured with increasing irradiation time, at least over the total time required for six peak searches (i.e., 360 s).

PERSPECTIVES AND CONCLUSIONS

The technique described in this paper holds promise for Fe\(^{3+}/\Sigma Fe\) measurements at the micrometer scale with the EMP using the self-absorption-induced shift of the Fe\(L\alpha\) peak. The technique is applicable to silicates and glasses with total Fe concentration above 3.5 wt%. The next step in the study is the construction of calibration curves, which necessitates further wet-chemical and Mössbauer analyses to increase the number of data points in Figure 4. The technique can be applied to oxides and especially those with large concentrations of Ti, Cr, and Mn (all elements that are strong absorbers of Fe\(L\alpha\)), for which other sets of calibration curves should be established. Furthermore, for transition-element-rich minerals, we expect serious difficulties with IVCT mechanisms, especially for Fe-

FIGURE 5. Deviations observed in the range 15–30% Fe\(^{3+}/\Sigma Fe\) between Al-rich spinels (filled symbols) and Cr- and Ti-rich oxides (open symbols): spinels SP1 and SP2 with 56 and 53 wt% Cr\(_2\)O\(_3\), respectively (to be compared with concentrations below 1 wt% for the Al-rich spinels); pseudobrookite with 70 wt% TiO\(_2\). Due to the presence of the highly absorbing and heavy elements Cr and Ti, SP1, SP2 and PSB exhibit large total absorption coefficients \((\mu/\rho)\) for Fe\(L\alpha\) (above 20 000 \ \text{cm}^2/\text{g}) and large average atomic numbers Z (above 17). Values of \((\mu/\rho)\) and Z for the Al-rich spinels are around 12 500 \ \text{cm}^2/\text{g} and 12, respectively. Reduced Fe\(L\alpha\) peak shifts toward longer wavelengths for transition-element-rich minerals lead to overestimated Fe\(^{3+}/\Sigma Fe\). The solid line a rough fit of the filled symbol plots in Figure 4a. This diagram shows the complexity of the relationship between Fe\(^{3+}/\Sigma Fe\) and the relative peak position \((\sin\theta_{Fe^3+} - \sin\theta_{Fe^{2+}})/(\sin\theta_{Fe^3+} - \sin\theta_{Fe^{2+}})\), which is far from a 1:1 line, and the large discrepancies induced on Fe\(^{3+}/\Sigma Fe\) by using the latter relationship for high-Z and high \((\mu/\rho)\), minerals.

FIGURE 6. (a) Na\(K\alpha\) intensity loss in basaltic glass (4.11 wt% Na\(_2\)O) as a function of six 60 s-integrated count runs performed on the same surface site; 60 s correspond to the time required for a single automatic peak search with the Cameca EMP. Beam conditions: 15 keV 130 nA, 10 \ \mu m. (b) Concurrent increase of O\(K\alpha\) in accordance with the model of Lineweaver (1963).
and Ti-bearing (Sherman 1987b), and Fe- and Mn-bearing (Sherman 1990) minerals. The technique can also be applied to hydrated glasses (e.g., volcanic inclusion glasses) for which primary experiments have shown that beam damage is a crucial question to be studied carefully. Beam damage for hydrated glasses was already reported by application of a method based on the \(\alpha K \alpha \) peak shift for determining oxygen fugacity in individual S-bearing glasses (Métrich and Clocchiatti 1996; Clément 1998).

The accuracy of the method is strongly dependent on (1) the sensitivity of the self-absorption of FeL\(\alpha \) to the nature and arrangement of the lattice surrounding Fe ions (matrix corrections for strong absorbers of FeL\(\alpha \) present in a sample, correction for IVCT, other currently unidentified sample-specific factors), and (2) beam damage. It is thus premature to suggest that the determination of Fe\(\alpha \)/ΣFe is precise enough to be fully quantitative considering an uncertainty of about ±10% relative as an appropriate value for an analytical technique (the actual precision is ±20% relative for 10% Fe\(\alpha \)/ΣFe). The question remains open about the number of calibration curves needed to cover the different mineral groups and glasses.

From the instrumental point of view, the need should be stressed for high-performance, wavelength-dispersive spectrometers that measure, with good accuracy and as rapidly as possible, the position of the FeL\(\alpha \) peak emitted from phases with rather low Fe concentrations, typically below 10 wt% (which includes most silicates). Improvements need to address mainly two competing properties of the monochromator crystals, namely the reflectivity and the resolution. The TAP monochromator exhibits poor reflectivity (leading to low count rates) and would be replaced preferably by metallic multilayer monochromators (MMM). The great advantage of MMM is the possibility to adjust parameters such as the d-spacing, the surface size, and the couple of deposited material, to optimize the detection of a given X-ray. The fixed d-spacing of TAP (2.575 nm) in connection with Bragg’s law force this crystal to be positioned in the spectrometer far from the X-ray source to detect FeL\(\alpha \). Selecting enhanced d-spacing for the MMM would produce a reduction of the source-crystal distance with a subsequent increase of the incoming X-ray flux intercepted by the crystal. The disadvantage of this operation is the loss of resolution of the monochromator (good resolution remains essential to keep the separation large enough between both the Fe\(^{2+} \) and Fe\(^{3+} \) L\(\alpha \) peak positions). To overcome this drawback, a new type of MMM has been described (Sammar et al. 1993; Fialin et al. 1996). New MMM consist of lamellar gratings etched in the multilayer structure to produce the desired bandwidth reduction by lightening the diffractive medium. The design of an MMM for improved detection of FeL\(\alpha \) is in progress.

ACKNOWLEDGMENTS

We are indebted to the following colleagues for providing part of the samples studied here and/or for constructive discussions: M.A. Arrio, M. Fonteilles, Y. Fuchx, D.R. Neuville (campus Jussieu); M. Bonnin-Mosbah, D. Massare, and R. Moretti (CE-Saclay). We also thank Heidi Höfer, Stuart Raeburn, Jeremy Delaney, and David London whose thorough reviews enhanced the quality of the manuscript.

REFERENCES CITED

Mineralogical Society of America, Reviews in Mineralogy, Washington, D.C.

Coomer, T.F. and Sharmann, S.K (1990) Structure of glasses in the systems \(Mg_2SiO_4-Fe_2SiO_3 \), \(Mn_2SiO_4-Fe_2SiO_3 \), \(Mg_2SiO_4-Cu_2SiO_3 \), and \(Mn_2SiO_4-CaMnSiO_3 \). Journal of Non-Crystalline Solids, 122, 10–32.

