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[1] Fundamental to the development of astronomical time scales is the recognition of
oscillatory variability within stratigraphic data and its evaluation relative to a null “noise”
hypothesis. In this study, Monte Carlo simulations are used to investigate the suitability of
two commonly used noise hypotheses (the “conventional” and “robust” AR1 approaches),
and the results highlight important limitations in both for cyclostratigraphic application.
Perhaps most problematic, the robust AR1 method can result in inflated confidence level
estimates and excessive clumping of false positives within the low frequency portion of the
spectrum, especially when the underlying noise process has a high lag-1 autocorrelation.
Given typical cyclostratigraphic records, this technique will often impose “significant”
eccentricity band variability, even in the case of pure AR1 noise. An alternative spectral
noise estimation method is proposed to overcome these problems, which simultaneously
allows for departures from the AR1 assumption, and obtains high statistical power—that is,
the ability to accurately identify astronomical signals when they are present in the data.
We apply the method to un-tuned d18O data from Miocene sediments of the Ceara Rise,
indicating statistically significant spectral power at frequencies that are consistent
with the published orbital interpretation of Weedon et al. (1997). Furthermore, evaluation
of the frequency arrangement of the significant spatial bedding periods, using the average
spectral misfit method for astrochronologic testing, reveals that the null hypothesis of no
orbital influence can be rejected with a high degree of confidence
(the 99.8% confidence level).

Citation: Meyers, S. R. (2012), Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology,
Paleoceanography, 27, PA3228, doi:10.1029/2012PA002307.

1. Introduction

[2] Since the seminal work of Hays et al. [1976], spectral
analysis has become one of the primary tools for hypothesis
testing in cyclostratigraphy. A key step in cyclostratigraphic
analysis and the development of astronomical time scales is
the formulation of an appropriate null hypothesis against
which to measure the statistical significance of power spec-
trum peaks. Numerous techniques are available (seeWeedon
[2003] for a review), but the most commonly utilized
methods are based on autoregressive-1 (AR1) “red noise”
models, mathematically defined as [Gilman et al., 1963;
Mann and Lees, 1996]:

rn ¼ rrn�1 þ wn ð1Þ

where n = 1, …, N is the time increment, rn is the red noise
sequence, 0 ≤ r < 1 is the lag-1 autocorrelation coefficient,
and wn is a Gaussian white noise sequence.
[3] These models represent a simple stochastic process

that is physically motivated by climate [Hasselmann, 1976]
and depositional system dynamics [Thakur and Scheidegger,
1970; Sadler and Strauss, 1990], where a white noise source
(e.g., weather) is integrated by an Earth System component
with a slower response time (e.g., the oceans). The charac-
teristic increase in power with decreasing frequency is what
classifies AR1 processes as “red noise,” and the power
spectrum (SAR1( f )) is defined as [Gilman et al., 1963; Bartlett,
1978; Mann and Lees, 1996]:

SAR1ð f Þ ¼ So
1� r2

1� 2r cos pf =fNð Þ þ r2
ð2Þ

where f denotes frequency, fN the Nyquist frequency (the
highest frequency resolvable), and So is the average power
across the entire spectrum. Here, the r parameter controls the
shape of the spectrum, while So defines the average vertical
displacement from the abscissa (compare Figures 1b, 1e, and
1h). Both of these parameters must be estimated empirically
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from the data, and any bias imposed via the estimation pro-
cedure will necessarily result in bias in the reconstructed
confidence levels.
[4] As demonstrated by Mann and Lees [1996, hereafter

ML96], the conventional approach for estimation of SAR1( f )
can be substantially biased if the data series also contains a
strong periodic or quasiperiodic signal, a circumstance that
is presumed common in cyclostratigraphic records. As a
solution, Mann and Lees [1996] propose a least squares
analytic fit of equation (2) to a median-smoothed spectrum
estimate, which deemphasizes strong peaks in the power
spectrum (this follows the algorithm as updated by Ghil
et al. [2002] and as implemented in the SSA-MTM Toolkit).
The robust estimate of r (rML96) is the value that results in
the smallest mean square error, and So-ML96 is simply the
mean value of the median smoothed power spectrum.

[5] While the conventional and ML96 robust AR1 models
are utilized extensively in cyclostratigraphic research, few
rigorous exploratory computational experiments have been
conducted to evaluate their suitability (one notable exception
is Vaughan et al. [2011]). Here we utilize Monte Carlo
simulations to critically evaluate these two noise modeling
approaches for use in astrochronology. As will be demon-
strated, ensemble simulation results indicate that the robust
method is generally preferable for estimation of r and it has
a greater ability to accurately identify orbital signals when
they are in fact present in the data. However, the experi-
ments also highlight some important limitations for cyclos-
tratigraphic application, including inflated confidence level
estimates (greater than expected false positive rate) and
excessive clumping of false positives within the eccentricity
band of the spectrum, especially given the strong red noise

Figure 1. Example simulations of AR1 models with lag-1 autocorrelation coefficients (r) of (a) 0.9,
(d) 0.5 and (g) 0.1. (b, e, h) The 3p multitaper method (MTM) [Thomson, 1982] power spectra of the
noise realizations, plotted as log (power) and (c, f, i) plotted as linear power. Red lines indicate the
background as estimated using the conventional AR1 approach, and the blue lines indicate the back-
ground as estimated using the ML96 robust AR1 method. The three AR1 simulations have been
assigned distinct So values for the sake of illustration, but all other simulations in this study utilize
AR1 noise with So normalized unity, to facilitate comparison among the results.
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(r of 0.7–0.9) common in cyclostratigraphic records.
To overcome these problems a new noise estimation method
is adopted, based on a robust locally weighted regression
estimate of the spectral background [Cleveland, 1979;
Ruckstuhl et al., 2001].

2. Monte Carlo Experiments: False Positives
and Statistical Power

2.1. Simulation Setup

[6] If confidence levels are to be meaningful, they must
accurately reflect the chance occurrence of false positives
(e.g., a 95% confidence level should indicate that there is
a 5% chance of erroneously rejecting the null hypothesis),
and they should not artificially favor false positives in any
particular region of the spectrum. An additional desirable
attribute is high statistical power—that is, the ability of the
metric to accurately identify orbital signals when they are
in fact present in the data. In this study, false positive rate
and spectral distribution are evaluated using 1000 Monte
Carlo simulations of pure AR1 noise for r of 0.9, 0.5 and
0.1, representing strongly red, moderately red, and nearly
white noise (we refer to these simulations as AR1x, with
subscript x indicating the r value). Examples of these simu-
lations are shown in Figure 1. To evaluate the influence of an
imbedded astronomical signal on the estimated noise para-
meters (r and So), we examine a normalized eccentricity, tilt
and precession signal (ETP) [Laskar et al., 2004; Meyers
and Hinnov, 2010] combined with AR1 noise realizations,
also with r of 0.9, 0.5 and 0.1 (the ETP and AR1 signals are
given equal variance before they are combined; we refer to
these simulations as ETP-AR1x, with subscript x indicating
the r value). Finally, to quantify statistical power we evaluate
the ETP-AR10.9 model, as this is the most challenging case,
and is characteristic of many cyclostratigraphic data sets.
[7] Simulated records are 5 million years long, with a

temporal resolution of 5 ka, a representative sampling that is
typical of many cyclostratigraphic investigations. The record
length and number of simulations (1000) have been selected
so as to allow resolution of all major astronomical cycles, to
stabilize parameter estimates, and to provide small enough
variance (uncertainties) for reliable method inter-comparison.
In addition, assessment of statistical power is also conducted
using 1 million yearlong ETP-AR10.9 simulations, a duration
that is representative of many shorter cyclostratigraphic
records. Summaries of the Monte Carlo experiments are
provided in Figure 2 and Tables 1–3. Additional details on
the ML96 analysis parameters, and noise simulation proce-
dure utilized here, are included in Appendix A.

2.2. Monte Carlo Simulation Results

[8] As expected based on theory [Bartlett, 1978], the
conventional AR1 approach provides unbiased estimates of
r and So (here referred to as rraw and So-raw; Table 1 and
Figure 2a) for the simulations of pure red noise, and there-
fore results in unbiased confidence level estimates (not
shown). However, evaluation of the ETP-AR1 simulations
demonstrates that both parameters become strongly biased
by the presence of quasiperiodic variability across the
spectrum. This bias is especially pronounced for the ETP-
AR10.9 simulations, where the median rraw is estimated as
0.75, and the median So-raw is approximately two times the

true value (Table 1 and Figure 2b). The consequence is a
reduction in statistical power (e.g., see the 1 Myr and 5 Myr
simulations in Table 3), particularly at the eccentricity peri-
ods, and also the potential for enhanced false positives in
portions of the spectrum due to the strongly biased estimate
of the red noise spectrum shape (r) [see, e.g., Mann and
Lees, 1996]. In contrast, the ML96 robust red noise
approach yields a median rML96 value of 0.82 for the ETP-
AR10.9 simulations, closer to the true value of 0.9, and the
median So-ML96 is reduced to 0.9 (compare to 1.97 for So-raw;
Table 1). Both of these factors contribute to the enhanced
statistical power of the ML96 method (Table 3). Note that
such large r estimates are typical of cyclostratigraphic
records (e.g., see section 4).
[9] While this result would seem to favor the ML96 robust

AR1 technique, another perspective is provided by applying
the method to pure AR1 noise. For example, in the case of
the AR10.9 simulations, the median rML96 is also reduced to
0.82, and the median So–ML96 is underestimated by approx-
imately half (Table 1 and Figures 2a and 2b). The conse-
quence is a substantial enhancement of the false positive rate
—approximately double that expected for the 90% and 95%
confidence levels (Table 2 and Figure 2c)—and a clumping
of false positives at the lowest frequencies (Figure 2d), the
location of the short and long eccentricity terms in cyclos-
tratigraphic spectra. Using this approach, one is essentially
guaranteed to find statistically significant eccentricity band
power in pure AR1 noise when the true r is near 0.9. The
reason for this can be understood by evaluating Figure 1b,
which illustrates the diminishment of low frequency power
in the ML96 noise estimate due to the median smoothing
methodology (see Appendix A and Mann and Lees [1996]).
An enhanced false positive rate is also observed in the
AR10.5 and AR10.1 simulations (Table 2 and Figure 2), and
while the latter displays uniform spectral distribution of the
false positives (Figure 2l), the former is characterized by a
slight enhancement at lower frequencies (Figure 2h).
[10] These results highlight important limitations in both

conventional and robust red noise estimation methods.
Clearly, if a pure AR1 process is present it is optimal to
estimate the spectral background using the conventional AR1
approach, as the ML96 robust method is biased. However,
if a mixed signal is present, the ML96 robust method pro-
vides a less biased estimate of the spectral background and
enhanced statistical power. The essential problem is that we
don’t know, a priori, which of these two cases is correct.
The ideal method should accurately reconstruct the back-
ground spectrum without such knowledge. This motivates
the development of an alternative method for spectral back-
ground estimation based on robust locally weighted regres-
sion techniques [Cleveland, 1979], inspired by the original
methods employed in Hays et al. [1976] and the robust esti-
mation philosophy of Mann and Lees [1996].

3. Robust Locally-Weighted Regression Spectral
Background Estimation (LOWSPEC)

[11] In their original analysis of late Pleistocene climate
proxy data from the Southern Ocean, Hays et al. [1976]
evaluated the significance of power spectrum peaks using a
two-step approach. First, they pre-whitened the data set with
a first difference filter to remove low frequency “red noise”
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power that dominates the spectrum and strongly influences
estimates of the spectral background. Application of a first
difference filter is equivalent to removing an AR1 process
with a r of 1 (equation (1)). Following this pre-whitening,
the residual background was estimated using a “low
resolution” Blackman-Tukey spectrum [Blackman and
Tukey, 1958]. The application of this spectrum smoothing
approach to the pre-whitened data, rather than the explicit
AR1 model fit that is now commonly used in cyclostrati-
graphy, has the advantage of allowing for departures from
the AR1 model assumption [e.g., Vaughan et al., 2011] if it
is not entirely valid. However, an important limitation of
this approach is that the spectral background is estimated
directly from a spectrum that includes a mixture of

Table 1. Median r and So Estimates for the Simulations, Using the
Conventional AR1 and ML96 Robust AR1 Methodsa

Simulation

Conventional AR1 ML96 Robust AR1

rraw So-raw rML96 So-ML96

AR10.9 0.90 1.00 0.82 0.53
ETP-AR10.9 0.75 1.97 0.82 0.90
AR10.5 0.50 1.00 0.49 0.92
ETP-AR10.5 0.55 1.98 0.53 1.21
AR10.1 0.10 1.00 0.10 0.94
ETP-AR10.1 0.35 1.98 0.20 1.19

aAll simulations are evaluated using 3p MTM spectra.

Figure 2. Simulation ensemble results for conventional AR1-based confidence level estimates and the
ML96 robust AR1 confidence levels. (top) Summary of the AR10.9 and ETP-AR10.9 simulations, (middle)
summary of the AR10.5 and ETP-AR10.5 simulations, and (bottom) summary of the AR10.1 and ETP-
AR10.1 simulations. (a) Kernel density estimates of r for AR10.9 and ETP-AR10.9 simulations. (b) Kernel
density estimates of average power (So) for AR10.9 and ETP-AR10.9 simulations. (c) Kernel density esti-
mates of the false positive rate for the 99%, 95% and 90% confidence levels, using AR10.9. (d) Spectral
distribution of false positives for the 99%, 95%, and 90% confidence levels, using AR10.9. (e–l) The same
format as Figures 2a–2d but for different r values. As illustrated in Figures 2a, 2e, and 2i, the conventional
rraw estimates determined from mixed ETP-AR1 signals can be biased either high or low. For a
given record, the direction and magnitude of this bias will depend upon a range of factors, including
the true r value, the sampling rate, the specific timescale of each cyclic signal and its relative strength.
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background and hypothesized quasiperiodic variability,
without allowance for sharp spectral features that should be
excluded from the background estimation. Thus, the statisti-
cal power of the technique is necessarily reduced [Weedon,
2003].
[12] The statistical power can be enhanced if a robust

methodology is used in the estimation of the spectral back-
ground [Box, 1953; Mann and Lees, 1996], that is, a tech-
nique that can identify and exclude extreme departures from
the spectral background during the smoothing process. A
suitable smoothing approach is provided by robust locally
weighted regression [Cleveland, 1979; Ruckstuhl et al.,
2001], defined as:

Sbackground foð Þ ¼ argmin
b

Xn
i¼1

w fi � foð Þ S fið Þ� b0 þ b1 fi � foð Þð �½ g2
n

ð3Þ
where n is the number of frequencies evaluated for each
local regression fit, w( fi � fo) is a weighting function for
each frequency ( fi) included in the background fit at fre-
quency fo, and b are the ‘local’ regression coefficients.
Importantly, the weights w( fi � fo) are determined itera-
tively and incorporate a robustness criterion to identify and
exclude extreme departures, for example, due to narrowband
spectral features that are attributable to periodic or quasipe-
riodic variability. A detailed introduction to the method is

provided in Cleveland [1979], and a relevant example of its
application for spectral background estimation in quantita-
tive spectroscopy can be found in Ruckstuhl et al. [2001].
[13] For the algorithm adopted here, pre-whitening is

conducted using the conventional r estimator, and departures
from this AR1 model are subsequently compensated for
using robust locally weighted regression (equation (3)). This
approach is essentially similar to the “combined parametric/
non-parametric” method advocated by Percival and Walden
[1993, section 9.10] [see also Thomson et al., 2001]. Obvi-
ously, the use of AR1 pre-whitening is most appropriate
when testing against an AR1 model, but other types of pre-
whitening can be utilized for the evaluation of a wide range
of noise models [Percival and Walden, 1993]. Additional
details on the algorithm are contained in Appendix B.
[14] Results of 1000 Monte Carlo simulations of AR10.9

noise indicate median false positive rates of 0.9%, 5.1% and
10.3% for the LOWSPEC 1%, 5% and 10% confidence
levels (Figure 3a and Table 2), substantially lower than those
of the ML96 robust method. Furthermore, the distribution of
false positives is uniform across the spectrum (Figure 3b).
Finally, evaluation of the 1 Myr ETP-AR10.9 simulations
indicates that the LOWSPEC statistical power for detection
of the long eccentricity term exceeds that of the ML96
method, while detection of the short eccentricity terms is
somewhat diminished, and all methods demonstrate excep-
tional statistical power with regards to the dominant obliquity
(‘o2’) and precession terms (Table 3). However, while the
high frequency orbital terms are most consistently identified
in the ensemble simulations, it is important to note that
sedimentation rate instability in real stratigraphic data will
most strongly affect and smear these high frequency terms,
a necessary consequence of which is a reduction of statistical
power.
[15] The longer 5 Myr simulations in general demonstrate

high statistical power for all methods, which can be under-
stood as due to an increase in the number of observed cycles
at all orbital periods, and the consequent sharpening of their

Table 3. Statistical Power of the Conventional AR1, ML96 Robust AR1 and LOWSPEC Methods Relative to the 95% and 99%
Confidence Levela

Term
Periodb

(ka)

1 Million Year Simulations:
95% CL

1 Million Year Simulations:
99% CL

5 Million Year Simulations:
95% CL

5 Million Year Simulations:
99% CL

AR1 ML96 LOWSPEC AR1 ML96 LOWSPEC AR1 ML96 LOWSPEC AR1 ML96 LOWSPEC

e1 404 0.137 0.586 0.749 0.002 0.387 0.484 0.748 0.953 0.993 0.428 0.860 0.942
e2 125 0.040c 0.592c 0.481c 0.001c 0.231c 0.155c 0.069 0.887 0.762 0.011 0.657 0.441
e3 95 0.040c 0.592c 0.481c 0.001c 0.231c 0.155c 0.605 1.000 0.996 0.210 0.994 0.952
o1 54 0.000 0.021 0.005 0.000 0.005 0.002 0.011 0.958 0.714 0.000 0.819 0.357
o2 41 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
p1 24 1.000c 1.000c 1.000c 1.000c 1.000c 1.000c 1.000 1.000 1.000 1.000 1.000 1.000
p2 22 1.000c 1.000c 1.000c 1.000c 1.000c 1.000c 1.000 1.000 1.000 1.000 1.000 1.000
p3 19 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

aAn orbital signal is considered detected if significant power is achieved within a bandwidth defined by the half power points of the theoretical
astronomical signal [Laskar et al., 2004]. A value of 1 indicates perfect detection. The 1 Myr simulations use 2p MTM spectra, and the 5 Myr
simulations use 3p MTM spectra. For the p1 and p2 terms in the 1 Myr simulations, a bandwidth larger than the half power points is used to provide a
more suitable statistical power test. This is necessitated by the overlap of the p1 and p2 terms within the spectral bandwidth which creates a prominent
superposed peak in the region of overlap. While the e2 and e3 terms in the 1 Myr simulations also exhibit this phenomena, the half power points are
sufficient to capture most of the orbital signal bandwidth.

bBased on 3p MTM analysis of the Laskar et al. [2004] solution, 0–5 Ma.
cThe e2 and e3 terms are not individually distinguishable in the power spectrum, given the spectral bandwidth resolution of the 1 Myr simulations. The

same is true for the p1 and p2 terms.

Table 2. Median False Positive Rates for the Simulations, Using
the ML96 Robust AR1 and LOWSPEC Methodsa

Simulation

ML96 Robust AR1 LOWSPEC

90% CL 95% CL 99% CL 90% CL 95% CL 99% CL

AR10.9 17.8% 11.4% 4.7% 10.3% 5.1% 0.9%
AR10.5 13.4% 7.2% 1.6% 10.4% 5.1% 0.9%
AR10.1 12.8% 6.8% 1.4% 10.4% 5.1% 0.9%

aAll simulations are evaluated using 3p MTM spectra.
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associated spectral features. However, for these 5 Myr
simulations the conventional AR1 method indicates a degree
of degradation in the statistical power associated with
detection of the eccentricity periods, especially the ‘e2’ term
(Table 3). In contrast, all of the eccentricity terms are
clearly detected using the ML96 and LOWSPEC approaches
(Table 3).

4. Testing for an Astronomical Signal in Ceara
Rise d18O Data

4.1. Evaluation Against the Red Noise Hypothesis

[16] As a test case for the LOWSPEC method we revisit
early Miocene proxy data from the equatorial Atlantic Ceara
Rise, ODP Site 926B [Pälike et al., 2006], a site that has
been instrumental in the development of astrochronologies
for the Miocene and Oligocene time scale [Weedon et al.,
1997; Shackleton et al., 1999], and has also provided con-
straints on the theoretical astronomical solutions [Laskar
et al., 1993, 2004]. The original cyclostratigraphic work at
this site was conducted by Weedon et al. [1997], which
identified a statistically significant bedding period of �1 m
(relative to a conventional AR1 model) in depth-scaled
reflectance data. This cycle was interpreted as due to obliquity
forcing based on biostratigraphically estimated sedimentation
rates [Curry et al., 1995]. Subsequent studies by Shackleton
et al. [1999] and Pälike et al. [2006] further developed the
astrochronology at Ceara Rise by tuning extended proxy
records to theoretical orbital-insolation models [Laskar et al.,
1993, 2004]. These astronomically tuned data have been used
to support the accuracy of the theoretical orbital-insolation
solutions, through the identification of a 2:1 orbital resonance
between eccentricity (2.4 Myr) and obliquity (1.2 Myr) that is
predicted by the astronomical models [Pälike et al., 2006].
However, it is important to note that validation of the Laskar
et al. [2004, hereafter LA04] model using data that is tuned
directly to it raises the potential for circularity. This motivates

an independent assessment of the orbital hypothesis that is
free of orbital tuning to LA04, as is provided here and in
Meyers and Hinnov [2011].
[17] Evaluation of the Ceara Rise d18O record (a proxy for

ice volume and deep ocean temperature) [Pälike et al., 2006]
using the conventional AR1 and ML96 robust AR1 methods
is displayed in Figure 4. The two confidence level estimates
(Figure 4d) are in close agreement for most of the spectrum,
but substantially diverge at frequencies <0.4 cycles/meters.
The ML96 confidence level estimates are elevated in the
lower 10% of the spectrum, precisely the response we’d
expect to observe if due to an enhanced false positive rate
from strong red noise (compare with Figure 2d). The raw
and ML96 robust r coefficients for this record are 0.79 and
0.68, respectively, and while both can be biased by the
hypothesized orbital signal (see Figure 2a), they support the
inference of relatively strong red noise. Important for the
discussion that follows, the highly significant �0.8 m cycle
in d18O (peak “c” in Figure 4b) is consistent with a reflec-
tance cycle that was previously hypothesized to represent
the 41 ka obliquity signal [Weedon et al., 1997]. If this is
the case, then the strong power at <0.4 cycles/m is in the
eccentricity band (as well as the �1200 ka obliquity
“modulator” band; peaks “a” and “b” in Figure 4b), and
thus it is critical to determine if this power is actually
significant, or artificially inflated by the ML96 technique.
[18] Results of the LOWSPEC analysis are displayed in

Figure 5. Following the pre-whitening procedure, the d18O
spectrum is slightly blue (displaying an increase in power
with frequency). This result indicates that the lag-1 auto-
correlation (r) used for pre-whitening is slightly over-
estimated, and suggests that the robust r estimate is more
appropriate. One could iteratively modify the pre-whitening
r estimate until the spectrum is most closely white, although
this approach is not pursued here. Instead, the slight over-
estimation of r is compensated for by the locally weighted

Figure 3. AR10.9 simulation ensemble results for LOWSPEC-based confidence level estimates. (a)
Kernel density estimates of the false positive rate for the 99%, 95% and 90% confidence levels. (b)
Spectral distribution of false positives for the 99%, 95%, and 90% confidence levels.
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background estimation procedure (green lines in Figures 5a
and 5b).
[19] Comparison of the LOWSPEC confidence levels to the

conventional AR1 and ML96 robust AR1 results indicates
that all methods document highly significant (>95% CL)
peaks at �0.8 cycles/m (“c” in Figure 5b), �1.4 cycles/m
(“d” in Figure 5b), �1.7 cycles/m, and <0.1 cycles/m (“a” in
Figure 5b). The significance of the LOWSPEC�0.3 cycle/m
term (peak “b” in Figures 4 and 5) is intermediate between
that of the conventional (83.0% CL) and ML96 robust AR1
(99.7% CL) methods, achieving a confidence level of 95.1%.
Furthermore, it is important to note that this result is not

affected by an enhanced false positive rate, as is the ML96
method (Figure 2 and Table 2). Finally, all frequencies
above 3 cycles/m display lower confidence levels in the
LOWSPEC spectrum than those associated with the con-
ventional AR1 or ML96 robust AR1 techniques (compare
Figures 4d and 5c). Importantly, these frequencies are outside
of the proposed orbital band [Weedon et al., 1997].

4.2. Testing the Astronomical Hypothesis at Ceara Rise

[20] In interpreting spectral results such as those shown
in Figure 5, it is necessary to define a confidence level
threshold for the identification of plausible spatial bedding

Figure 4. Conventional AR1 and ML96 robust AR1 confidence level estimates for Ceara Rise benthic
foraminifera d18O data (440–490 m composite depth). (a) The d18O data (adjusted for seawater dis-
equilibrium) versus meters composite depth [Pälike et al., 2006]. (b) The 3p MTM power spectrum of the
depth-scaled d18O data, with conventional AR1 background (red) and ML96 robust AR1 background
(blue). (c) Logarithmic plot of 3pMTM power, with conventional AR1 background (red) and ML96 robust
AR1 background (blue). (d) Confidence level estimates based on the conventional AR1 (red) and ML96
robust AR1 (blue) methods.
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frequencies that may represent astronomical forcing or
pacing. In cyclostratigraphic studies it is common to use the
90% confidence level as this threshold [e.g., Hays et al.,
1976; Park and Herbert, 1987; Thomson, 1990; Hinnov
and Goldhammer, 1991; Sageman et al., 1997; Weedon
and Jenkyns, 1999]. Whether this confidence level—or
any particular level—represents an appropriate statistical
criterion is debatable. For example, Thomson [1990, 2010],

Muller and MacDonald [2000], Mudelsee [2010], and
Vaughan et al. [2011] highlight the important point that
many independent statistical tests (potentially hundreds to
thousands) are conducted during a single spectral analysis,
and an allowance should be made for this by using a
‘multiple test’ criterion. That is, given 100 independent
frequencies in a spectrum, one would expect at least 10 to
exceed the 90% confidence level in the case of pure noise,

Figure 5. LOWSPEC confidence level estimates for Ceara Rise benthic foraminifera d18O data
(440–490 m composite depth). (a) The 3p MTM power spectrum of the depth-scaled d18O data following
pre-whitening, with LOWSPEC background (green). (b) Logarithmic plot of 3p MTM power following
pre-whitening, with LOWSPEC background (green). (c) Confidence level estimates based on the
LOWSPEC background estimate. (d) 3p MTM harmonic analysis amplitude results (black), with MTM
harmonic confidence levels (light blue) based on the harmonic F test.
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and thus one could employ a more stringent ‘multiple test’
90% confidence level that accounts for this [e.g., Vaughan
et al., 2011].
[21] In counterpoint, the ‘multiple test’ confidence levels

assigned to these statistical hypotheses are only exact for time
series – that is, records for which the time scale is perfectly
known. When depth is used as a proxy for time, the assigned
confidence levels do not strictly hold. Even a small amount
of “jitter” imposed by sedimentation rate instability serves
to smear and distort the preserved astronomical signals
[Moore and Thomson, 1991; Meyers et al., 2001; Huybers
and Wunsch, 2004], making their identification with a 90%
‘multiple test’ criterion challenging or impossible. Given
typical sedimentation rate instability associated with pelagic
and hemipelagic records, achievement of the ‘standard’ 90%
confidence level may be the best we can hope for in many
real stratigraphic data sets [e.g., Thomson, 1990, p. 571].
[22] For yet another perspective however, consider the

following: even when depth-scaled data express a cycle that
passes a selected ‘multiple-test’ criterion (90%, 95%, etc.),
such tests do not provide an evaluation of the temporal
duration of the spatial cycle. The temporal period must be
assumed or evaluated based on other geochronologic infor-
mation, which is typically poorly constrained in deep-time
studies. In other words, a statistical test that does not eval-
uate temporal hypotheses for the observed rhythms cannot
permit an explicit test of the astronomical hypothesis.
[23] Given these issues, a practical and rigorous test for

the presence of an astronomical signal must appeal to other
aspects of the preserved rhythms, such as the expected
hierarchy of cycles that the astronomical model predicts
[Meyers and Sageman, 2007; Meyers, 2008; Malinverno
et al., 2010]. In fact, assessment of cycle hierarchy was a
key component of the original evaluation of late Pleistocene
records by Hays et al. [1976], but only recently has a for-
mal statistical framework for such hypothesis testing been
proposed (average spectral misfit or ASM [Meyers and
Sageman, 2007]; for a Bayesian approach see Malinverno

et al. [2010]). Application of such methods recognizes an
important distinction between testing the astronomical
hypothesis, and prospecting for unknown ‘cycles’—those
which are not predicted based on a physical model. In
the case of the former, there are additional features of the
astronomical signal (beyond peak significance) that can
be utilized in hypothesis testing [Hinnov, 2000].
[24] The ASM method for astrochronologic testing is used

to evaluate the Ceara Rise d18O data in this study, and we
provide a very brief review of it here (see Meyers and
Sageman [2007] for a detailed discussion). Following the
ASM approach, observed spatial bedding periods are con-
sidered candidate astronomical cycles, which may or may
not represent orbital influence. The discrepancy between the
predicted orbital frequencies and the observed periods in the
spectrum (termed ‘average spectral misfit’, in cycles/ka
[Meyers and Sageman, 2007, equation 1]) is determined for
a given temporal calibration, or a range of plausible calibra-
tions. Finally, the observed ASM is compared to the ASM
of Monte Carlo simulated spectra with the same number of
significant frequencies as the observed spectrum, and iden-
tical resolution limitations, but with spectral peaks distrib-
uted at random frequencies. Importantly, any false positives
that are recorded in the observed spectrum are also explicitly
incorporated in the Monte Carlo simulation. The ensemble
of Monte Carlo simulations then indicate how frequently
a particular ASM value should occur by chance, given a
spectrum with similar resolution and randomly distributed
frequencies, thus providing a formal null hypothesis test
of orbital influence.
[25] Selection of a specific noise confidence level (e.g.,

90%, 95%) for identification of candidate astronomical fre-
quencies serves to influence the number of false positives
included in the ASM analyses. Most importantly, the noise
hypothesis test must not artificially impose a structure on the
spectrum, as has been demonstrated for the ML96 robust
AR1 method (Figure 2d) [see also Vaughan et al., 2011].
For the Ceara Rise d18O data we use a multistep screening

Table 4. Average Spectral Misfit Results for the Ceara Rise d18O Data (440–490 m Composite Depth)a

Frequency
(cycles/meter)

MTM Harmonic
Probability

Periodicity (ka)
s = 2.98 cm/kab Orbital Targetc (ka) Spectral Misfit ak (cycles/ka)

0.030 98.16% 1118.57 (837.80–1682.37)
0.090 95.11% 372.86 (335.39–419.74) e1 = 404.18 0
0.268 98.13% 125.21 (120.69–130.09) e2 = 123.82 0
0.350 99.98% 95.88 (93.20–98.71) e3 = 94.78 0
0.828 99.18% 40.53 (40.04–41.03) o1 = 53.16 5.865E-03

o2 = 40.52 0
0.892 99.44% 37.62 (37.20–38.05)
1.452 99.93% 23.11 (22.95–23.27) p1 = 22.82 5.43E-04
1.704 92.90% 19.69 (19.58–19.81)
1.810 95.47% 18.54 (18.44–18.64) p2 = 18.91 1.062E-03

Sak = 7.470E-03
n = 7

Average Spectral Misfit = 1.067E-03
p-value = 0.00200

Null Hypothesis Significance Level = 0.200

aASM analysis was conducted using the 17 frequencies identified in Figure 5d. Monte Carlo spectra simulations utilize 17 frequencies, randomly
distributed, with the same resolution limitations as the Ceara Rise d18O data. The significance levels are based on comparison of the observed ASM
value with the probability distribution of ASM values from 100,000 simulated spectra (Figure 6). The orbital target (predicted orbital periods) for 22 Myr
is based on Berger et al. [1992], to provide an assessment that is independent of Laskar et al. [2004].

bValues in parentheses reflect the uncertainty of each estimated period (see Meyers and Sageman [2007] for further details).
cOrbital target for 22 Ma [Berger et al., 1992].
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approach to identify candidate frequencies, which greatly
reduces false positives while also sensitive to the inher-
ent limitations of cyclostratigraphic data. Specifically, we
start by isolating those frequencies that achieve a 90%
LOWSPEC confidence level, and also a 90% MTM har-
monic F test confidence level. The MTM harmonic F test
is designed to test for phase-coherent sinusoids in white or
colored noise [Thomson, 1982; Percival and Walden, 1993]
(Figure 5d), and is, to a first order, independent of the
LOWSPEC-based hypothesis test. The combination of these
two distinct noise tests is an important advantage of the
MTM approach for cyclostratigraphic analysis.
[26] In identifying candidate cycles for astrochronologic

testing, we also make allowance for the smoothing inherent
in the MTM power spectral estimate (Figure 5b), as com-
pared to the MTM harmonic spectrum (Figure 5d). That is,
an F test peak is included in the ASM analysis if it achieves
the 90% MTM harmonic confidence level, while also
achieving the 90% LOWSPEC confidence level within +/�
half the power spectrum bandwidth resolution. We include
one additional criterion to further reduce the false positive
rate, a requirement that significant F tests must occur on a
local power spectrum ‘high’, which we parameterize as
occurring above the local LOWSPEC background estimate.
[27] Seventeen candidate frequencies meet the required

criteria outlined above. If the orbital interpretation ofWeedon
et al. [1997] is correct, a sedimentation rate of�2.98 cm/ka is
appropriate for these strata, and this temporal calibration
yields close visual agreement between observed frequencies
and the proposed orbital target (Figure 5d). But what is the
statistical significance of this observed fit? Table 4 sum-
marizes the results of the average spectral misfit analysis,
indicating an ASM value of 1.067 � 10�3 cycles/ka; the
largest discrepancy between the orbital target and the observed
d18O spectrum is for the longer obliquity period (‘o1’),
which is not surprising given the low statistical power of all
methods in identifying this weak orbital term (e.g., see the
1 Myr simulations in Table 3). Finally, Monte Carlo simu-
lation reveals that the likelihood of generating such a small

ASM value from a randomly organized spectrum is very
small (Table 4 and Figure 6); only 200 of 100,000 simulated
spectra achieve such low ASM values. Thus we can reject the
null hypothesis of no orbital influence with a very high level
of confidence (p-value = 0.00200, or the 99.8% confidence
level; Figure 6). Evaluation of the full range of sedimentation
rates permitted by biostratigraphic constraints at Ceara Rise
refines this estimate, indicating an optimal fit at 2.95 cm/ka
(ASM = 1.024 � 10�3 cycles/ka; p-value = 0.00158). A
comprehensive analysis of the entire Ceara Rise d18O
record, spanning 18–27 Myr, is the focus of a companion
study (in preparation).

5. Conclusions

[28] Accurate characterization of noise processes from
paleoclimate data is inherently important for evaluating the
physical basis of stochastic climate change [Hasselmann,
1976], and its potential links to deterministic processes. In
this regard, the noise processes alone can reveal key insights
into the dynamics of paleoclimate [Huybers and Curry,
2006; Meyers and Hinnov, 2010]. However, correct char-
acterization of the noise is also requisite for discriminating
between stochastic and deterministic hypotheses of climate
change, such as the existence of an astronomical influence
as preserved in the sedimentary archive. The null “noise”
hypothesis most often utilized in cyclostratigraphic research
is based upon an autoregressive-1 (AR1) red noise model,
a simple stochastic process that is physically motivated by
climate and depositional system dynamics, and is capable of
generating cyclic variability. Previous work has demon-
strated that empirically estimated AR1 model parameters
(r, the lag-1 autocorrelation coefficient) can be strongly
biased when determined from data that also contain periodic/
quasiperiodic signals, a consequence of which is biased con-
fidence levels. To address this issue, robust noise estimation
techniques [Mann and Lees, 1996] have been developed,
which are now commonplace in cyclostratigraphic research.
[29] In this study, ensemble model simulations indicate

that the ML96 robust AR1 method is generally preferable for
estimation of r, and this approach also has higher statistical
power—that is, the ML96 method demonstrates a greater
ability to accurately identify astronomical signals when they
are in fact present in the data. However, the experiments also
highlight some important limitations in the ML96 robust
method with regards to cyclostratigraphic applications,
including inflated confidence level estimates (greater than
expected false positive rate) and excessive clumping of false
positives within particular portions of the spectrum. The
latter issue can impose “significant” eccentricity band signals,
even in the case of pure noise, and/or may result in missing
stratigraphic rhythms that truly are statistically distinguishable
from AR1 noise.
[30] An alternative noise estimation method is proposed,

based on a robust locally weighted regression estimate of
the power spectrum (termed LOWSPEC), which overcomes
these problems while achieving high statistical power.
The LOWSPEC approach is flexible and can quite easily
accommodate a wide range of noise backgrounds via the
implementation of appropriate pre-whitening procedures.
Application of the method to un-tuned (depth-scaled) d18O
data from Miocene sediments of the Ceara Rise indicates

Figure 6. Probability distribution of the ASM results from
100,000 Monte Carlo simulated spectra. The observed ASM
from the Ceara Rise d18O data (440–490 m composite depth)
is indicated for comparison; 99.8% of the simulations are char-
acterized by an ASM value that exceeds the observed ASM.
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statistically significant spectral power at frequencies that are
consistent with published astrochronologies [e.g., Weedon
et al., 1997; Pälike et al., 2006]. Furthermore, evaluation
of the frequency arrangement of these significant spatial
bedding periods, using the average spectral misfit method
for astrochronologic testing [Meyers and Sageman, 2007],
reveals that the null hypothesis of no orbital influence can
be rejected with a high degree of confidence (the 99.8%
confidence level).

Appendix A: ML96 Robust Red Noise Parameters
and Noise Simulation Details

[31] Application of the ML96 robust AR1 method to a
given power spectrum involves selection of a median
smoothing window size, and selection of an analytic fit to
linear or log-transformed power [Mann and Lees, 1996].
The permissible median smoothing window size can range
from b*fR to 1/4*fN (where b is the time-bandwidth product
of the MTM analysis, fR is the Rayleigh frequency, and fN
is the Nyquist frequency). Alternatively, the lower bound
should be replaced by the expected bandwidth of the
hypothesized climate signal (e.g., precession) if it is larger
than b*fR. As implemented in the SSA-MTM Toolkit
(http://www.atmos.ucla.edu/tcd/ssa/), and also in the FOR-
TRAN code available at http://www.meteo.psu.edu/�mann/
Mann/tools/tools.html, the default values for the two ML96
robust AR1 parameters were utilized in the present study.
These default values are an analytic fit to log-power, using
a median smoothing window size of 1/5*fN. Following the
ML96 algorithm [Mann and Lees, 1996], the size of the
median smoothing window is truncated to include fewer
points near the edges of the spectrum – in this case, the
lower and upper 1/5 of the spectrum. The ‘edge effect’
introduced by this truncation approach is the key factor
responsible for excess false positive rates at low frequencies
when r is large (Figures 1b, 1c, and 2d).
[32] The ML96 routine implemented in the SSA-Toolkit

does not include the Nyquist frequency in the analytic fit, a
procedure that we follow here as well. However, in contrast
to the ML96 routine implemented in SSA-MTM toolkit, we
also exclude the zero frequency [f(0)] from the fit. We
choose to eliminate f(0) and fN from the analytical fit because
the theoretical distribution of power at these frequencies (more
specifically, the degrees of freedom) is distinct from that of all
other frequencies in the power spectrum. This is also consis-
tent with the standard procedure of removing the mean value
from the data series prior to its evaluation [Weedon, 2003].
[33] For the simulations implemented in this study, special

attention has been given to the generation of random
sequences that are suitable for time series spectrum estima-
tion. Deficiencies in random number generators [Park and
Miller, 1988] can result in the contribution of excess false
positive detections, independent of the specific background
estimation methodology. To guard against this potential
limitation, we utilize the following approach: (1) two indi-
vidual sets of random sequences (of same the length) are
generated using the random number generator of Matsumoto
and Nishimura [1998], (2) the first random sequence is
sorted, and its permutation vector is used to reorder the
second random number sequence.

Appendix B: Details on the LOWSPEC Algorithm

[34] The complete LOWSPEC method is comprised of
four steps: (1) an initial pre-whitening, (2) MTM power
spectrum estimation, (3) robust locally weighted estimation
of the spectral background, and (4) assignment of confi-
dence levels based on the estimated background. For this
study, pre-whitening has been conducted using the conven-
tional AR1 r estimator, a lag-1 autocorrelation. This approach
is selected to specifically test against an AR1 model, but
other pre-whitening approaches are available [Percival and
Walden, 1993; Weedon, 2003] and may be more appro-
priate for a given stratigraphic data set. Quantitative metrics
are available to aid in determination of the most suitable
pre-whitening procedure (e.g., Akaike’s information crite-
rion [Akaike, 1974]), and visual inspection of the estimated
background should provide a clear indication of whether a
particular pre-whitening method is appropriate.
[35] Power spectral estimation is conducted using the

multitaper method of Thomson [1982]. The Thomson MTM
approach is favorable because it provides an optimal tradeoff
between frequency resolution, bias protection (accuracy),
and consistency (precision), especially important for the
evaluation of the spectral continuum (the noise background;
compare Figures 203, 340 and 341 in Percival and Walden
[1993]). The method obtains superior broadband bias
protection and consistency via the application of multiple
orthogonal tapers (discrete prolate spheroidal sequences
[Slepian, 1978]) that provide an optimal concentration of
power within a specified frequency bandwidth. MTM spectral
estimation is implemented using the R library “multitaper.”
Other spectral techniques can be used for LOWSPEC,
including those suitable for unevenly sampled data [Scargle,
1989], however it should be noted that the robust locally
weighted background estimation procedure used here has
been optimized for the MTM method. Alternative optimiza-
tions may be more appropriate for other spectral methods.
[36] Background estimation is conducted using a robust

locally weighted regression procedure (equation (3))
[Cleveland, 1979] as further developed by Ruckstuhl et al.
[2001] and implemented in the R library “baseline.” In
contrast to the original method of Cleveland [1979], this
procedure utilizes asymmetric robustness weights (w), which
have been demonstrated to be more appropriate for back-
ground spectrum estimation in the presence of strong deter-
ministic peaks [Ruckstuhl et al., 2001]. For the present
application, the robustness criterion (‘b’ in equation 6 of
Ruckstuhl et al. [2001]) is optimized for both the spectral
bandwidth resolution (time-bandwidth product) [Thomson,
1982] and the number of data points in the analyzed data
series. Finally, confidence levels based on the LOWSPEC
background are determined using a chi-square distribution
[Bartlett, 1978] with 2K degrees of freedom, where K is the
number of data tapers employed in the MTM analysis
[Thomson, 1982].
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