GEOLOGIC STRUCTURES

- Stress and Strain
- Active deformation along faults
- Geologic maps and cross sections
- Folding
- Faulting
GEOLOGIC STRUCTURES

“Architecture of bedrock”

- **Structural Geology** - concerned with shapes, arrangement, interrelationships of bedrock units & forces that cause them.

- **Important to understanding:**
 - How mountains form
 - How continents evolve
 - How plate tectonics works
 - Safe siting of public facilities, dams, power, etc.
 - Search for energy resources

TECTONIC FORCES AT WORK

- **Stress & Strain:**
 - Stress (force per unit area)
 - **Compressive** stress
 - Shortening strain
 - **Tensional** stress
 - Stretching or extensional strain
 - **Shear** stress
 - Shear strain
 - Strain (change in size, shape, during stress)
Behavior of rocks under stress

- **Elastic** (recovery to original shape)
 - Elastic limit
 - Beyond this stress, permanent strain

- **Plastic (ductile)**
 - Permanent strain by flow, or folding
 - Typical at higher P, T within crust

- **Brittle**
 - Permanent strain by fracture, failure
 - Typical at lower P, T near surface
 - Rocks fracture when strain rates are high
Present Deformation of the Crust

• Active *fault*
 – Fracture along which movement has occurred rapidly

• “Creep”
 – Slow sustained movement along a fault
Structures Record Geologic History

- Geologic maps and field methods
 - Observations of *outcrops*
 - Geologic maps
 - Observations from many outcrops
 - Geologic cross section
 - Vertical slice through portion of Earth
 - Like a roadcut
 - *Important—used extensively!*
• Measuring strike and dip

• Geologic map

• Cross section
FOLDS

- Bends or wave-like features in layered rocks
 - Plastic strain, compressive stress
- Geometry of folds:
 - **Anticline vs. syncline**
 - *Hinge line, limb, axial plane*
 - Plunging fold (hinge lines dip)
 - Structural dome
 - Structural basin
Aerial view, Himalayan Foothills, northern Pakistan

Plunging folds
FOLDS

• Bends or wave-like features in layered rocks
 – Plastic strain, compressive stress
• Geometry of folds:
 – Anticline vs. syncline
 • Hinge line, limb, axial plane
 – Plunging fold (hinge lines dip)
 – Structural dome
 – Structural basin
East Side of Cerro Chalten, Patagonian Batholith
East of Cerro Fitzroy, Patagonian Fold Belt

FOLDS

- Interpreting folds
 - Open fold
 - Isoclinal fold
 - Overturned fold
 - Recumbent fold
Types of Folds and Movement

A Strata before folding

B Open folds—the two diagrams show alternate ways that stresses may have been distributed to have caused the folding.

C Isoclinal ("hairpin") folds

D Overturned folds

E Recumbent folds
Energy and Structures

Recipe for oil
- dead plants & animals deposited with sediments
- sedimentary rock buried (<1000m)
- cook at 100°C for 2-5 million years
- voila!

To trap oil need:
- an impermeable layer
- a structure, e.g. anticline, fault, unconformity
TECTONIC FORCES AT WORK

- Stress & Strain:
 - Stress (force per unit area)
 - Strain (change in size, shape, during stress)

Fractures in rock

- Joints
 - *break in rock along which no movement has taken place*
 - Columnar jointing
 - Sheet jointing
 - Joint set

- Faults
 - *break in rock along which movement has taken place*
Weathered, jointed rock
Fractures in rock

- Faults
 - Dip-slip faults - normal and reverse
 - Footwall vs. hanging wall
 - Normal fault
 - Graben; Rift
 - Horst; fault-block mountain range

Faults

Fault types

1. Dip Slip Faults
Faults

Some fault terminology

• Hanging wall vs. Footwall
Fault scarp, Death Valley

Rift Valley development
Fractures in rock

- Faults
 - Reverse fault
 - Thrust fault - low angle reverse fault
 - Strike-Slip fault
 - Left-lateral vs. right-lateral
Reverse Fault in Volcanic Ash Beds

What type of fault is this?

Cambrian (530 Ma) limestone

Silurian (430 Ma) limestone
• **Thrust Fault** = low angle **Reverse Fault**
 - Alps, Northern Rockies, Appalachians thrust faults with > 50 km of displacement

Fractures in rock

• Faults
 – **Reverse fault**
 • Thrust fault- low angle reverse fault
 – **Strike-Slip fault**
 • Left-lateral vs. right-lateral
San Francisco Bay Area
San Andreas Strike Slip Fault

San Francisco Bay Bridge, damaged in 1989 Loma Prieta Earthquake

Please read Chapter 7 (Earthquakes) for next lecture