Compilation of \textit{in situ} ^{10}Be exposure ages from Norway:
age-altitude diagrams, trends and implications for ice sheet reconstruction

Linge, H1, Brook, E.J.2, Dahl, S.O.1,3, Fjellanger, J.4 Mickelson, D.M.5, Nesje, A.1,6, Raisbeck, G.M.7 and Yiou, F.7

1 Bjerknes Centre for Climate Research, University of Bergen, Allégaten 55, N-5007 Bergen, Norway.
2 Department of Geosciences, Oregon State University, Corvallis, Oregon 97331, USA.
3 Department of Geography, University of Bergen, Breiviksveien 40, N-5045 Bergen, Norway.
4 Department of Geosciences, Section for Physical Geography, University of Oslo, 0316 Oslo, Norway.
5 Department of Geology and Geophysics, University of Wisconsin, Madison, WI 53706, USA
6 Department of Earth Sciences, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.
7 Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Bât 108, 91495 Orsay, France.

Close to 200 ^{10}Be surface exposure ages have been obtained from various sites in Norway with the purpose of constraining Weichselian glacier geometry in time and space. When using only one cosmogenic nuclide, neither temporal burial (by ice or sediments) or incomplete erosion can be detected, and the obtained dates strongly rely on the geomorphological understanding of the researchers performing the fieldwork and sampling. Old exposure ages are not unambiguous evidence for the existence of nunataks, and young ages are not necessarily synonymous with glacial erosion occurring during the Late Weichselian maximum; in both cases burial by cold-based, low-erosive ice may be of importance.

Glacially moulded surfaces below trimlines/weathering boundaries typically yield ages in the range 10 to 15 ka, i.e. reflecting the time elapsed since deglaciation. Bedrock outcrops and/or block surfaces from blockfield mantled mountains give ages in the range 25 to > 80 ka. At sites where samples have been collected along altitudinal transects, an altitudinal trend from younger to older to younger ages can be found with decreasing elevation. Mountain summits lacking evidence of glacial erosion display an additional trend; surfaces at summit peaks that are highly exposed to subaerial weathering and mass movement tend to give younger ages than for surfaces at more sheltered, near-summit elevations. Relict meltwater channels and overflow gaps give consistent ages, showing that such channels are sufficiently eroded during deglaciations and reveal their potential as datable features in regions periodically dominated by cold-based ice regimes.

The general trends seen from the compilation of single nuclide surface exposure ages so far provide useful information on weathering, erosion and sampling strategies.