UW Madison Electron Microbeam Laboratory

- 2 CAMECA electron microprobes only electron microprobes in Wisconsin = EPMA (electron probe microanalysis)
- Hitachi variable pressure SEM
- Located on 3rd floor of Weeks Hall
- Available to both educational and commercial researchers

CAMECA SXFive-FE Probe installed in November 2014 in Room 312 Weeks Hall

Electron Microprobe

- Field emission electron source
- "WDS": wavelength dispersive spectrometry
- 5 high resolution crystal spectrometers ($n\lambda = 2dsin\theta$)
- Optimal spectral resolution to resolve peak overlaps
- Choice of 14 crystals to measure all elements B to U
- 6 large area crystals for enhanced intensities for trace elements
- Minimum detection limits to tens of ppms
- Quality control with a range of analytical reference materials
- Ability to operate at low keV to achieve sub-micron lateral analytical resolution
- Ability to determine thin film layer composition (using special software)

WDS and EDS: similar but key differences

- Many people are familiar with SEM with EDX/EDS (energy dispersive X-ray spectrometry)
- WDS can resolve many spectral interferences, such as shown here for (~1 wt%) Hf M α adjacent to Si K α :

Highly accurate analyses (standards-based)

For example:

- Ability to accurately determine light element compositions (e.g., C), such as shown here (also B, not shown)
- Ability to identify hardto-distinguish WC_{1-x} phase

Yu, P., Chai, X., Landwehr, D., & Kou, S., 2016, Ni-WC Hardfacing by Gas Metal Arc Welding. WELDING JOURNAL, 95(12).

Composition measurements by high-resolution EPMA

		#9	phase	C (at%)	W (at%)	Others
		1	WC	49.47	49.73	-
		2	WC	51.72	49.42	-
	80 - 100 nm electron beam (very small) WC _{1-x} close to W ₃ C ₂	3	WC	48.18	48.07	-
		4	WC	52.14	44.79	-
		5	WC	51.66	47.73	-
		6	WC _{1-X}	39.06	59.37	-
		7	WC _{1-X}	40.34	59.72	-
		8	WC _{1-x}	39.07	64.18	-
		9	WC _{1-X}	38.69	58.29	-
		10	W ₂ C	32.23	69.22	÷
		11	W ₂ C	33.42	60.74	-
		12	W ₂ C	34.98	63.92	-

Variable Pressure SEM: a unique analytical instrument

Variable Pressure SEM: a unique analytical instrument

- Variable pressure: no coating necessary for non-conductive samples
 - Minimal sample prep needed
 - Images within minutes
 - Chemistry (EDS) easily attained
- Cathodoluminescence (CL)
- Electron Backscatter Diffraction (EBSD)

Examples of non-conductive samples easily imaged with Hitachi S3400 VP-SEM

Our sample is aragonite (CaCO₃) spherulites -- spherical aggregates of polycrystals, where aragonite fibers grow along the radial direction of the sphere.

-Chang-Yu Sun, Gilbert Group, Physics Department, UW Madison

Examples of non-conductive samples easily imaged with Hitachi S3400 VP-SEM

From Mark Kenoyer, Anthropology:

Steatite microbeads (steatite fired at over 1000°C → enstatite) From Chanhudaro, Pakistan, circa 2450-2000 BC

Woven silk from Harappa 2450 BC. The silk fibers have been preserved by copper salts from the corrosion of a bronze tool.

Examples of non-conductive samples easily imaged with Hitachi S3400 VP-SEM

Experiments growing stem cells upon pseudo-wollastonite (CaSiO₃) substrate after 12 days. Control=d. Calcite crystals grow up from substrate, no stem cells present. f=high seeding density (30,000 cells/ cm²). Cells now are present.

Zhang, N., Molenda, J. A., Fournelle, J. H., Murphy, W. L., & Sahai, N. (2010). Effects of pseudowollastonite (CaSiO₃) bioceramic on in vitro activity of human mesenchymal stem cells. *Biomaterials*, 31(30), 7653-7665.

Examples of non-conductive samples easily imaged with Hitachi S3400 VP-SEM and crystal identification by EBSD =Electron Backscatter Diffraction

Our Oxford EBSD system can easily index triclinic, monoclinic, orthorhombic, hexagonal, tetragonal as well as cubic patterns.

$CaCO_3$ determined to be calcite by EBSD

Zhang, N., et al. (2010). *Biomaterials*, *31*(30), 7653-7665

Cathodoluminescence example: Tuning lattice mismatch in solar cells -- CL is emitted everywhere except where there are threading dislocations (black spots): the

densities can be (c) quantified.

CL Image

Fetzer, C. M. et al, (2004, High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE. *Journal of crystal growth*, *261*(2), 341-348.